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Premature ovarian insufficiency (POI) is characterized by the loss of ovarian function before 40 years of age and affects ap-
proximately 1% of women worldwide. Caragana sinica is a traditional Miao (a Chinese ethnic minority) medicine that improves
ovarian function and follicular development. In the present study, we aimed to investigate the effect of active ingredients of
C. sinica on POI and determine underlying mechanisms. Herein, the chemical composition of the C. sinica compound was
analyzed using ultra-high-performance liquid chromatography, which identified hyperin (HR) as one of the main ingredients in
C. sinica. ,en, interaction targets of HR and POI were predicted and analyzed using network pharmacology and bioinformatics.
,e effect of HR on triptolide (TP)-induced granulosa cell injury was evaluated, and the underlying mechanism was explored
based on bioinformatic results. A total of 100 interaction targets for POI and HR were obtained. ,e protein-protein interaction
network of identified interaction targets emphasized the topological importance of AKT1. Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis revealed that HR might regulate POI by modulating the mechanistic target of rapamycin (mTOR)
signaling pathway. In addition, the KEGG graph of the mTOR signaling pathway revealed that AKTphosphorylation inhibits the
TSC1/2, while TSC1/2 activation inhibits the expression of mTORC1. ,e fundamental experiment revealed that HR increased
proliferation, progesterone receptor levels, and estradiol levels decreased by TP in KGN cells. Additionally, HR alleviated TP-
induced apoptosis andG1/G1 phase arrest in KGN cells.Western blotting demonstrated that HR increased the phosphorylation of
AKT and mTORC1 and decreased TSC1 expression in TP-induced KGN cells. Collectively, our findings revealed that HR
alleviates TP-induced granulosa cell injury by regulating AKT/TSC1/mTORC1 signaling, providing insight into the treatment
of POI.

1. Introduction

Premature ovarian insufficiency (POI), previously known as
premature menopause or premature ovarian failure, is
characterized by the loss of ovarian function before the age
of 40 years and is mainly manifested as menstrual cessation,
decreased androgen, and elevated gonadotropin. Mean-
while, it can lead to a series of health problems such as
vascular disease, decreased bone mineral density, and de-
creased fertility, which seriously threatens human health [1].
And it is reported to affect about 1% of women worldwide
[2, 3]. ,e presently available POI treatments include stem
cell treatment, assisted reproductive technology, and hor-
monal replacement therapy. However, these treatments are
limited to clinical application, and improved therapeutic
strategies are urgently needed [4, 5].

In recent years, medicinal plants are widely studied
[6–8], some of which have anticancer activity [9], natural
anthraquinone derivatives have immunomodulatory, anti-
bacterial, and anti-inflammatory properties [10], and many
studies have proved that flavonoids can act as antioxidants to
prevent the degradation of antioxidants and age-related
cellular components [11]. Traditional Chinese medicine has
been employed for treating POI and has achieved excellent
efficacy [12]. Caragana sinica is a traditional Miao (Chinese
ethnic minority) medicine containing C. sinica, Hominis
placenta, glossy privet fruit, and Eclipta, and it has many
pharmacological activities, such as analgesia, antioxidation,
anti-inflammatory, avoiding microthrombosis, regulating
immune function, inhibiting tumor cell growth, and so on
[13]. Previously, we reported that C. sinica compound
promotes the ovulation rate, as well as follicle growth and
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development in patients with a decline in ovarian reserve
[14]. C. sinica improves ovarian function and follicular
development by regulating the secretion of endogenous
hormones [15, 16]. ,e pharmacological activity of C. sinica
depends on its chemical composition. However, the active
ingredients of C. sinica and its effect on POI have not been
thoroughly investigated.

Clinical symptoms of POI primarily occur in response to
dysregulated folliculogenesis and estrogen deficiency, including
vulvovaginal atrophy, oligomenorrhea, amenorrhea, infertility,
and vasomotor instability [10, 17]. Abnormal follicular atresia,
a process characterized by follicular degeneration during
growth and development, might enhance follicular depletion
and result in ovarian insufficiency [10].,e decrease of ovarian
reserve is related to the decrease of the number or quality of
follicles and oocytes [18]. Granulosa cells refer to parietal cells
wrapped on the surface of follicles, which can not only promote
the formation and development of follicles, but also promote
adenohormones tomaintain the normal function of ovary [19].
It is reported that follicular development is accompanied by the
proliferation of granulosa cells, which is regulated by the in-
teraction between granulosa cells and oocytes [20–23]. Ac-
cumulating evidence has revealed that granulosa cell injury and
apoptosis are major causes of follicular atresia [24–27]. ,e
mechanism of affecting hormone synthesis and apoptosis of
ovarian granulosa cells is complex, which is closely related to
the regulation of ovarian function. It has been found that PI3K/
PTEN/AKT and TSC/mTORC1 signaling pathways are key
regulators of ovarian function, including quiescence, activation
and survival of primordial follicles, proliferation and differ-
entiation of granulosa cells, and meiotic maturation of oocytes
[28, 29]. Tuberous sclerosis complex (TSC) 1/2 complex is
considered to be the key regulator of mTOR activity. TSC1/2
plays an important role in the homeostasis and differentiation
of immune cells through the negative regulation of mTOR
signal pathway [30, 31].

In the present study, we analyzed the chemical com-
position of the C. sinica compound using ultra-high-per-
formance liquid chromatography (UHPLC). Targets of
hyperin (HR; one of the active ingredients of C. sinica
compound) and POI were predicted and analyzed using
network pharmacology and bioinformatics. Studies have
proved that Tripterygium wilfordii has reproductive toxicity
and can cause ovarian dysplasia and dysfunction. In this
study, triptolide, one of the active ingredients of Triptery-
gium wilfordii, was used to induce ovarian granulosa cells
injury, simulating the apoptosis or dysfunction of ovarian
granulosa cells caused by ovarian dysfunction in vivo
[32, 33]. ,e TP-induced granulosa cells were then treated
with HR to evaluate its effect on POI. Additionally, the
underlying mechanism was explored based on bioinformatic
results.

2. Materials and Methods

2.1. Detection of HR Content in C. sinica Compound.
C. sinica compound granules, containing C. sinica, Hominis
placenta, glossy privet fruit, and Eclipta, were supplied by
Xinlvyao (Sichuan, China). UHPLC was performed to

measure the active components present in C. sinica. ,e
flowchart is shown in Figure 1. A 300 μl aliquot of C. sinica
compound was extracted with 1000 μl methanol (80%) by
vortex mixing for 30 s, with ice-water bath ultrasonic
treatment performed for 5min. After maintaining at −20°C
for 1 h and centrifugation at 12000 rpm (4°C for 15min), a
5 μl aliquot of the supernatant was analyzed using a Nexera
UHPLC LC-30A apparatus (Shimadzu, Japan), fitted with a
UPLC BEH C18 Column (1.7 μm, 2.1mm× 100mm; Waters
Corporation). ,e mobile phase was composed of water-
acetonitrile (gradient elution), maintained at a flow rate of
400 μl/min. Primary and secondary mass spectra data were
obtained using an AB 5600 Triple TOF mass spectrometer
controlled by Analyst TF 1.7 software (AB Sciex, USA).

2.2. Network Construction and Analysis. For HR, target
proteins were predicted using the TCMSP database (https://
tcmspw.com/tcmsp.php), Swiss Target Prediction database
(http://www.swisstargetprediction.ch/), and Pharm Mapper
database (http://www.lilab-ecust.cn/pharmmapper/). ,e
corresponding gene symbols were obtained through align-
ment with UniProtID in the UniProt database (https://www.
uniprot.org/). Subsequently, POI-related targets were
identified using the GeneCards database (https://www.
genecards.org/). ,e interaction targets for POI and HR
were screened with R software using the Venn Diagram
package. Cytoscape (3.6.1) was subsequently used to visu-
alize a protein-protein interaction (PPI) network based on
the obtained interaction targets. Degree, betweenness cen-
trality, and closeness centrality were analyzed using the
Network Analyzer plugin to evaluate the topological im-
portance of the nodes in the network. Finally, the interaction
targets were analyzed by bioinformatics annotation (Kyoto
Encyclopedia of Genes and Genomes, KEGG, https://www.
kegg.jp) using DAVID: Functional Annotation Tolls.

2.3. Cell Culture and Treatment. ,e human ovarian gran-
ular cell line KGN (Procell) was cultured in Dulbecco’s
modified Eagle’s medium (DMEM)/F12 (Hyclone, USA),
supplemented with 10% fetal bovine serum (FBS; Gibco,
USA) and maintained at 37°C with 5% CO2. On reaching
80–90% confluency, KGN cells were treated with different
concentrations of HR (0 (control), 0.1, 1, 10, 50, and 100 μg/
ml; Aladdin, China) for 12, 24, and 48 h and TP (0 (control),
1, 5, 10, 20, 50, and 100 nM; Aladdin, China) for 24 h to
detect cytotoxicity. Next, cells were treated with 50 nM TP
for 24 h and subsequently treated with different concen-
trations of HR (1, 10, and 50 μg/ml) for 24 h. Cell viability,
apoptosis, and cell cycle were evaluated.

2.4. Cell Counting Kit-8 (CCK-8). ,e harvested cells were
seeded into 96-well plates at a density of 3×103 cells per well
(100 μl) at 37°C in 5% CO2 overnight. After the different
treatments, cells were cultured with an additional 10 μl
CCK-8 solution (Solarbio, China) for 4 h at 37°C. Finally, the
absorbance of each well was measured at 450 nm using a
microplate reader (Allsheng, China).
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2.5. Flow Cytometry Assay. Flow cytometry was used to
detect apoptosis and the cell cycle. For the apoptosis assay,
the Annexin V-fluorescein isothiocyanate (FITC)/propi-
dium iodide (PI) Apoptosis Detection Kit (BD, China) was
used. In detail, 1× 106 resuspended cells were harvested
from each group and then centrifuged for 5min at 400×g

and 4°C (repeated twice). ,e cells were then resuspended in
200 μl phosphate-buffered saline (PBS) and stained for
30min with 10 μl Annexin V-FITC and 10 μl PI at 4°C in the
dark. Following the addition of 300 μl PBS, the cells were
subjected to flow cytometry (ACEA Biosciences, USA). For
the cell cycle assay, 1× 107 resuspended cells were harvested
from each group, centrifuged at 400×g for 5min at 4°C, and
resuspended in 300 μl PBS. ,e cells were then fixed for 24 h
in an additional 700 μl absolute ethyl alcohol at −20°C and
centrifuged at 700×g for 5min at 4°C. Subsequently, the
cells were resuspended in 100 μl of 1mg/ml RNase A so-
lution (BD, China) and maintained at 37°C for 300min.
,ereafter, 400 μl and 50 μg/ml of PI were added and cul-
tured at 4°C for 10min in the dark. Finally, cells were
subjected to flow cytometry (ACEA Biosciences, USA).
Finally, ImageJ was used to analyze the apoptosis and cell
cycle of each group.

2.6. Enzyme-Linked Immunosorbent Assay (ELISA).
According to the antigen or antibody, it binds to the
surface of a solid-phase carrier and maintains its immune

activity. Connect the antigen or antibody with an enzyme
to form an enzyme labeled antigen or antibody, which
retains both its immune activity and the activity of the
enzyme. During the determination, the tested sample
(determining the antibody or antigen) and the enzyme
labeled antigen or antibody react with the antigen or
antibody on the surface of the solid carrier according to
different steps. ,e antigen antibody complex formed on
the solid-phase carrier is separated from other substances
by washing. Finally, the amount of enzyme combined on
the solid-phase carrier is in proportion to the amount of
tested substances in the sample. After adding the sub-
strate of enzyme reaction, the substrate is catalyzed by
enzyme to become colored products. ,e amount of
products is directly related to the amount of tested
substances in the sample, so it can be analyzed qualita-
tively or quantitatively according to the depth of color
reaction. Levels of progesterone receptor (HM10675) and
estradiol (HM10669) were determined by ELISA kit
(Bioswamp, China). ,e measurement steps are carried
out in strict accordance with the instructions.

2.7.Western Blotting. Whole proteins were extracted from
KGN cells using radioimmunoprecipitation assay lysis
buffer (Solarbio), and the protein concentration was
quantified using a bicinchoninic acid assay kit (Solarbio).
In brief, 20 μg of proteins in each group was separated by
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Figure 1: Extraction process of HR.
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Figure 2: Total ion flow diagram of broom compound in positive (a) and negative (b) ion modes.
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12% sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis and transferred onto polyvinylidene fluoride
membranes (Millipore, USA). ,e membranes were then
blocked with 5% skim milk and cultured for 1 h with
primary antibodies against TSC1 (Bioswamp, China),
mTORC1 (Bioswamp, China), and phosphorylated (p)-
mTORC1 (Abcam. USA), AKT (Bioswamp, China),
p-AKT (Cell Signaling Technology, USA), and GAPDH
(housekeeping control, Bioswamp, China), followed by
1 h of incubation with goat anti-rabbit IgG secondary
antibody (Bioswamp, China).

2.8. Statistical Analysis. SPSS 23.0 software was used for
one-way ANOVA. Data are presented as means± standard
deviation (SD). Differences among groups were analyzed
using one-way analysis of variance followed by Tukey’s test.
Statistical significance was set at p< 0.05.

3. Results

3.1. HR Was the Main Ingredient Detected in C. sinica
Compound andRegulated POI byModulating theAKT/TSC1/
mTORC1 Signaling Pathway. ,e principal components of

Table 1: ,e main active constituents of Plantagenet compound detection using UHPLC-QTOF-MS.

Compound name Molecular formula CAS number m/z
Specnuezhenide C31H42O17 39011-92-2 685.2334
Oleamide C18H35NO 301-02-0 282.2789
Hyperin C21H20O12 482-36-0 463.0874
4-Caffeoylquinic acid C16H18O9 905-99-7 353.0872
Eclalbasaponin I C42H68O14 158511-59-2 841.458
5-Caffeoylquinic acid C16H18O9 906-33-2 353.087
3,4-Dicaffeoylquinic acid C25H24O12 14534-61-3 515.1183
Astragalin C21H20O11 480-10-4 447.0924
Melezitose C18H32O16 10030-67-8 527.1566
3,5-Dicaffeoylquinic acid C25H24O12 2450-53-5 515.1182
Lanosterol C30H52O 79-62-9 427.3924
Luteolin 7-glucoside C21H20O11 5373-11-5 447.0924

Acteoside C29H36O15
61276-17-3
(22323-52-0) 623.1975

Kaempferol C15H10O6 520-18-3 287.0553
Luteolin C15H10O6 491-70-3 285.0404
Beta-amyrin C30H50O 559-70-6 426.72
Datiscetin C15H10O6 480-15-9 287.0549
Stevioside C20H30O3 471-80-7 318.45
Myristoleic acid C14H26O2 544-64-9 226.35
Rebaudioside A C44H70O23 58543-16-1 965.4233
Tiliroside C30H26O13 20316-62-5 593.1294
Ursolic acid C30H48O3 77-52-1 456.71
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Figure 3: (a) Overlap of HR predicted targets and the POI-related targets. (b) ,e protein-protein interaction network of the predicted
interaction targets of HR and POI. HR, hyperin; POI, premature ovarian insufficiency.
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compound Canary flower were analyzed by HPLC-MS. Fig-
ure 2 shows the total ion flow diagram of broom compound in
positive and negative ion modes. ,e main active ingredients
identified in the C. sinica compound are shown in Table 1,
including HR. Overall, 174 target proteins were predicted for
HR using the TCMSP database, Swiss Target Prediction da-
tabase, and PharmMapper database predicted (Supplementary
1). A total of 3694 targets related to POI were predicted using
the GeneCards database (Supplementary 2). Accordingly, 100
interaction targets for POI and HR were obtained, as shown in

the Venn diagram (Figure 3(a)), and the details are shown in
Supplementary 3.,e PPI of the interaction targets highlighted
the topological importance of AKT1, as demonstrated by the
maximum degree value, betweenness centrality, and closeness
centrality (Figure 3(b) and Supplementary 4). To better un-
derstand the biological effects of HR, KEGG pathway en-
richment was analyzed based on predicted targets. ,e
enrichment plots of the top 20 KEGG pathways are shown in
Figure 4(a), containing the PI3K-AKT signaling pathway; the
details of predicted pathways are listed in Supplementary 5,
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Figure 4: (a) Top 20 enriched KEGG pathways for the predicted interaction targets of HR and POI. (b) ,e KEGG graph of the mTOR
signaling pathway (proteins in the red frame are interaction targets of POI and HR in the mTOR signaling pathway). KEGG, Kyoto
Encyclopedia of Genes and Genomes; HR, hyperin; POI, premature ovarian insufficiency; mTOR, mechanistic target of rapamycin.

6 Evidence-Based Complementary and Alternative Medicine



containing the mechanistic target of rapamycin (mTOR) sig-
naling pathway (Figure 4(b)). As shown in Figure 2(b), the
proteins in the red frame were the interaction targets of POI
and HR in the mTOR signaling pathway, containing proteins
such as GSK3B, PI3K, and AKT. ,e KEGG graph for the
mTOR signaling pathway showed that AKT phosphorylation
inhibits the activation of TSC1/2, while TSC1/2 activation
inhibits mTORC1 expression (Figure 4(b)).

3.2. HR Promoted KGN Cell Proliferation Reduced by TP.
To investigate the effect of HR on TP-induced injury in KGN
cells, we first evaluated the effect of HR on normal KGN
cells. ,e CCK-8 assay showed that, at a low concentration
(nomore than 50 μg/l), HR presented no cytotoxicity toward
KGN cells after treatment for 12 and 24 h. However, an HR
concentration exceeding 50 μg/l revealed cytotoxicity after
treatment for 48 h (Figure 5(a)). ,us, 1, 10, and 50 μg/l of
HR treatment for 24 h were selected for subsequent ex-
periments. Next, to assess the cytotoxicity of TP on KGN
cells, KGN cells were treated with different TP concentra-
tions. ,e results demonstrated that a TP concentration of
more than 10 nM was cytotoxic. Compared with control
KGN cells, the cell viability of cells treated with 10 or 20 nM
TP presented a statistical difference; the cell viability

remained high (Figure 5(b)). ,us, 50 nM TP was selected
for subsequent experiments. ,en, the KGN cells were
treated with 50 nM TP combined with 1, 10, and 50 μg/l of
HR. ,e CCK-8 assay revealed that TP decreased the via-
bility of KGN cells; HR increased viability in a dose-de-
pendent manner (Figure 5(c)).

3.3. HRAlleviated Apoptosis and G1/G1 Phase Arrest Induced
by TP in KGN Cells. Flow cytometry revealed that TP
promoted apoptosis (Figure 6(a)) and induced G1/G1 phase
arrest (Figure 6(b)) in KGN cells; HR alleviated these TP-
induced effects in a dose-dependent manner.

3.4. HR Increased Levels of Progesterone Receptor and Estradiol
Decreased by TP in KGN Cells. Based on ELISA findings, TP
treatment decreased the levels of progesterone receptors
(Figure 7(a)) and estradiol (Figure 7(b)) in KGN cells, which
were increased by HR in a dose-dependent manner.

3.5. HR Increased p-AKT and p-mTORC1 Activation and
Decreased TSC1 Expression in TP-Induced KGN Cells.
Western blotting revealed that TP treatment inhibited the
phosphorylation of AKTand mTORC1, which increased the
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Figure 5: CCK-8 was performed to detect the viability of KGN cells treated with (a) HR or (b) TP alone, or (c) their combination. Data
represent as mean± standard deviation (SD), n� 3. ∗p<0.05 vs. control group, ▲p< 0.05 vs. TP group, and ★p<0.05 vs. TP +HR (1 μg/ml)
group. HR, hyperin; TP, triptolide.
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expression of TSC1 in KGN cells. ,is phenomenon was
reversed following HR treatment (Figure 8).

4. Discussion

POI refers to early menstruation to stop, and anovulation
and decreased estrogen levels according to previous research
have shown that its pathogenesis has strong genetic back-
ground and high heterogeneity; the genetic factors were
involved in the X chromosome abnormalities, gene muta-
tion, mitochondrial dysfunction, etc., and chromosome
abnormality is one of the main causes of POI [34] and has
become an important factor of the female infertility. Ovarian
failure can cause the follicle to fail to develop, resulting in no
ovulation. Granulosa cells (GCs) are associated with oocytes
during the development and ovulation of follicles, helping to
complete physiological processes such as sperm viability and
prokaryotic formation. As the main somatic cells in follicles,
ovarian granulosa cells play an important role in follicle
growth and development, atresia, oocyte maturation, and
ovulation [27, 35]. ,e regulation mechanism of hormone

synthesis and apoptosis of ovarian granulosa cells is complex
and affected by many factors. Hormone synthesis and ap-
optosis of ovarian granulosa cells are closely related to the
regulation of ovarian function.

Principal component analysis revealed that HR was the
main active ingredient present in C. sinica. HR is a flavonoid
compound [36], also known as quercetin-3-O-beta-D-galac-
toside [37], and it can improve the endocrine function of the
ovary [38]. A previous study has reported that HR promotes
the proliferation and secretion of estrogen and progesterone in
rat ovarian granulosa cells, thereby improving ovarian endo-
crine function [39]. However, the underlying molecular
mechanisms need to be comprehensively elucidated. HR re-
portedly exhibits several pharmacological activities mediated
via different mechanisms. Chao et al. have shown that HR
affords a protective effect against cisplatin-induced acute
kidney injury by inactivating nuclear factor kappa B and ac-
tivating nuclear factor E2-related factor-2 signaling [36]. Cao
et al. have reported that HR suppresses epilepsy-induced
neuronal damage by inhibiting PI3K/AKT and MAPK path-
way-mediated oxidative stress and autophagy [40]. Fu et al.
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have demonstrated the anticancer actions of HR in non-small
cell lung cancer by inducing apoptosis and autophagy via
inhibition of the AKT/mTOR/p70S6K signaling pathway [41].
Zeng et al. have shown that HR protects against amyloid β
protein-induced neurotoxicity by regulating the PI3K/AKT-
mediated mitochondrial apoptotic pathway [42]. TSC1 is a
crucial upstream negative regulator of mTORC1. TSC1/2 plays
an essential role in the homeostasis and differentiation of
immune cells through the negative regulation of the mTOR
signaling pathway [30, 31]. In addition, a previous study has
reported that TSC1 is involved in folliculogenesis by adjusting
apoptosis and proliferation of granulosa cells [43].

Based on previous studies on PI3K/PTEN/AKT and TSC/
mTORC1 signaling pathways, in the present study, our find-
ings indicated the topological importance of AKT1 in inter-
action targets of POI and HR through analysis of the protein-
PPI network. KEGG pathway analysis showed that HR might
regulate POI by modulating the mTOR signaling pathway. In
addition, the KEGG graph for the mTOR signaling [27]
pathway revealed that AKT phosphorylation inhibits the ac-
tivation of TSC1/2, and, in turn, TSC1/2 activation inhibits
mTORC1 expression. ,e in vitro experiment revealed the
protective effect of HR against TP-induced injury in KGN cells.
,e levels of progesterone and estrogen increased, and the
antiapoptotic effect of progesterone in ovarian cells was re-
stored. Estrogen and progesterone are necessary in the re-
productive process, and their production is closely related.
Estrogen is mainly produced in granulosa cells during follicular
development and produces negative feedback on luteinizing
hormone [44]. Progesterone is synthesized and secreted by
follicles and corpus luteum components of mammalian ovary,
which can affect the function of granulosa cells during follicular
development before ovulation [39]. TSC1 is an important
upstream negative regulator of mTORC1. TSC1/2 plays an
important role in the homeostasis and differentiation of im-
mune cells by negatively regulating mTOR signaling pathway
[30, 31]. TSC1 participates in folliculogenesis by regulating
granulosa cell apoptosis and proliferation. Furthermore, HR
increased the phosphorylation of AKT and mTORC1 and
decreased TSC1 expression in TP-induced KGN cells, con-
sistent with the KEGG pathway analysis.

,erefore, this study predicted and verified that HR is
involved in regulating the AKT/TSC1/mTORC1 sig-
naling pathway in TP-injured KGN cells. Several studies
have revealed the regulatory actions of PI3K/AKT and
TSC/mTOR signaling pathways in ovarian function,
including differentiation and proliferation of granulosa
cells, activation and survival of primordial follicles, and
meiotic maturation of oocytes [41]. It is necessary to
promote the recovery of granulosa cell activity during
POI process and contribute to follicle development,
which is extremely necessary for clinical treatment of
ovarian insufficiency.

5. Conclusion

In conclusion, our findings provide evidence that HR al-
leviates TP-induced granulosa cell injury by regulating AKT/
TSC1/mTORC1 signaling.,e limitation of this work is that

the involvement of the AKT/TSC1/mTORC1 pathway was
not confirmed by modulating its activity through trans-
fection or other methods. Collectively, this work further
discussed the promotion and mechanism of C. sinica
compound active ingredient HR on the proliferation and
secretion of damaged granulosa cells, so as to provide a
theoretical and experimental basis for the clinical treatment
of POI with C. sinica compound and its active ingredients.
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