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Shortcuts to adiabatic population 
inversion via time‑rescaling: 
stability and thermodynamic cost
Jair da Silva Andrade, Ângelo F. da Silva França & Bertúlio de Lima Bernardo*

A shortcut to adiabaticity is concerned with the fast and robust manipulation of the dynamics of 
a quantum system which reproduces the effect of an adiabatic process. In this work, we use the 
time-rescaling method to study the problem of speeding up the population inversion of a two-
level quantum system, and the fidelity of the fast dynamics versus systematic errors in the control 
parameters. This approach enables the generation of shortcuts from a prescribed slow dynamics by 
simply rescaling the time variable of the quantum evolution operator. It requires no knowledge of the 
eigenvalues and eigenstates of the Hamiltonian and, in principle, no additional coupling fields. From a 
quantum thermodynamic viewpoint, we also demonstrate that the main properties of the distribution 
of work required to drive the system along the shortcuts are unchanged with respect to the reference 
(slow) protocol.

The precise control of the dynamics of two-level quantum systems with time-dependent interacting fields is 
essential to the manipulation of the internal degrees of freedom of atoms and molecules, having applications in 
many emerging quantum technologies1–8. In this case, when the task is to attain a complete population inver-
sion, the most common options are the usage of a resonant π pulse, composite pulses, and adiabatic passage 
protocols9,10. The π pulse and composite pulse methods can provide fast inversions if high-intensity fields are 
used, but these techniques are very sensitive to imperfections in the intensity and the area of the pulse9. In this 
respect, adiabatic processes become an interesting alternative for being robust to experimental imperfections, 
but at the same time they are vulnerable to decoherence due to the long evolution times required11. In order to 
remedy the drawbacks of these approaches, the strategy is to devise quantum dynamics that are both fast and 
robust. Over the last decade, several techniques have been developed that allowed the robust manipulation of 
quantum systems at timescales shorter than decoherence times; the so-called “shortcuts to adiabaticity” (STA)11,12.

The STA methods aim to obtain analytic solutions describing fast and robust quantum time evolutions capable 
of reproducing the same effect of adiabatic transformations. They have been used to speed up the dynamics of 
harmonic potentials13–15, spin systems15,16, as well as two- and three-level atomic systems17–21. These methods have 
also been experimentally used to control the dynamics of Bose-Einstein condensates in optical lattices22, trapped 
ions23, nitrogen-vacancy centers7, and superconducting qubits24. Among the most popular and well-studied STA 
methods, we can mention the inverse engineering approaches using the Lewis-Riesenfeld (LR) invariants13, the 
counterdiabatic driving (CD)16,25–27, and the fast-forward (FF) technique28–30. Recently, a new STA approach was 
proposed by one of us, called time-rescaling method15, which consists of rescaling the time variable in the quan-
tum evolution operator in order to find fast dynamics that enable reproducing the same final state and external 
conditions of a prescribed (reference) quantum process, be it adiabatic or not. This method is independent of 
the eigenspectrum and eigenstates of the Hamiltonian, and has also been applied to study the control of a Dirac 
dynamics31. We can also mention other STA schemes in which knowledge about the eigenvalues and eigenstates 
of the adiabatic Hamiltonian is not required32–34.

In this work, we report on the application of the time-rescaling method to realize fast population inversion 
processes in a two-level quantum system, taking the Allen-Eberly (AE) adiabatic passage scheme as the reference 
dynamics9,17,35. We show that the robustness of the method is equivalent to other STA techniques, and that the 
work distribution properties of the fast dynamics are unchanged with respect to the reference (slow) process. 
Some key benefits can be pointed out. First, the method to engineer the Hamiltonian that generates the fast 
dynamics is totally analytic. Second, contrary to the usual CD method17,36, the time-rescaling requires only one 
laser to implement the shortcuts. In the following section we review the time-rescaling method. In “Population 
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inversion in a two-level system” section we address the problem of population transfer in a two-level system 
and show the behavior of the control parameters and the populations as a function of time. “Stability against 
systematic errors” section discusses the stability of the dynamics upon systematic errors in the control parameters. 
In “Thermodynamic cost of the time-rescaled dynamics” section we then demonstrate a general result on the 
distribution of work required to drive the system along the shortcuts obtained via time-rescaling. The conclusion 
is presented in “Conclusion” section.

Methods
Time‑rescaling method.  In this section we review the time-rescaling method of quantum control15. The 
dynamics of a closed quantum system subject to a time dependent Hamiltonian Ĥ(t) , acting between an initial 
time 0 and a final time tf  , is described by an unitary time evolution operator Û(t) , which satisfies the Schrödinger 
equation,

The general solution to this equation, with the initial condition Û(0) = Î  , where Î  is the identity operator, is 
given by37

where T̂  is the time-ordering operator. For convenience, let us call this time evolution generated by Ĥ(t) the 
reference dynamics.

Now suppose we want to devise a new dynamics that, starting from the same initial state, reproduces the 
same final state of the system, but in a shorter time interval ( �t < tf  ). Needless to say that the generator of this 
new dynamics cannot be Ĥ(t) . In order to accomplish this task, we make a simple change in the time variable in 
Eq. (2) according to the relation t = f (τ ) , so that we obtain the following time evolution operator

where �t = f −1(tf )− f −1(0) . The operator

is the Hamiltonian of the new time evolution that is called time-rescaled (TR) dynamics. The functions f ′(τ ) 
and f −1(τ ) are the first derivative and the inverse of f (τ ) , respectively. Since Eq. (3) was obtained from Eq. (2) 
by a simple change of variable, it turns out that the resulting action of the TR evolution operator after a time �t 
is equal to that of the reference evolution operator after a time tf  , i.e., Û(�t) = Û(tf ) . This means that if these 
operators are applied to an arbitrary initial state |ψ(0)� of the system, they will produce precisely the same final 
state, |ψ(tf )� = Û(tf )|ψ(0)� = Û(�t)|ψ(0)�.

From the application point of view, besides the correspondence between the initial and final states of the 
system, it is also important that the reference and TR Hamiltonians are the same at the beginning and the end 
of the respective processes. This guarantees that, in case the system is in a stationary state at the beginning and 
the end of the reference dynamics, the same holds true for the TR protocol. This property is central for quantum 
control purposes1,4. The crucial point to conceive a TR dynamics that fulfills these requirements, while being also 
faster than the reference one, lies in choosing an appropriate time-rescaling function f (τ ) . In short, this function 
must be such that the following four properties are satisfied: (1) the initial times of the reference and TR dynamics 
are the same: f −1(0) = 0 , (2) the TR dynamics must be faster: f −1(tf ) < tf  , (3) the initial Hamiltonians must be 
the same: Ĥ[f −1(0)] = Ĥ(0) , and (4) the final Hamiltonians must be the same: Ĥ[f −1(tf )] = Ĥ(tf ) . As can be 
seen, it is trivial to find a function that fulfills the requirements (1) and (2). By contrast, (3) and (4) are fulfilled 
given that f ′[f −1(0)] = f ′[f −1(tf )] = 1.

It was shown in Ref.15 that a simple and pragmatic function that fulfills all the above properties is

In this case, the inverse function f −1(τ ) cannot be expressed exactly in terms of standard functions, but the 
properties f −1(0) = 0 , f −1(tf ) = tf /a , f ′(0) = 1 and f ′(tf /a) = 1 hold exactly, as can be directly checked. With 
this, we have that f (τ ) given in Eq. (5) is an appropriate time-rescaling function. That is to say that when this 
function is used in Eq. (3) with a > 1 , the TR dynamics transforms any initial state of the system into the cor-
responding final state that results from the reference dynamics. In the end, the TR protocol sets the system with 
same final state and external conditions as the reference one, but in a time interval which is a times shorter. For 
this reason a is called time contraction parameter. Before closing this section, we call attention to two important 
points. First, we have that if the reference dynamics is adiabatic, the TR dynamics works as a STA. Second, if we 
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(2)Û(tf ) = T̂ exp

{

− i

�

∫ tf

0
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choose 0 < a < 1 , the TR dynamics takes more time than the reference one to produce the final state and external 
conditions. In principle, this 0 < a < 1 case has no apparent technological application.

Results
Population inversion in a two‑level system.  The time-rescaling scenario was used in Ref.15 to investi-
gate how to accelerate the dynamics of the parametric oscillator, the transport of a particle in a harmonic trap, 
and the spin-1/2 system in a magnetic field. Here, we use the method to address the problem of speeding up the 
adiabatic passage in a two-level atomic system. Specifically, we will be interested in creating a shortcut to the adi-
abatic inversion of the populations of two atomic levels denoted by |1� and |2� . This problem has been addressed 
using the transitionless CD algorithm and the inverse engineering approach17,18. In this case, the two methods 
were shown to provide similar nonadiabatic shortcuts.

The time-dependent Hamiltonian that generates the adiabatic passage in a two-level atomic system interacting 
with a laser can be written in the basis {|1�, |2�} as

where we have the time-dependent functions �R = �R(t) representing the Rabi frequency, � = �(t) the detun-
ing, and ϕ(t) a time-dependent phase. While �R depends on the atomic transition dipole moment and the electric 
field of the laser pulse, � is the difference between the atom transition frequency ω0 and the laser frequency ωL . 
The instantaneous eigenkets of the Hamiltonian are given by

with θ = θ(t) ≡ arccos(�/�) . Here, the eigenenergies are E±(t) = ±��(t)/2 , with � =
√

�2 +�2
R being the 

so-called generalized Rabi frequency. If we assume the initial state of the system as |ψ±(0)� = |n±(0)� , the condi-
tion of adiabaticity17,18, 
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∣ , and ϕ = 0 , the time evolution will be described according to the 
adiabatic theorem37

which guarantees the absence of transitions.
By choosing the initial state as |n+(0)� , the adiabatic time evolution of the populations of the levels 1 and 2 

are found to be

Here, we shall consider the AE adiabatic passage scheme, whose manipulation of the Rabi frequency and detun-
ing can be prescribed, respectively, as follows9,17,35:

where the parameters �0 and β are real constants with dimension of frequency, and t0 is a constant representing 
the characteristic time scale of the dynamics. We set the above equations in a form that the protocol initiates at 
a time ti = 0 and ends at tf = 8t0 . In theory, the AE scheme requires an infinitely long time to provide a popula-
tion inversion with unit probability. However, using the scheme with a total time duration of 8t0 , as described in 
Eqs. (12) and (13), a successful population inversion is achieved with probability higher than 0.999.

The time behavior of �R(t) and �(t) are shown in Fig. 1a, where we chose �0 = 2 , β =
√
2 and t0 = 1 . At 

t = 0 we have that �R ≈ 0 and � ≈ −4/π , which provides θ(0) ≈ π . With this, the chosen initial state |n+(0)� 
becomes approximately the lower energy eigenstate |1� . Accordingly, the corresponding time evolutions of the 
populations calculated with basis on Eqs. (10) and (11) are shown in Fig. 1b.

We now turn our attention to the problem of accelerating the inversion of population process in the two level 
system by using the time-rescaling method. In doing so, we consider the time evolution generated by the Hamil-
tonian of Eq. (6) with ϕ = 0 and the control parameters varying according to Eqs. (12) and (13) as the reference 
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dynamics. As such, the TR Hamiltonian that generates the fast process is given by Ĥ(τ ) = Ĥ[f (τ )]f ′(τ ) , shown 
in Eq. (4), with f (τ ) given as in Eq. (5). This fast Hamiltonian is then found to be

with �̃ = f ′(τ )�[f (τ )] and �̃R = f ′(τ )�R[f (τ )] . In this form, the TR Rabi frequency and detuning are given 
explicitly by

In Fig. 2 we display the time behavior of �̃R and �̃ for a = 2 and a = 10 . The peak of the Rabi frequency �̃max
R  

always takes place at τ = tf /2a , which if substituted into Eq. (15) yields �̃max
R = (2a− 1)�0 . This means that 

a TR dynamics which is a times faster than the adiabatic process requires a Rabi frequency peak 2a− 1 times 
greater.

To investigate whether the fast dynamics generated by the Hamiltonian of Eq. (14), with the control param-
eters determined by Eqs. (15) and (16), is effective to accomplish the population inversion, we cannot use the 
results obtained for the adiabatic time evolution of the populations, as described in Eqs. (10) and (11). This is 
because the fast dynamics are not expected to satisfy the adiabatic approximation. Therefore, the time evolution 
of the populations must be calculated by directly solving the Schrödinger equation with the TR Hamiltonian,

with the initial condition |ψ1(0)� = |1� . In this case, the evolution of the populations of the levels 1 and 2 are 
given by:
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Figure 1.   Time behavior of: (a) �R and � for the AE adiabatic passage scheme as described in Eqs. (12) and 
(13), and (b) the populations of the energy levels with the initial state given by |n+(0)� ≈ |1� . Parameters: 
�0 = 2 , β =

√
2 , and t0 = 1.

Figure 2.   Behavior of the TR functions �̃R and �̃ with the contraction parameter assuming the values (a) a = 2 
and (b) a = 10 . In both cases we note that the dynamics occur a times faster than the reference control process 
described in Fig. 1a, with the same initial and final conditions. Same parameters as in Fig. 1.
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We numerically solved Eq. (17) and calculated the evolution of the populations of the levels. In Fig. 3 we show 
the results for a = 2 and a = 10.

As can be seen, when the dynamics of the system is driven according to the TR protocol described by Eqs. 
(15) and (16), the population inversion is successfully realized a times faster than in the reference ( a = 1 ) 
case of Eqs. (12) and (13). This certifies the suitability of the time-rescaling method in providing shortcuts 
to adiabatic passage for two-level quantum systems. Still, some important remarks must be made. First, our 
calculations showed that the qualitative profile of the population inversions observed in Fig. 3 is independent 
of the contraction parameter a. Thus, similar to the CD and inverse engineering methods, the time-rescaling 
protocol also works for arbitrarily short times. Second, from the theoretical side, the time-rescaling approach 
has the advantage that the time-dependence of the control parameters can be expressed analytically as shown in 
Eqs. (15) and (16); in general this is not the case of the other methods11. Third, the experimental manipulation of 
the control parameters as described here can be implemented using only one laser with a varying detuning. This 
is an important advantage of the time-rescaling scheme over the CD, which in general requires two lasers with 
the same frequency, orthogonal polarization, and time-dependent intensities, but different intensity shapes17,36.

Stability against systematic errors.  In practical applications, STA protocols must be fast to avoid the 
influence of environment-induced decoherence on the system, but it is also essential that the fast dynamics be 
robust and stable to unavoidable errors in the manipulation of the control parameters. Let us now examine the 
stability of the fast population inversion method described in the previous section when systematic errors in 
the Rabi frequency and the detuning are considered. Figure 4 displays the behavior of the fidelity F = P2 , which 

(18)Ptr1 (τ ) = |�1|ψ1(τ )�|2,

(19)Ptr2 (τ ) = |�2|ψ1(τ )�|2.

Figure 3.   Time evolution of the populations for the TR passage protocol with the initial state given by |1� , and 
the contraction parameter assuming the values (a) a = 2 and (b) a = 10 . In both cases we observe that the 
population inversion occurs at least a times faster than in the reference ( a = 1 ) protocol, shown in Fig. 1b. Same 
parameters as in Fig. 1.

Figure 4.   Behavior of the fidelity ( F = P2 ) versus systematic errors in: (a) the Rabi frequency, 
�0 → �0(1+ ǫ) , and (b) the detuning, β2 → β2(1+ δ) , for the TR dynamics (solid blue lines). The results are 
independent of the contraction parameter a. For comparison, in (a) we show the behavior of F in the square π 
pulse case versus a systematic error in the Rabi frequency, �R → �R(1+ ǫ) (dashed red line). Same parameters 
as in Fig. 1.
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is the probability of successfully obtaining the state |2� from the initial state |1� after realizing the population 
inversion protocol, with respect to changes in the Rabi frequency and detuning. It shows how F varies when: a) 
�0 changes to �0(1+ ǫ) , and b) β2 changes to β2(1+ δ) . In both cases the maximum fidelity ( F = 1 ) do not 
correspond exactly to the points ǫ = 0 and δ = 0 . This is because the reference protocol, and hence the derived 
fast protocols, attain the population inversion with success probability higher than 0.999 (but not 1), as already 
discussed in the previous section. All results were found to be independent of the contraction parameter a. That 
is, the fidelity in the time-rescaling method is not modified with respect to errors in the parameters �0 and β2 
when the time duration of the protocol is shortened.

In general, the protocols discussed here are more susceptible to errors in the Rabi frequency than the detuning 
because atoms in different positions experience different fields, due to, for example, a Gaussian shape laser. In 
Fig. 4a we can observe that errors of up to 20% in �0 lead to F ≥ 0.913 when ǫ < 0 , and F ≥ 0.947 when ǫ > 0 . 
An equivalent investigation with other STA processes was reported in Ref.36. Our results show that the robustness 
of the present scheme to a systematic error in �0 is similar to those found with the transitionless CD and inverse 
engineering schemes. For comparison, here we exhibit the fidelity obtained when a square π pulse is used, when 
the excitation frequency changes from the on-resonance Rabi frequency �R to �R(1+ ǫ) , keeping � = 0 , which 
is given by F = sin2[(1+ ǫ)π/2] . It is important to mention that in experimental realizations, the square π pulse 
is subject to substantial errors in the Rabi frequency. This drawback becomes even more prominent in short time 
processes, in which high intensity fields must be instantaneously switched on and off at the beginning and the 
end of the protocol9. In spite of that, the time-rescaling method, which only requires a continuous variation of 
the fields, is shown to be more robust, principally when ǫ > 0 . In Fig. 4b we see that the time-rescaling method 
is even more robust against systematic errors in the detuning. In this case, errors of up to 20% in β2 result in 
F ≥ 0.986 . We are unaware of any similar investigation using other STA methods.

Thermodynamic cost of the time‑rescaled dynamics.  Unveiling the work cost of a given STA method 
is also a very important issue11,38. Here we compare the properties of the work realized on the system when the 
reference and TR protocols are applied. For this purpose, we analyze the work cost necessary to cause both types 
of dynamics using the framework of the “two-point measurement” (TPM) protocol39,40. This scheme is useful to 
describe the energetics of the dynamics of a closed quantum system which may be driven out of equilibrium41,42. 
Before moving on to this discussion, we stress that the following results are general in the sense that they apply 
beyond the population inversion scenario to any quantum control dynamics. Let us suppose that the system is 
initially in thermal equilibrium with a heat bath at a temperature T, such that the initial state is a Gibbs thermal 
state. If we let Ĥi , Ein and |n� denote the initial Hamiltonian and the respective eigenvalues and eigenkets, the 
initial state is written as

where Z = tr(e−βĤi ) is the partition function and β = 1/kBT the inverse temperature, with kB being the Boltz-
mann’s constant. The first step to capture some information about the work realized on the system is to make 
a measurement of its energy at t = 0 . In this case, we obtain an outcome Ein with probability Pin = e−βEin/Z.

After this measurement, we immediately disconnect the system from the bath and apply a given reference 
evolution protocol, Û(tf ) . At the end of the process, at t = tf  , we make a second measurement of the energy of the 
system. At this moment the Hamiltonian is Ĥf  , with Efm and |m� being the respective eigenvalues and eigenkets. 
The probability to find an outcome Efm in this new measurement is Pfn→m = �m|Û(tf )|n� . Since the system is 
closed during its evolution, we attribute all energy variation to the work performed in the process from |n� to |m� , 
i.e., W = E

f
m − Ein . Because Efm and Ein may vary in each run of the protocol due to both thermal and quantum 

mechanical influence, we have that W is a fluctuating quantity. Taking all these elements into account, the work 
probability distribution in this TPM scheme is39,40

where δ(x) is the Dirac delta function.
In many cases of interest, it is cumbersome to work with P(W) due to the large number of possible transi-

tions |n� → |m� , and hence energy differences Efm − Ein . This problem usually becomes simpler if we access the 
characteristic function given by the Fourier transform of P(W),

By substitution of Eq. (21) into Eq. (22), after some mathematical manipulations, we obtain

From the definition of χ(r) in Eq. (22), we can rewrite it in terms of the statistical moments of W,
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Now, if we use the expansions eirĤf = 1+ irĤf − r2Ĥ2
f /2+O(r3) and e−irĤi = 1− irĤi − r2Ĥ2

i /2+O(r3) in 
Eq. (23), and compare the result with Eq. (24), we can make the following identifications:

where we have defined the average of a given operator Â at a time t as �Â�t = tr{Û†(t)ÂÛ(t)ρ̂(0)} . Observe from 
Eq. (25) that 〈W〉 is the difference between the average energy at t = tf  and the average energy at t = 0 , which 
is not surprising. Still, Eqs. (25) and (26) allow us to calculate the work variance �(�W)2� = �W2� − �W�2 as

where, for simplicity, the time dependence of the evolution operator has been omitted. Here, we can also define 
the work fluctuation simply as �W =

√

�(�W)2�.
Having defined the quantities that characterize the work distribution P(W), we shall compare the results of 

an arbitrary reference protocol (adiabatic or not) with the corresponding TR (STA or not) process. We observe 
that the expressions for 〈W〉 and �W in Eqs. (25) and (27) depend only on the initial and final Hamiltonians, Ĥi 
and Ĥf  , and the evolution operator Û  . Since Ĥi and Ĥf  are the same in the reference and TR dynamics, and the 
action of Û  is equivalent to the TR evolution operator Û of the fast dynamics, we find that

These relations indicate that the mean work done on the system and the work fluctuations are the same for both 
the reference and TR protocols.

The results of Eqs. (28) and (29) are general, i.e., they are independent of the type of quantum system in which 
the time-rescaling method is being applied. The average work equality is justified by the fact that the reference 
and fast dynamics invariably connects the same initial and final states, as expected in any STA method. In turn, 
the work fluctuation equality is because, despite the correspondence between the initial and finals states, the 
time-rescaling method also guarantees the same initial and final Hamiltonians. Therefore, the two corresponding 
energy measurements made in the reference and fast processes have no reason to provide different uncertainties. 
For the sake of comparison, it was shown in Ref.43 that when CD is used the reference (adiabatic) and fast (STA) 
work distributions obey �W�cd = �W�ref  and �Wcd > �Wref  . In that case, the broadening in the work fluctua-
tion is presumably a consequence of the act of switching the auxiliary Hamiltonian on and off in the beginning 
and the end of the protocol12; this concern is absent here.

Conclusion
We studied the problem of speeding up the population inversion of a two-level quantum system with the recently 
proposed time-rescaling method15, where the AE adiabatic passage scheme was taken as the reference protocol. 
The method provides a family of analytical solutions to the time behavior of the Rabi frequency and detuning that 
are suitable to achieve an arbitrarily fast population inversion. The solutions are characterized as being smooth 
continuous functions. From the experimental side, it was observed that the TR processes have the advantage of 
the realization with a single laser. We also examined the robustness of the derived protocols against perturbations 
in the control parameters and observed that they are as stable as the CD and the inverse engineering methods, 
with respect to systematic errors in the Rabi frequency. We additionally showed that the stability of the proposed 
processes is even higher when systematic errors in the detuning are considered. Finally, we investigated the 
work cost of realizing TR processes and found out that the average and dispersion of the work distributions are 
unchanged when compared to the reference protocol; a result that holds for any quantum control dynamics. The 
ideas presented here can be applied to improve the performance of many qubit-based quantum technologies, such 
as: single-photon emission44, preparation of excitonic qubits with quantum dots45, quantum heat engines46, and 
quantum information processing47. Our work may also provide insights into the control mechanism of photon 
populations with optical four-wave mixing48.

Data availability
All data generated or analysed during this study are included in this published article.
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