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A B S T R A C T   

This work proposed a model for the substrate treatment stage of biogas production process in an 
anaerobic digestion system. Adaptive neuro-fuzzy inference system (ANFIS), response surface 
method (RSM), and artificial neural network (ANN) were comparatively used in the simulation 
and modeling of the treatment process for improved biogas yield. Waste plantain peels were 
pretreated and used as substrate. FTIR and SEM results revealed that the pretreatment improved 
the substrate’s desirable qualities. The amount of biogas yield was controlled by time, NaOH 
concentration, and temperature of the substrate pretreatment. Optimum pretreatment conditions 
obtained were a temperature of 102.7 ◦C, time of 31.7 min and NaOH concentration of 0.125 N. 
RSM, ANN, and ANFIS modeling techniques were proficient in simulating the biogas production, 
as evidenced by high R2values of 0.9281, 0.9850, and 0.9852, respectively. Furthermore, the 
values of the calculated error terms such as RMSE (RSM = 0.04799, ANN = 0.00969, and ANFIS 
= 0.00587) and HYBRID (RSM = 18.556, ANN = 0.803, and ANFIS = 0.0447) were low, indi-
cating a satisfactory correlation between experimental and predicted values. Scrubbing of the 
biogas with caustic soda and activated charcoal increased the methane content to 94 %. The 
kinetics of the cumulative biogas yield were best fit with the Logistics and Modified Logistics 
models. The low C/N ratio in addition to the presence of potassium, nitrogen, and phosphorus 
suggested that the spent plantain peel slurry can be utilized as an agricultural fertilizer in crop 
production. The observations of this study therefore recommends the pre-treatment of bio-
digestion substrates as a key means to enhance beneficiation of methane production.   
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1. Introduction 

Inadequate waste handling and management are one of the challenges encountered by developing countries [1]. Due to her strides 
in Agriculture, Nigeria generates huge amount of waste products which are either burnt openly or dumped in drainages, roadsides and 
other available spaces demystifying and polluting the environment with great damage to the ecosystem [2,3]. The processing and 
conversion of waste materials into useful products serve a dual purpose in all cases: the elimination/reduction of waste and the 
synthesis of useful products. 

Nigeria is facing environmental challenge due to large solid waste generation. Recently, about 42 million tonnes of wastes were 
generated in total, according to estimates, with little or no conversion of such waste into useful products and only about 50% of the 
generated waste being disposed into approved waste bins [2]. This causes environmental pollution and social issues. Most of these 
wastes are solid wastes. The implementation of waste-to-energy technologies will lead to improvement in solid waste management in 
developing countries like Nigeria. This includes the production of biogas energy from biomass waste [1]. 

Bio-degradable biomasses with high organic contents are potential precursors for production of a large volume of biogas via 
anaerobic digestion process [4,5]. Biomass is a good potential energy source [6]. Examples of biomass which are potential energy 
sources are solid wastes from agricultural processes, wood, sawdust, straw, seedwaste, manure, paper waste, household wastes, etc. 
One of such agricultural waste is plantain peel of which Nigeria is one of the world’s largest producers [7]. 

Anaerobic digestion technology can be used to generate biogas from such wastes thereby serving as an alternate energy source 
while also resolving the environmental pollution challenge [8]. It entails the microbial breakdown of organic materials that will 
metabolize into biogas or methane in the absence of oxygen [9–11]. The four stages involved in anaerobic digestion are hydrolysis, 
acidogenesis, acetogenesis, and methanogenesis [12]. The major strength of this anaerobic digestion method is that it transforms 
agricultural waste materials into energy sources without interfering with the food value chain [13]. Furthermore, the solid organic 
wastes produced from the anaerobic digestion process can be used as fertilizer and soil amendments [14]. 

To the increase the amount of biogas production from the process of digestion in the absence of oxygen, the substrate needs to be 
pretreated. The aim of pre-treating the waste before anaerobic digestion is to make the organic matter in the waste more available to 
the microorganisms for digestion which will increase the microbial cells and the desirable biogas content [15]. Different pretreatment 
methods are categorized into physical, chemical, biological, thermal, or a combination of these (physical-chemical and 
thermo-chemical pretreatment processes), which have proved to yield positive results [15]. Thermo-chemical pretreatment process is a 
combination of thermal and chemical pretreatment methods [16]. Temperature, concentration of the acid/alkali and time are the 
factors that influence thermo-chemical pretreatment method. These process factors can be optimized to yield maximum volume of 
biogas [17]. 

Several authors have reported on the generation of biogas through food waste [4,5], pineapple waste [8], pharmaceutical 
wastewater [9],agricultural waste [13]. However, despite its abundance, few reports have considered the use of plantain peel substrate 
for biogas production. Furthermore, to the best of our knowledge, no work has been reported on the modeling and optimization of the 
treatment process, which plays a very important role in the modification of the substrates for enhanced biogas generation. Hence, the 
need for this study. 

Abbreviations/Nomenclature 

ANFIS Adaptive neural fuzzy inference system 
RSM Response surface method 
ANN Artificial neural network 
AOAC Association of Analytical Chemistry 
FTIR Fourier transform infrared 
SEM Scanning electron microscopy 
CCD Central composite design 
ANOVA Analysis of variance 
BP Back-propagation 
RMSE Root mean square error 
R2 Correlation coefficient 
ARE Average relative error 
DOE Design of experiment 
PRESS Predicted sum of squares 
CV Coefficient of variance 
APR Adequate precision ratio 
MSE Mean square error 
MLP multi-layer perceptron 
Gaussmf Gaussian membership function 
MF Membership function 
FIS Fuzzy inference system  
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Pretreatment conditions can be modeled and optimized to increase the amount of biogas produced and bring about the use of 
minimal energy with low costs [15]. The response surface method (RSM), artificial neural network (ANN), and adaptive neuro-fuzzy 
inference system (ANFIS) are some advanced modeling tools applied in evaluating the interaction of the different parameters of a 
process study [18]. RSM generates a mathematical model for evaluating the optimum conditions of a process with minimum number of 
experiments [19–21]. ANN applies the principles of biological neurons in modeling complex multi-variant processes [22–24], while 
ANFIS combines neural and fuzzy systems in simulating different industrial processes with a minimum steady error [25,26]. 

Therefore, in the present study, we intend to (1) harness the effectiveness of artificial intelligence algorithms (ANN and ANFIS) in 
modeling the pretreatment process of plantain peel substrate for enhanced anaerobic methanogenesis; (2) Study the chemical and 
morphological implications of the pretreatment process using Fourier transform infrared spectroscopy (FTIR) and scanning electron 
microscopy (SEM); (3) Investigate the Biogas production kinetics using five exploratory models; (4) Upgrade the produced biogas for 
biomethane beneficiation. Finally, the obtained residual anaerobic sludge will be characterized for potential agro applications. 

2. Materials and methods 

2.1. Sourcing and characterization of materials 

Unripe plantain peels used for the study were gathered from eateries in Awka, Anambra state, Nigeria. The peels were washed, 
dried in the sun (average temperature of 33 ◦C) and pulverized. Proximate analyses were carried out before and after substrate 
pretreatment using AOAC technique [27]. Instrumental analyses via Scanning electron microscopy (SEM) and Fourier transform 
infrared (FTIR) analyses were used to determine the substrate’s properties before and after pretreatment. Anaerobic digestion was 
carried out after pretreatment modeling. 

2.2. Thermo-chemical pretreatment process 

The substrate was subjected to thermo-chemical pretreatment technique to improve the biogas production during the anaerobic 
digestion process. Caustic soda (NaOH) was used for the pre-treatment process. Effects of NaOH concentration (from 0.10 to 0.20 N), 
time (20–70 min) and temperature (90–160 ◦C) of the pretreatment process were investigated [8,28]. These factors were optimized for 
maximum production of biogas. Different samples of 50 mL NaOH concentrations were mixed with 300 g each of the substrate. The 
homogeneous distribution of the samples in the solutions was ensured by thorough mixing in a magnetic stirrer (Model: 78HW-1). 
These mixtures were placed in a Memmet oven at predetermined temperature and time (see Table 3). After pre-treatment, the sub-
strates were washed severely under running water onto pH of 7. 

2.3. Anaerobic digestion process 

The procedure for anaerobic digestion was carried out using eight anaerobic batch digesters of 1-L volume capacity. Each batch 
digester was linked by downward displacement to a measuring cylinder held by a retort stand to gauge the amount of biogas (methane) 
generated by the digester. The digester was charged with the mixture of 200 g of pretreated plantain peel and 400 mL of distilled water. 
There was no addition of an inoculum. The homogeneity of the contents in the digesters was maintained by stirring the contents 
thoroughly with a stirrer before securing the seal with rubber cap to maintain airtight and mesophilic conditions. The biogas pro-
duction process was carried out for 15 days, and the daily biogas yield was recorded as the difference between the initial and final 
reading for the day. The biogas produced in each digester was collected to determine its composition at the end of the process. The 
anaerobic sludge generated at the end of the digestion process was also characterized [29]. 

2.4. Pretreatment modeling with response surface methodology (RSM) 

RSM was utilized to design the experiment, carry out multiple regression analysis and solve the multivariate equations simulta-
neously [30,31]. 

Three pre-treatment independent variables were used as the input process parameters used inCCD and simulation of the amount of 
biogas product. The input process variables were the concentration of NaOH (N), temperature (oC), and contact time (mins) while the 
yield of biogas measured in volume (mL) was the response or output. 

As a five-level experimental design, RSM-CCD comprises one level in the center (0), two axial levels (+α and –α) and two factorial 
levels (+1 and − 1) [32,33]. The five-factor level of the process parameters and their values can be determined by consulting the 
Supplementary Material (ST1). 

The performance of the anaerobic process was determined by calculating the responses (Y) as a function of the input process 
parameters x1, x2 … xk. The relationship was described by Prakash et al. [34] in equation (1).  

Y = f (x1, x2, … xk) + e                                                                                                                                                            (1) 

where f is the real response function, x1,x2, ….xkare the independent process variables, e is the term of error, while k represents the 
number of independent variables. 

The biogas yield was modeled using a second-order polynomial equation. A quadratic equation given in equation (2), was utilized 
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in evaluating the relevant model terms. 

Y = βo +
∑k

i=1
βiXi…..+ …

∑k

i=1
βiiX2

i …..+ …
∑k− 1

i=1

∑k

j=1
βijXiXj (2)  

where Y is the response (biogas volume); Xi and Xj are independent process variables; βois the model intercept, βi, βi, and βj are model 
interactive coefficients for linear, quadratic coefficient, and interaction terms; k is the number of independent process factor (k = 3 in 
this study). 

Multiple regressions were used to analyze the experimental data while the weight of each coefficient was assessed using the Fishers 
test (F-test). The significance of each model term was evaluated by Analysis of variance (ANOVA) while the adequacy of the models 
was checked using correlation coefficient. 

2.5. Artificial neural network-based pretreatment modeling (ANN) 

ANN as a computational technique was also used to model the nonlinear relationship between the substrate treatment variables and 
the biogas yield [34]. ANN is made up of synchronous processing elements inspired by biological neurons. The synchronizing ability of 
the multi-layered perceptron (MLP) of the ANN was selected in the training and modeling of the biogas production. Back-propagation 
(BP) algorithm was employed in the predictive modeling with the three variables (NaOH concentration, time, and temperature) 
serving as inputs to the input layer. The output layer consists of a single node representing the biogas yield. The number of neurons in 
the hidden layer was determined using trial and error based on both the least mean square error and the highest correlation coefficient. 
Hence, the topology of the ANN architecture was designated as 3-h-1 (see supplementary material). The number of neurons in the 
hidden layer was varied between 3 and 15. 

Sigmond transfer function used in modeling the hidden layer was given in Eq. (3). 

f(x)=
1

1 + exp(− x) (3)  

for which f(x)= x. 
The neural toolbox of MATLAB 2015 (The Mathworks Inc.) was used for the training, modeling and analysis of the ANN. 

2.6. Pretreatment modeling with adaptive neuro-fuzzy inference system (ANFIS) 

ANFIS is a hybrid of fuzzy network and neural network maximizing the advantages of both systems. The data sets used in ANN were 
identical to those used in ANFIS analysis. The IF-THEN rule was used to simulate the ANFIS anaerobic digestion process [35]. It was 
expressed in equations (4) and (5). 

Rule 1: IF A is E1, B is F1 and C is G1,  

then f1 = x1A + y1B + z1C + u2                                                                                                                                                 (4) 

Rule 2: IF A is E2, B is F2 and C is G2,  

then f2 = x2A + y2B + z2C + u2                                                                                                                                                 (5) 

Where A, B and C are the input variables representing temperature, time, and NaOH concentration of the pretreatment process 
respectively; f1 and f2 are the output functions (biogas yield); E1, F1, G1, E2, F2 and G2 are the language indicators; x1, y1, z1, x2, y2, z2, 
u1 and u2 are the output functions’ coefficients. 

The five neuro-fuzzy layers of the ANFIS model were simulated as a system with direct connections between them [36]. The ANFIS 
architecture can be obtained in the Supplementary Material (SF2). The first layer functions as a link between the input parameters and 
the neuro-fuzzy system. For the input parameters, the second layer acts as a membership function. The fuzzy rules governing the 
system are represented by the third layer with adaptive nodes on the fourth layer. This controls the node functions of the system. The 
fifth layer functions as an aggregate of all the outgoing nodes of the system cumulating in the overall output of the fuzzy inference 
system [24]. The Takagi-Sugeno inference system-based fuzzy logic toolbox of MATLAB 2015 (version 8) was used in the ANFIS 
modeling. 

2.7. Comparison of the three models 

Comparison and ranking of ANN, RSM, and ANFIS models was done based on the efficiency of anticipating the biogas volume 
generated in the process of anaerobic digestion. Standard statistical indices applied in previous works were used to compare and rank 
the models [28,32,33,37–40]. The equations of the statistical indices were given in the Supplementary Material (ST2). They indicated 
the degree of deviations of the anticipated biogas volume of the models from the actual experimental result. The smaller the error 
deviations, the more effective and efficient the particular model will be [28,37,38]. 
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2.8. Kinetics of biogas production 

To analyze the anaerobic digestion process, five kinetic models were employed. The curve fitting toolbox of MATLAB 2015 was 
used to fit the experimental data of the cumulative biogas yield on the individual kinetic models. The kinetic models used in the study 
were shown in Table 1. 

2.8.1. Logistic growth model 
Logistic growth equation also referred to as linear growth equation is given in Eq. (6). This kinetic equation assumes that the 

anaerobic biodegradation process occurs in a linear path with respect to biogas yield. 

y=
a

1 + bexp(− kt)
(6)  

where k is the kinetic constant (day− 1), a and b are constants, and t is the hydraulic retention time (days). 

2.8.2. Logistic model 
The sigmoid gradient is shown by the logistic model (Eq. (7)). It is a progression curve that is frequently used for modelling and 

predictions. By assuming that the rate of generated biogas is proportionate to the quantity of biogas that has already been produced, it 
basically aids in the prediction of the initial exponential climb and subsequent stabilisation at maximum production rates [42]. 

y=
P

[

1 + exp
(

4Rm × λ− t
P +2

)] (7)  

Where λ is the lag phase, P is the biogas production potential, and the maximum production rate is denoted by Rm. 

2.8.3. Modified Gompertz model 
A modified Gompertz theory of nonlinear modelling (Eq. (8)) is primarily employed to take into account the lag phase (λ) period, 

biogas production potential (Bo), and biogas production rate (μm). 

y=Bo.exp
{
− exp

[μm.e
Bo

(λ − t)+1
]}

(8) 

This model is also utilized when inhibition of the AD process becomes apparent with the assumption that biogas generation in-
dicates growth of bacteria [43,45]. 

A plot of cumulative biogas yield against time is used to estimate the kinetic constants. 

2.8.4. Multi-stage processes 
For determining the cumulative biogas output, particularly in multiple-stage processes, some authors have extensively revised the 

Modified Gompertz solution [45,46]. These modifications the modified superimposed model (Eq. (9)), and trans-Gompertz model (Eq. 
(10)) which were applied in this work to test for multi-stage anaerobic digestion processes. 

2.8.4.1. Modified superimposed model. The superimposed model, which essentially proposes that two phases occur through the 
breakdown of specific feedstocks, was created by fusing first order kinetic model with the modified Gompertz model. The fast use of 
readily biodegradable substrates is associated with the first phase, while the unfavourably biodegradable substrates are associated 
with the second phase [47,46]. The modified superimposed model which is a derivative of the superimposed model was formed by 
combining a modified form of the first order model and the modified Gompertz model as given in Eq. (9). 

y=G01[0.45 − exp(− kt)] + G02.exp
{

− exp
[

μm.e
G02

(λ − t)+1
]}

(9) 

Table 1 
Summary of Kinetic Models applied in the anaerobic digestion.  

Kinetic model Equation Eq. No Ref. 

Logistic growth y =
a

1 + bexp(− kt)
(6) [41] 

Logistic y =
P

[
1 + exp

(
4Rm ×

λ − t
P

+2
)]

(7) [42] 

Modified Gompertz y = P.exp
{
− exp

[μm.e
P

(λ − t)+ 1
]} (8) [43] 

Modified superimposed model G01[0.45 − exp( − kt)] + G02 .exp
{
− exp

[μm.e
G02

(λ − t)+ 1
]}

(9) [44] 

Trans-Gompertz model 
B01

{
1 − exp

[− Rm(t − λ)
G01

]}

+ B02.exp
{
− exp

[μm.e
B02

(λ − t) + 1
]} (10) [44]  
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where G01: represents the optimum specific methane output from substrates that degrade rapidly (mL/g VS); G02: represents the 
specific methane yield (mL/g VS) from feedstock with weak biodegradability (mL/g VS). k: Constant rate of biogas or produced 
methane. 

2.8.4.2. Trans-Gompertz model. Trans-Gompertz model was developed by coupling the Transfer function model and the modified 
Gompertz model. Transfer function model is developed from first order kinetic model by replacing the kinetic constant (k) for the 
proportion of the maximal biogas production scale (Rm) to the substrate’s biogas capacity (Bo1) [44]. The trans-Gompertz model used 
in the work is given in Eq. (10). 

y=B01

{

1 − exp
[
− Rm(t − λ)

G01

]}

+ B02.exp
{

− exp
[

μm.e
B02

(λ − t)+1
]}

(10)  

where B01: represents the optimum specific methane output from substrates that degrade rapidly (mL/g VS); B02: represents the 
specific methane yield (mL/g VS) from feedstock with weak biodegradability (mL/g VS). k: Constant rate of biogas or produced 
methane. Rmandμm are the maximum biogas production rate in the first and second phase, respectively.Where Rm, μm = Maximum 
biogas production rate, ml/day; Bmax, P = Biogas production potential, ml; y = Predicted cumulative biogas volume, ml; t = HRT, day; 
k = rate constant, day− 1; λ = lag phase, day; exp = Euler’s constant = exp(1) = 2.7183; a, b = constants [8,47]. 

2.9. Biogas analysis and purification 

The raw and purified biogas was analyzed using Horib Gas Analyzer (model number: PG-433). This was used to determine the 
composition of the biogas before and after scrubbing. In order to purify and enhance the methane content, it was scrubbed using 
sodium hydroxide and activated charcoal. 

An overall flowchart of methodology implemented in the present study was presented in the supplementary material. 

3. Results and discussion 

3.1. Proximate analysis of the substrate 

The result of proximate analysis of the substrate before digestion was shown in Table 2. The pH of the substrate was 6.65 which was 
comparable to the 6.4 and 6.7 obtained for plantain peel by Ilori et al. [48] and Abubakar [49], respectively. It is important to note that 
pH less than 8.5 is suitable for methanogenic bacteria. The presence of N, P, and K indicate that the substrate can be a source of 
fertilizer [50]. The C/N ratio showed that the substrate can be used as a soil conditioner with enhanced flow properties and accelerated 
soil absorption of the digestate. C/N ratio has been reported to significantly influence biogas production factors such as biodigestion 
time, and biogas yield. According to Dai et al., increase in C/N ratio prolonged the biodigestion time of substrates which is attributable 
to high carbon content. 

3.2. Instrumental analysis of the substrate 

3.2.1. Fourier transform infrared (FTIR) analysis 
The FTIR analysis was used to ascertain the major functional groups in the yam peel substrate. The spectra of untreated and treated 

plantain peel substrates were compared in Fig. 1 (a) and 1 (b), respectively. The changes in the spectrum of the treated substrate and 
the wave numbers showed that structural modifications took place in the substrate after the treatment. More peaks were detected after 
the substrate treatment which revealed the presence of some compounds such as esters, alkenes, ethers, carboxylic acids etc. This may 
be because of the elimination of associated bond matters and lignin following substrate treatment process [51]. The bandwidth at 
3276.3 cm− 1 was linked with the level of inter-molecular and intra-molecular hydrogen bonding. The peaks at 1420 cm− 1 and 1319 
cm− 1 with shoulder bands were due to aliphatic CH2 and symmetric/asymmetric CH3, respectively. The observed modifications in the 

Table 2 
Proximate analysis of the substrate.  

Parameter Numerical value 

Moisture content (%) 51.52 ± 1.20 
Nitrogen content (N, %) 2.43 ± 0.50 
Total suspended solids (TSS, mg/l) 55.05 ± 0.001 
Total volatile solids (TVS, %) 28.06 ± 0.05 
Carbon content (%) 41.83 ± 1.96 
C/N Ratio 17.21 ± 1.14 
pH 6.65 ± 0.45 
Phosphorus (P, %) 1.02 ± 0.17 
Potassium (K, %) 1.08 ± 0.19 
Ash content (%) 9.75 ± 1.06  
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spectrum of the treated substrate at 3276.3 cm− 1 and 2922.2 cm− 1 wavelengths corresponded to H–O–H stretching of the carboxylic 
acid. Wave numbers in the region of 2100–2200 cm− 1 represent C–O–C stretching of esters. These results correlate with the obser-
vations of Iheanacho et al. [52]. 

3.2.2. Scanning electron microscopy (SEM) 
Fig. 2 (a) and 2 (b) show a comparison of the results of scanning electron microscopy for untreated and a pretreated substrate. It 

displayed the substrate’s surface morphology at 1500× magnification. The results show that themacropores were more visible after the 
substrate treatment. It was also observed that the untreated substrate contained more compact and cemented particles, with a flat, 
rigid, and smooth surface. The morphology of the untreated substrate revealed densely packed and non-distinctive surface cavities. 
However, the pretreated substrate showed the presence of large loosely packed pores on the surface of the substrates and the solu-
bilization of the substrate. This may be due to the elimination of bonding materials during the treatment process. This is an indication 
that pretreatment using the thermo-chemical method altered the structure of the substrate with the degradation of carbohydrate, 

Table 3 
Experimental biogas yield and models’ predictions.  

Exp. run Temp. (oC) Time (mins) Conc. (N) Exp. Biogas yield (mL/gVS) Models’ predicted biogas yield (mL/ 
gVS) 

Residuals 

RSM ANN ANFIS RSM ANN ANFIS 

1 100 60 0.15 175 167.56 174.83 174.66 7.44 0.17 0.33 
2 100 30 0.15 219 213.23 219.71 219.66 5.77 − 0.72 − 0.66 
3 89.7 45 0.125 161 175.46 160.57 160.66 − 14.46 0.427 0.33 
4 160.3 45 0.125 150 129.66 150.00 150.00 20.34 − 0.002 0.00 
5 125 45 0.125 178 188.84 188.35 186.75 − 10.84 − 10.35 − 8.75 
6 100 30 0.1 181 175.13 180.37 180.33 5.87 0.625 0.67 
7 125 45 0.160 170 172.76 170.00 170.00 − 2.76 − 0.003 0.00 
8 100 60 0.1 105 104.46 104.85 105.00 0.54 0.145 0.00 
9 150 60 0.1 160 169.2 159.86 160.00 − 9.2 0.141 0.00 
10 125 45 0.160 170 172.76 170.00 170.00 − 2.76 − 0.003 0.00 
11 125 45 0.125 176 188.84 188.35 186.75 − 12.84 − 12.35 − 10.8 
12 160.3 45 0.125 150 129.66 150.00 150.00 20.34 − 0.002 0.00 
13 160.3 45 0.125 150 129.66 150.00 150.00 20.34 − 0.002 0.00 
14 125 66.2 0.125 150 144.07 149.83 149.66 5.93 0.167 0.333 
15 100 30 0.1 180 175.13 180.37 180.33 4.87 − 0.375 − 0.33 
16 125 45 0.089 191 182.03 190.59 190.33 8.97 0.408 0.67 
17 125 45 0.125 196 188.84 188.35 186.75 7.16 7.645 9.25 
18 100 60 0.1 106 104.46 104.85 105.00 1.54 1.145 1.00 
19 100 30 0.15 220 213.23 219.72 219.66 6.77 0.281 0.33 
20 150 30 0.1 149 159.87 150.20 150.00 − 10.87 − 1.197 − 1.00 
21 150 30 0.15 80 83.63 80.340 80.33 − 3.63 − 0.342 − 0.33 
22 100 60 0.1 104 104.46 104.85 105.00 − 0.46 − 0.854 − 1.00 
23 125 23.8 0.125 170 169.72 169.49 169.66 0.28 0.508 0.33 
24 150 30 0.1 151 159.87 150.20 150.00 − 8.87 0.802 1.00 
25 125 45 0.125 176 188.84 188.35 186.75 − 12.84 − 12.35 − 10.75 
26 125 23.8 0.125 169 169.72 169.49 169.66 − 0.72 − 0.491 − 0.66 
27 125 45 0.125 176 188.84 188.35 186.75 − 12.84 − 12.35 − 10.75 
28 150 60 0.15 111 117.96 110.12 110.00 − 6.96 0.831 1.00 
29 89.7 45 0.125 161 175.46 160.57 160.66 − 14.46 0.427 0.33 
30 125 45 0.160 170 172.76 170.00 170.00 − 2.76 − 0.003 0.00 
31 125 45 0.125 197 188.84 188.35 186.75 8.16 8.645 10.25 
32 100 60 0.15 174 167.56 174.83 174.66 6.44 − 0.833 − 0.66 
33 125 45 0.089 191 182.03 190.59 190.33 8.97 0.4082 0.666 
34 125 23.8 0.125 170 169.72 169.49 169.66 0.28 0.5084 0.333 
35 100 30 0.1 180 175.13 180.37 180.33 4.87 − 0.375 − 0.333 
36 150 60 0.1 159 169.2 159.86 160.00 − 10.2 − 0.860 − 1.00 
37 150 60 0.15 109 117.96 110.17 110.00 − 8.96 − 1.169 − 1.00 
38 100 30 0.15 220 213.23 219.72 219.66 6.77 0.2807 0.333 
39 100 60 0.15 175 167.56 174.83 174.66 7.44 0.1665 0.333 
40 125 45 0.125 197 188.84 188.35 186.75 8.16 8.6448 10.25 
41 125 45 0.089 189 182.03 190.59 190.33 6.97 − 1.592 − 1.333 
42 150 60 0.1 161 169.2 159.86 160.00 − 8.2 1.1411 1.00 
43 89.7 45 0.125 160 175.46 160.57 160.66 − 15.46 − 0.572 − 0.66 
44 150 60 0.15 110 117.96 110.17 110.00 − 7.96 − 0.169 0.00 
45 150 30 0.15 81 83.63 80.34 80.333 − 2.63 0.6576 0.666 
46 125 66.2 0.125 149 144.07 149.83 149.66 4.93 − 0.833 − 0.666 
47 125 66.2 0.125 150 144.07 149.83 149.66 5.93 0.1668 0.333 
48 150 30 0.1 150 159.87 150.20 150.00 − 9.87 − 0.197 0.00 
49 150 30 0.15 80 83.63 80.34 80.33 − 3.63 − 0.342 − 0.33 
50 125 45 0.125 198 188.84 188.35 186.75 9.16 9.645 11.25  
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protein, and fat which definitely led to an increase in the biogas production. A similar result was reported by Bala et al. [53]. 

3.3. RSM modeling of the pretreatment process 

The result of the experimental design and the models’ predictions was presented in Table 3. The produced biogas volume ranged 

Fig. 1. FTIR result for (a) untreated substrate and (b) treated substrate.  
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from 80 to 220 mL/gVS. Power transformation will have a negligible effect since the ratio of maximum to minimum response (2.7) was 
less than 3.0. The process parameters were significantly different, indicating that they had an impact on the biogas yield. 

The results of RSM modeling using the experimental data on the linear, two-factor interaction (2FI), and quadratic models were 
given in the Supplementary Material (ST3). The parameters used to determine the most appropriate model were high correlation 
coefficient and low standard deviation. The most suitable model for simulating the volume of biogas generated using the specified 
input variables was the quadratic model. It had a correlation coefficient of 0.9281 with a standard deviation of 10.30. This suggested 
that the quadratic model can predict experimental data with an accurately of 92.81 %. 

A second order polynomial model given in equation (11) was generated and used to express the relationship between the cumu-
lative volume of biogas and the input variables. The model can be used to predict the biogas volume for any given level of input 
parameters.  

Biogas yield = 188.84–16.22*A – 9.09*B – 3.28*C + 20*A*B – 28.58*A*C + 6.25*B*C – 18.2*A^2–16.02*B^2–5.74*C^2                 (11) 

The summary of analysis of variance (ANOVA) of the quadratic model was presented in Table 4. Analysis of variance studies the 
statistical significance of the second-order model and the corresponding model terms. The acceptability of the model and the model 
terms were determined using the Fishers value (F-value) and p-value at 95 % confidence level. Model terms with p-values less than 
0.05 were selected to be significant [18,54]. A higher F-value and a smaller p-value were desired for accurate modeling. The p-value 
checks the importance of the coefficients which aids to understand the mutual interactions of the variables [55,56]. 

For the quadratic model, the F-value and p-value of 57.39 and < 0.0001 respectively indicated that the adopted quadratic model 
was very significant. The only non-significant term, according to the p-values in the ANOVA Table, was NaOH conc. (C). The insig-
nificant term can be eliminated to give the final model in Eq. (12).  

Biogas yield = 188.84–16.22*A – 9.09*B + 20*A*B – 28.58*A*C + 6.25*B*C – 18.2*A^2–16.02*B^2–5.74*C^2                              (12) 

Predicted sum of squares (PRESS) of 6442.05 showed that the model can be used to navigate design space while also validating the 
reliability of the model. The coefficient of variance (CV) was 6.43 % while the adequate precision ratio (APR) was 28.14. The CV 
measured the reproducibility of the quadratic model. According to Onu et al. [57], a CV of less than 10 % ensures effective 

Fig. 2. SEM images of the (a) untreated substrate and (b) treated substrate.  

Table 4 
ANOVA of the quadratic process.  

Source Sum of Squares df Mean Square F-Value p-value 

Model 54785.67 9 6087.3 57.39 <0.0001 
A-Temperature 9457.18 1 9457.18 89.16 <0.0001 
B-Time 2968.26 1 2968.26 27.98 <0.0001 
C–NaOH Concentration 388.05 1 388.05 3.66 0.0630 
AB 9600 1 9600 90.51 <0.0001 
AC 19608.17 1 19608.17 184.86 <0.0001 
BC 937.5 1 937.5 8.84 0.0050 
A2 7164.52 1 7164.52 67.54 <0.0001 
B2 5555.21 1 5555.21 52.37 <0.0001 
C2 713.11 1 713.11 6.72 0.0132 
Residual 4242.83 40 106.07   
Lack of Fit 3381.99 5 676.4 27.5 <0.5831 
Pure Error 860.83 35 24.6   
Cor Total 59028.5 49    
CV 6.43     
Adeq. precision 28.14      
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reproducibility of the experimental data. APR evaluated the signal-to-noise ratio. APR values greater than 4 suggest sufficient signal 
and adequate model efficacy [58]. APR of 28.14 confirmed adequate model signal in predicting the biogas volume. The adjusted R2 of 
0.9119 was in close agreement to the predicted R2 of 0.8909. 

3.3.1. Diagnostic plots 
Graphical estimations involving perturbation plot and residuals vs run plot were also used to study the characteristics of the volume 

of biogas yield and the residual (the difference between the predicted and experimental values). The perturbation and the residual vs 
run showed deviation from the reference point which is the mean and the magnitude of error encountered in each experimental run 
respectively (see supplementary material). NaOH Concentration showed the least deviation from the mean as the reference point 
ranged from − 1 to +1. The highest positive and negative deviations were observed in experiments 4 and 10 respectively. Most of the 
residuals were of negligible values confirming the suitability of the quadratic model. 

3.4. ANN modeling of pretreatment process 

The experimental dataset was divided into seventy percent, fifteen percent and fifteen percent for training, testing, and validation 
respectively. The correlation between the output and input parameters was established by the training data set. The validation and 
testing datasets evaluated the neural network generalization and neural network prediction accuracy, respectively [24]. 

Different numbers of neurons in the hidden layer ranging from 5 to 15 were tested for optimum performance of the network using 
mean square error (MSE) index. Ten neurons in the hidden layer gave the optimum performance with the minimum MSE as shown in 
Fig. 3. Therefore, the neural network was created using 10 neurons. The optimal neural architecture was 3-10-1 representing three 
input neurons for the three input parameters, ten neurons in the hidden layer, and a single output neuron for the biogas volume. 

The architecture used in the modeling of ANN was the sigmoidal function multi-layer perceptron (MLP). The performance plot was 
used to evaluate the reliability of the neural validation of the network training process for 5 epoch iterations. The testing curve did not 
suggest any significant increase over the validating curve. The three curves stabilized at the 3rd epoch. There was no over-fitting 
problem with the network since an insignificance MSE of 2.83 × 10− 4 was obtained at the 4thepoch iteration. This result validated 
to the reliability of the neural network in predicting the biogas volume produced through anaerobic digestion of the present system. 
Properties of the ANN model was presented in Table 5 together with those of the ANFIS model. 

ANN regression plots were shown in Fig. 4. Correlation coefficients of the training (Fig. 4 (a)), validation (Fig. 4 (b)), and testing 
(Fig. 4 (c)) data sets were 0.9951, 0.9936, and 0.9526 respectively while the MSE were 0.000277, 0.000283, and 0.000843 respec-
tively. These values proved that both the network response and the ANN topology chosen were acceptable. Correlation coefficient of 
the overall data set (Fig. 4 (d)) was 0.9991 demonstrating that the anaerobic digestion’s output followed its aim in a satisfactory 
manner [59]. 

3.5. ANFIS modeling of pretreatment process 

The membership function used was Gaussian membership function (gaussmf) and the FIS generation employed was Grid partition 
with linear output function. In order to create the fuzzy inference system, three membership functions (MFs) were assigned to each of 
the input layers. The input data was initiated as a 150 × 3 matrix into the MATLAB m-file while the output data was a single column 
matrix of 150 datasets. Like in the ANN modeling, the data sets were divided into testing, training, and checking data sets. The R2 

obtained for the training, testing, and checking were 0.9861, 0.9909, and 0.9725 while the MSE values were 0.0189, 0.0152, and 
0.0205 respectively. These desirable values showed adequate ANFIS modeling. 

The overall ANFIS training with 30 designated epoch iterations was illustrated in Fig. 5 (a). The training was finished at epoch 19 
with mean square error was 0.01886 with 27 linear parameters and 18 non-linear parameters. The training curve became approxi-
mately constant at epoch 17 with 27 fuzzy rules. The low MSE demonstrated that ANFIS technique was effective in modeling the 
present system [26]. The ANFIS predicted biogas yields for the initial experimental dataset were given in Table 3. In terms of the 
anaerobic digestion process, the ANFIS correlation coefficient was 0.9852 which proved the adequacy of the model. The tracking of 

Fig. 3. Plot of number of neurons against mean square error.  
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each experimental datawith each FIS predicted volume of biogas yield is presented in Fig. 5b. 

3.6. Comparative assessment of the models 

The result of statistical analysis of the three models was presented in Table 6. The comparative assessment of the three models was 
based on the statistical indices highlighted in Table 6. 

The results showed that the R2 of the three models were all greater than the reported 0.8 needed for a significant correlation 
between predicted response and experimental response [60]. To rank the models, other statistical terms such as ARE, HYBRID, RMSE, 

Table 5 
Properties of the ANN and ANFIS models.  

ANN model ANFIS model 

Algorithm Back propagation Number of inputs 3 
Training function Levenberg-Marquardt Number of MF for each input 3 
Error function Mean square error Number of outputs 1 
Input layer neurons 3 Number of epochs 30 
Output layer neurons 1 FIS Sugeno 
Hidden layer neurons 10 Number of training data pairs 150 
Hidden layer fitnet Input MF Trimf 
Training network trainlm Output MF Constant 
Epoch iterations 5 Number of fuzzy rules 27 
Data division dividerand Number of nodes 78  

Fig. 4. Correlation coefficient for ANN network performance for (a) Training data, (b) Validation data, (c) Testing data, and (d) All data.  
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and SSE were evaluated between the experimental values and predicted values. The ANFIS model was found to be more efficient than 
the ANN model with lower values of the error terms. RSM model though effective, was comparatively the least among the three 
models. This trend is in agreement with the reports of Onu et al. [57], Betiku et al. [60], and Karimi et al. [61]. Hence, ANFIS was found 
to be the best modeling technique followed by ANN and RSM models, in the production of biogas from the anaerobic digestion of 
plantain peel substrate. 

3.7. Interactive effects of the process variables 

The interactive effect between two process variables was studied with the aid of the 2D contour plots as shown in Fig. 6 (a), (b) and 
(c). 

Two input variables were varied within the experimental range with the third variable held constant. The relationship between 
time and temperature indicated that an increase in both variables resulted to increase in the biogas yield though temperature had a 
bigger effect on the biogas production. The p-value of all the interactive effects was less than 0.0001 showing that not just the in-
dividual effects but also the combined effect of any two variables has a substantial impact on the volume of biogas produced [26]. An 
optimum biogas yield of 200.104 mL was obtained at a temperature of 102.67 ◦C and time of 31.68 min with NaOH concentration set 
at null point (Fig. 6a) while 205.446 mL and 191.296 mL were obtained with time and temperature set at null points respectively 
(Fig. 6b and c). 

3.8. Optimization of digestion process 

The goal was the minimization of temperature and the maximization of the biogas yield. The time and the NaOH concentration 
were set within the experimental range. An optimum biogas yield of 215.35 mL was obtained at temperature, time, and NaOH con-
centration of 100 ◦C, 35.96 min, and 0.150 N, respectively. The optimum biogas production was validated using the test-retest method 
and an average of 217.0 mL was obtained. 

Fig. 5. ANFIS (a) training error plot and (b) distribution of predicted with experimental outputs.  

Table 6 
Models’ statistical analysis.  

Statistical term RSM ANN ANFIS 

SSE 1113.34 48.157 26.83 
HYBRID 18.556 0.803 0.447 
ARE 3.6088 0.6984 0.2791 
RMSE 0.04799 0.00969 0.00587 
R2 0.9281 0.9850 0.9852 
Adj R2 0.9119 0.9844 0.9846  

C.N. Nweke et al.                                                                                                                                                                                                      



Heliyon 9 (2023) e21995

13

The significance of each of the process parameter was investigated through the experimental model in percentage. The significance 
of temperature, time and NaOH concentration were 74.09, 23.04 and 2.88 % respectively. This implied that temperature of the 
treatment process had the most significant effect while concentration of NaOH has the least effect on the substrate treatment. 

3.9. Kinetics of the anaerobic process 

Five non-linear kinetic models were used: Logistic, Modified Gompertz, Transference, Exponential rise to maxima, and Modified 
Logistics models. The experimental cumulative biogas yield was fitted into the equation of these models and the correlation coefficient, 
models’ constants, and statistical error functions were evaluated and presented in Table 7. The experimental curve (see Fig. 7) 
indicated that the first three days resulted in no biogas yield. This stage is regarded as the hydrolysis stage where the complex organic 
substances are split into simpler substances needed for the acid-genesis fermentation stage [62,63]. Then a steep increase in the biogas 
yield was observed before it stabilized at a constant value. The kinetic analysis showed that the most suitable model describing the total 
biogas production was by the Logistic model, followed by the Modified Logistics with correlation coefficients of 0.9912 and 0.9904 and 
root mean square error of 0.4772 and 0.4861 respectively. Since the Logistics model best matched the anaerobic digestion’s kinetics, 
the exponential phase followed first-order kinetics [62] and the mechanism of the reaction was auto-catalytic [64]. Transference 
model with correlation coefficient of 0.9379 was equally adept in explaining the kinetics of the process. 

Fig. 6. 3D contour plots depicting interactions between (a) temperature and time, (b) temperature and NaOH concentration and (c) time and NaOH 
concentration. 
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Table 7 
Result of anaerobic digestion kinetic modeling.  

Kinetic parameters Parametric Values 

Logistic growth model 
a 242.8 
b 1070 
K − 1.195 
SSE 1524 
R2 0.9906 
Adj R2 0.989 
RMSE 11.27 
Logistic model 
λ 4.164 
P 242.8 
Rm 72.52 
SSE 1524 
R2 0.9906 
Adj R2 0.989 
RMSE 11.27 
Modified Superimposed model 
Go1 5.78 
Go2 246.2 
λ 4.034 
μm 20.06 
k 0.08029 
e 9.699 
SSE 631.9 
R2 0.9961 
Adj R2 0.9939 
RMSE 8.379 
Modified Gompertz Model 
Bo 246.6 
e 13.53 
μm 14.14 
λ 4.06 
SSE 651.3 
R2 0.996 
Adj R2 0.9949 
RMSE 7.695 
Trans-Gompertz model 
Bo1 204.3 
Rm 2.011 
λ 4.11 
Bo2 229.8 
μm 23.69 
e 8.468 
SSE 527.4 
R2 0.9967 
Adj R2 0.9949 
RMSE 7.655  

Fig. 7. Kinetic modeling of the anaerobic digestion process.  
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3.10. Biogas purification and analysis 

Major composition of the biogas before and after purification was presented in Table 8. The biogas consisted of methane which is 
the main component of biogas, and carbon IV oxide in addition to small traces of hydrogen sulphide, water vapour, nitrogen, ethanol, 
etc. The purification process was used to increase the energy per unit volume of the biogas by eliminating hydrogen sulphide and 
carbon IV oxide. The hydrogen sulphide is responsible for corrosivity and toxicity while carbon IV oxide decreases both the biogas 
quality and the heating value [65,66]. The percentage of methane in the purified gas increased to about 94 % while carbon IV oxide 
and hydrogen sulphide decreased considerably. 

3.11. Characteristics of the anaerobic sludge 

The characterization of the sludge after digestion was shown in Table 9. The C/N ratio of the waste sludge was observed to reduce at 
the end of digestion. This was because the microorganisms in the substrates had insufficient carbon and nitrogen source with such low 
C/N ratio indicating its potential applicability in enhancement of agricultural processes [59], [67]. The TSS and TVS reduced after the 
anaerobic digestion when compared with the initial characterization in Table 1. This was due to gradual fermentation of the organic 
solids by microbes for the acidogenesis stage. For anaerobic digestion, the values of TSS and TVS decreased as the hydraulic retention 
time increased slowing down at the end of the anaerobic process [68,69]. The increase in the values of the N, P, and K after digestion 
indicated that the slurries could be used as fertilizer [50]. 

4. Conclusion 

This work centered on the modeling of substrate treatment for enhanced biogas production from waste plantain peel substrate 
through anaerobic digestion process. Thermo-chemical treatment process variables such as time, NaOH concentration and tempera-
ture were modeled using RSM, ANN, and ANFIS. The instrumental analysis via FTIR and SEM showed the modification of the func-
tional groups and the structural changes in the morphology of the substrate after the pretreatment. Logistic and Modified Logistic 
kinetic models were most adequate in describing the anaerobic digestion process. RSM, ANN, and ANFIS were efficient in modeling the 
thermo-chemical substrate treatment with values of coefficient of correlation as 0.9281, 0.9850, and 0.9852, respectively. Supple-
mentary indices of statistics confirmed that ANFIS model was slightly superior to ANN model in stimulating and predicting the biogas 
yield. Enhancing the ANFIS model through optimization gave 217.0 mL of biogas per 200 g/400 mL substrate-water mixture at 
temperature of 102.7 ◦C, NaOH concentration of 0.125 N and treatment time of 31.7 min. Biogas purification through scrubbing 
increased the methane composition of the biogas to about 94.0 %. The waste slurry from the anaerobic process could be used as manure 
in agriculture. The result of this study was therefore recommended for possible industrial biogas production with special emphasis on 
the initial treatment of the substrates which will increase the anaerobic digestion process’s capacity to produce biogas. 
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Table 8 
Compositions of the biogas.  

Components Before purification (%) After purification (%) 

Methane 51.0 94.0 
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Hydrogen sulphide 2.2 1.3 
Water vapour 1.5 1.1 
Others 1.8 0.7  
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Characteristics of the anaerobic sludge.  

Parameter Numerical value 

TSS (g/Kg) 12.28 
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C/N ratio 11.06 
Phosphorus (P, %) 0.84 
Potassium (K, %) 0.96 
pH 4.02 
Ash (%) 9.47 
Moisture (%) 65.75  
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