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ABSTRACT 

Matrix protein (36,500 daltons), one of the major polypeptides of the Escherichia 
coli cell envelope, is arranged in a periodic monolayer which covers the outer 
surface of the peptidoglycan. Although its association with the peptidoglycan layer 
is probably tight, the periodic structure is maintained in the absence of peptidogly- 
can, and is therefore based on strong protein-protein interactions. A detailed 
analysis of the ultrastructure of the matrix protein array by electron microscopy 
and image processing of specimens prepared by negative staining or by freeze- 
drying and shadowing shows that the molecules are arranged according to three- 
fold symmetry on a hexagonal lattice whose repeat  is 7.7 nm. The most pro- 
nounced feature of the unit cell, which probably contains three molecules of 
matrix protein, is a triplet of indentations, each approx. 2 nm in diameter,  with a 
center-to-center spacing of 3 nm. They are readily penetrated by stain and may 
represent channels which span the protein monolayer.  

The envelopes of Gram-negative bacteria have a 
multilaminar organization consisting of a cytoplas- 
mic membrane, a rigid peptidoglycan layer, and 
an outer membrane. The latter is composed of 
phospholipids, lipopolysaccharides, and proteins. 
These include the matrix protein 1 (16) which, in 
Escherichia coli, has a mol wt of 36,500. The 
cellular complement of approx. 105 molecules 
forms a periodic array in close association with the 
underlying peptidoglycan layer. Numerically, the 
most abundant outer membrane protein is a lipo- 
protein (7,000 daltons) which has been exten- 
sively characterized (4). Each cell has approx. 6 • 
105 copies, of which a third (11) are covalently 
linked to the peptide cross-bridges of the peptido- 
glycan layer (4). In addition, the outer membrane 
contains several other major (9) as well as a num- 
ber of minor protein species, which have not yet 

1 This protein has been designated by various names (cf. 
reference 7). 

been so well characterized and will not be consid- 
ered further here. 

The structural organization of the outer mem- 
brane and the interactions between its compo- 
nents are not yet well understood. Likewise, the 
functions of its major polypeptides are still un- 
clear. Motivated by the idea that information on 
the architecture of the periodic arrangement of 
matrix protein which effectively covers the pepti- 
doglycan cell wall might afford insight into these 
questions, we have undertaken a study of it by 
electron microscopy combined with image proc- 
essing. Our findings are reported in this communi- 
cation. 

MATERIALS AND METHODS 

Preparation of Periodic Arrays 
of  Matrix Protein 

Two experimental approaches were followed. In the 
first, the matrix protein was prepared as a complex with 

292 THE JOURNAL OF CELL BIOLOGY" VOLLrME 72, 1977' pages 292-301 



the peptidoglycan-lipoprotein network, by a modifica- 
tion of the method described previously (16). Differen- 
tial heat extraction in sodium dodecyl sulfate (SDS) was 
performed with unbroken cells, which had been washed 
previously with 1 mM EDTA. In the second, matrix 
protein was obtained free of peptidoglycan by a proce- 
dure in which the same differential heat extraction was 
applied to spheroplasts. E. coli B ~ was grown as de- 
scribed previously (20), and spheroplasts were made 
according to the method of Kaback (12) or that of 
Osbom et al. (15). Pelleted spheroplasts were suspended 
in extraction buffer (10 mM Tris-HCI, pH 7.3, 2% SDS, 
5% 2-mercaptoethanol, and 10% glycerol). The suspen- 
sion was incubated for 30 min at 60"C, and the particu- 
late fraction was collected by centrifugation at 40,000 g 
for 60 min. The pellet was washed repeatedly with water 
(1-4 cycles) and collected by centrifugation. The final 
pellet was resuspended in water and prepared for elec- 
tron microscopy. Chemical analyses, polyacrylamide gel 
electrophoresis in dodecyl sulfate, and quantitation of 
peptidoglycan (using a diaminopimelic acid-requiting 
strain) were performed as described previously in detail 
(16). 

Electron Microscopy 

Negatively stained spedmens were obtained from 
fresh preparations of extracted cells or of spheroplasts. 
They were fixed for 15 rain with 1% glutaraldehyde, and 
adsorbed to 200-mesh copper grids covered with a thin 
collodion-carbon supporting film which had been glow 
discharged previously. The grids were floated on a drop 
of distilled water for 10 s and negatively stained with 2% 
sodium phosphotungstate at pH 7.2. Micrographs were 
recorded on a Philips 301 electron microscope, operating 
at 80 kV with a 30 /zm objective aperture. A liquid 
nitrogen anticontamination device was always used. Mi- 
crographs were recorded at a nominal magnification of 
49,000 diam on 70-mm Kodalith LR 2672 film and 
developed in Kodak DK60 developer. The minimum 
beam exposure technique of Williams and Fisher (22) 
was used because we found the specimens to be highly 
sensitive to electron irradiation. 

Specimens of freeze-dried and shadowed preparations 
were obtained as described elsewhere. 2 The shadowing 
material was tungsten, deposited at an elevation angle of 
30 ~ . 

Image Processing 

Optical diffraction and filtration were performed as 
described previously (1, 19). Lattice constants were 
measured using the meridional reflections of T4 phage 
tails, co-adsorbed to the grids, as internal magnification 
standard (2, 19). A spacing of 3.8 nm was assigned to 
these reflections (13). Once the lattice constant was 
determined (7.7 nm; eft. Results), it was used to calibrate 
the dimensions quoted for other ultrastructural features. 

2 Kistler, J. Submitted for publication. 

Image processing by computer was carded out using 
the method for filtering hexagonal lattices, and computer 
programs developed by Dr. P. R. Smith. The method is 
described in detail elsewhere.a The only point on which 
the filtrations presented here differ from that account 
was in the fine adjustment of orientational alignment and 
scaling of the digital pictures by bilinear interpolation. 
These operations were conducted according to two crite- 
ria which gave consistent results: (a) maximization of the 
total power in the Fourier orders of the indexed recipro- 
cal lattice out to spatial frequencies with visible reflec- 
tions on the corresponding optical diffractograms, and 
(b) maximization of power on specific outer Fourier 
orders. The photographic representations of the filtered 
digital pictures were recorded with an Optronics Photo- 
marion (Optronics Intemational, Inc., Chelmsford, 
Mass.). 

RESULTS 

When the matrix protein was prepared in associa- 
tion with the lipoprotein-peptidoglycan network 
without cell disintegration, these complexes gener- 
ally maintained their original rod shapes, as illus- 
trated in Fig. 1. The quantitative chemical compo- 
sition of these structures, which essentially consist 
of matrix protein, lipoprotein, and peptidoglycan, 
has been reported previously (16). Electron mi- 
crographs of negatively stained specimens consist- 
ently show them to be covered with a regular 
structure, evidently based on a hexagonal lattice, 
with the appearance of a honeycomb. In fact, the 
periodicity is not precisely maintained on these 
specimens, as we have found from examination of 
many such preparations that the regular structure 
is divided into subarrays by narrow cracks. On the 
individual subarrays, there is usually perceptible 
bending of lattice lines. Consequently, optical dif- 
fractograms (cf. Fig. 1) generally show only six 
hexagonally disposed reflections. Assuming that 
these reflections derive from the basic lattice re- 
peat, and therefore represent the first order of a 
hexagonal reciprocal lattice, we have determined 
the lattice constant to be 7.7 - 0.4 nm (12 meas- 
urements).  

More regular structures were obtained in prepa- 
rations from which the peptidoglycan network had 
been removed by lysozyme treatment  before SDS 
extraction (Fig. 2). The mass fraction of peptido- 
glycan was reduced to less than 5% of its original 
level by this t reatment (data not  shown), which 
also removed the lipoprotein. Only trace amounts  
of the latter could be detected by slab gel electro- 

a Smith, P. R., and U. Aebi. The computer filtration of 
hexagonal lattices. Submitted for publication. 
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FmuR~ 1 Electron micrograph of negatively stained (2% sodium phosphotungstate) peptidoglycan- 
matrix protein complex derived from E. coli by differential heat treatment in SDS (see Materials and 
Methods). The optical diffraction pattern of the marked area is inset with the arrowheads indicating the 
relative orientations of the specimen and the diffraetogram. 

phoresis in SDS with phosphate buffer, and only 
slight contaminations of lipopolysaccharide re- 
mained (16). Thus, the structures obtained by this 

procedure are composed of essentially homogene- 
ous matrix protein. They are predominantly in the 
form of what appear to be monolayer fragments 
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F~GUaE 2 Electron micrograph of negatively stained (2% sodium phosphotungstate) periodic arrays of 
matrix protein derived from spheroplasted E. coli cells by differential heat treatment in SDS (see Materials 
and Methods). The optical diffractograms of the windowed areas (I and II) index on a hexagonal reciprocal 
lattice with visible reflections extending to the fifth radial order (2.2 um)-L In area I, two such arrays are 
superimposed, of which one is less well preserved since it contributes only first order spots to the diffi'action 
pattern. 
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exhibiting the same regular structure as seen on 
the intact complexes, together with relatively few 
closed vesicles. Therefore, the integrity of the 
periodic structure is based on protein-protein in- 
teractions and is not dependent on interaction of 
the matrix protein with the peptidoglycan layer. 

On optical diffraction, the best micrographs 
which we have obtained of such preparations show 
five radial orders (19) of the hexagonal reciprocal 
lattice, extending to spatial frequencies of (2.2 
nm) -1. Their lattice constant of 7.7 nm, taken 
together with the similarity between their general 
appearance and that of the regular arrays present 
on the intact complexes, confirms that they repre- 
sent the same structure. These micrographs were 
treated by optical and computer image processing 
(Fig. 3). The most striking revelation of the fil- 
tered images is that the matrix protein is arranged 
according to local threefold (p3) symmetry on a 
hexagonal lattice. The most pronounced and re- 
producible feature is the resolution into triplet 
indentations of the dimples of the "honeycomb" 
which appear on the unprocessed micrographs as 
single sites of greater stain accumulation. These 
are positioned askew to the lattice lines at an angle 
of 19 -+ 3 ~ with a center-to-center spacing of 3.0 
-+ 0.3 nm, as indicated in Fig. 3g. The boundaries 
of the evidently closely packed matrix protein 
monomers are difficult to infer from electron mi- 
crographs of negatively stained specimens since 
delineation of individual molecules is conditional 
upon substantial stain penetration into the areas of 
intermolecular contact (18). However, the filtered 
images show three stain-excluding "arms," 
grouped around lattice positions of local threefold 
symmetry which, taken together with the likely 
stoichiometry of three matrix protein monomers 
per unit cell (cf. reference 16 and Discussion), 

suggest the interpretation given schematically in 
Fig. 3g. 

Transmission electron microscopy of negatively 
stained specimens does not yield much informa- 
tion about these structures in the dimension per- 
pendicular to the plane of the monolayer. For this 
purpose, the "one-sided" images obtained after 
shadowing freeze-dried specimens are more in- 
formative. Micrographs (cf. Fig. 4a)  of the intact 
matrix protein-peptidoglycan complexes prepared 
in this way tally with those of negatively stained 
preparations. The complexes are covered by a 
regular structure, again interrupted by cracks, of a 
distinctly corrugated appearance. The periodicity 
of the hexagonal lattice measured by optical dif- 
fraction 4 to be 7.5 -+ 0.3 nm is also in agreement 
with that measured for negatively stained prepara- 
tions. Freeze-dried and shadowed specimens of 
the peptidoglycan-free matrix protein arrays show 
two different aspects (Fig. 4b-d) .  The first of 
these is identical to that of the outer surface of the 
intact complexes. In the second case, a much 
smoother appearance is observed although some 
such specimens show weak diffraction spots corre- 
sponding to the same periodicity. From measure- 
ments of shadow lengths, we cannot distinguish a 
difference in thickness (approx. 4 nm for both) 
between these two types of surface image. Since 
they may be recognized respectively on adjacent 
particles, it is unlikely that this distinction is an 
artifact at the level of specimen preparation. 
Therefore, it is likely that the two aspects (corru- 
gated and relatively smooth) represent fragments 
of the protein sheet deposited in differing orienta- 

4 Average and standard deviation of 13 measurements. 
The magnification calibration used here was the manu- 
facturer's specification. 

FIGURE 3 Ultrastructure of the matrix protein layer by optical and computer filtration of electron 
micrographs. Protein is shown as white and negative stain as black. The optical filtrations (a and c) are of 
subareas of the specimens I and II, respectively, of Fig. 2. They are consistent with the corresponding 
computer filtrations, (b and d). For comparison, optical filtrations (e and ]) of less well-preserved 
specimens are included. A schematic interpretation of these images is shown in (g). The symmetry of the 
structure is p3 with three different centers (A, B, and C) of local threefold symmetry. The lattice constant 
(L) is 7.7 -+ 0.4 nm. The "triplet indentations," penetrable by negative stain, have a center-to-center 
spacing (D) of 3.0 -+ 0.3 nm, and are arranged askew to a reference set of lattice lines at an angle (O) of 19 
-+ 3*. The contours, inferred from the filtered images, enclose stain-excluding regions of protein, each 
probably contributed by a single molecule of matrix protein (cf. Discussion), not the outlines of entire 
molecules. 
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Fl~URE 4 Electron micrographs of specimens tungsten-shadowed after freeze-drying. (a) An intact 
peptidoglycan-matrix protein complex retaining the rodlike shape of the cell. (b--d) Matrix protein arrays 
detached from the peptidoglycan. The one-sided images of monolayer fragments show either a corrugated 
(C) or a smooth (S) aspect. These preparations also contain vesicular forms (V). Optical diffraction 
patterns, which show the 7.7 nm periodicity, are not fully sixfold symmetric on account of the directional 
polarity introduced by the shadowing direction. 



tions on the microscope grid, since negatively 
stained micrographs of the same preparations 
showed structures that were uniform in appear- 
ance apart from minor variations in staining and 
state of preservation of the periodic structure. In 
addition, there are what we judge to be flattened 
closed vesicles (Fig. 4c), on the grounds of their 
round shapes and the greater shadow length which 
they cast. The outer surface of these vesicles al- 
ways has the corrugated appearance. 

DISCUSSION 

The periodic arrays of essentially homogeneous 
matrix protein, obtained after removal of peptido- 
glycan by lysozyme treatment and extraction in 
detergent, are very similar to those which cover 
the peptidoglycan-lipoprotein network of intact 
complexes. This observation, 5 which applies both 
to their general appearance and to their lattice 
constants, allows the conclusion that the regular 
arrangement is maintained by strong protein-pro- 
tein interactions between subunits of the matrix 
protein. Nevertheless, its association with the pep- 
tidoglycan-lipoprotein layer also appears to be 
tight, as is evident from the nature of the extrac- 
tion procedure of the intact complexes from cell 
envelope preparations (16). Thus, the better or- 
dering of the periodic structure in peptidoglycan- 
free preparations is probably due to release of this 
tight interaction. The latter might also be responsi- 
ble for the cracks which we invariably observe to 
interrupt the array on specimens of the intact 
complex, prepared for electron microscopy either 
by negative staining or by freeze-drying and 
shadowing. 

The superior ordering of the peptidoglycan-free 
specimens makes image processing of the electron 
micrographs worthwhile. Both optical and com- 

5 In the literature, we have found only two references 
other than (16) which describe genuinely periodic layers 
in the E. coli cell envelope. The first (3) tallies with the 
structure analyzed here. We are unable to correlate our 
observations with those of Fischman and Weinbaum (6), 
who found a hexagonal array of apparently globular 
particles with a lattice constant of 14 nm, after heating E. 
coli cells to 90"C and treating them with proteolytic 
enzymes. Our attempts to prepare such specimens by 
following their experimental procedure have not been 
successful. The fracture face of closely packed particles 
of approx. 10 nm diam., described by Van Gool and 
Nanninga (21), does not constitute a periodic structure 
(N. Nanninga, personal communication, confirmed by 
ourselves). 

puter filtrations consistently show that the molecu- 
lax packing of matrix protein on the hexagonal 
lattice is based on threefold symmetry. Therefore, 
the number of monomers per unit cell must be a 
multiple of three. Assuming the minimal number 
(three molecules per unit cell), considerations of 
the lattice constant and the cellular complement of 
matrix protein (16) indicate that about 60% of the 
surface should be covered by the array, if the 
average cell surface area is taken to be 3/~m ~ (8). 
Owing to experimental uncertainties, this figure of 
60% does not contradict our observation that the 
cell surface is almost completely (>90%) covered 
with matrix protein. However, it does make im- 
probable the alternatives of six or more molecules 
per unit cell. 

The most pronounced features of the fine struc- 
ture revealed in the filtered images are the triplets 
of stain-penetrable indentations. Since matrix pro- 
tein covers most of the surface, the question arises 
as to how the lipoprotein is arranged in the outer 
membrane. This small protein is, in part, cova- 
lently linked to the peptidoglycan cross-bridges, 
but also appears to be exposed to antibody at the 
external surface of the outer membrane, at least in 
rough strains (4). Thus, if the peptidoglycan- 
linked molecules are not a population separate 
from those accessible to antibody, and if a similar 
arrangement of the lipoprotein is assumed in both 
rough and smooth strains, how is the lipoprotein 
arranged in the outer cell membrane relative to 
the layer of matrix protein? A priori, it is possible 
that the lipoprotein might be confined to specific 
domains, such as the cell poles or those areas 
which appear as cracks on electron micrographs. 
However, on account of the great quantity of 
lipoprotein and our observation that the matrix 
protein sheet extends over almost all of the cell 
wall (including the poles), we find this hypothesis 
implausible. Alternatively, if the lipoprotein is dis- 
tributed over the entire cell, the observed indenta- 
tions suggest themselves as the most likely location 
for its penetration through the matrix protein 
sheet. Do our results allow a conclusion with re- 
spect to the possibility that these indentations are 
channels? Although alterations of the protein 
structure during preparation for electron micros- 
copy are to be expected, the argument that these 
indentations are real rather than artifactual is 
supported by their correlation with the corrugated 
surface in freeze-dried and shadowed specimens 
derived either from whole cells or from peptido- 
glycan-free preparations. The smooth fragments 
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seen in preparations of the latter type do not allow 
the drawing of a definitive conclusion. If, indeed, 
this aspect represents the inner face of the mono- 
layer, the explanation which most easily accounts 
for these observations, then its relatively smooth 
relief might be due to local perturbations of the 
protein structure, or to a tapering of the "chan- 
nels" from the outside in. The proposal that the 
lipoprotein, known to be predominantly a-helical 
(4), penetrates through the matrix protein layer is 
therefore reasonable. Also, the division into three 
indentations of the central depression (which ap- 
pears as a single feature in unprocessed micro- 
graphs of negatively stained specimens) is likely to 
be significant and to represent the true local sym- 
metry of the structure. Perturbations caused by 
preparative procedures would not be expected to 
generate a highly ordered structure or to systemat- 
ically alter its symmetry. The diameter of the 
single indentations in the observed structures (ap- 
prox. 2 nm and certainly less than 3 nm) signifies 
that they could not accommodate the hexameric 
assemblies of lipoprotein hypothesized by Inouye 
(10) to function as hydrophilic pores. However, 
they could contain double or triple coiled coils (5) 
of a-helices. This model could account for the 
peptidoglycan attachment of the lipoprotein and 
its accessibility to antibody in terms of a staggered 
oligomeric arrangement of that protein. The hy- 
pothesis that matrix protein from E. coli B may 
form channels is further suggested by the finding 
(14) that incorporation of this protein into recon- 
stituted phospholipid-lipopolysaccharide vesicles 
enhances their permeability to sucrose. For this 
observation to have physiological significance, the 
protein would have to reach the external surface 
of the outer membrane. This has indeed been 
observed as the protein s appears to be a phage 
receptor (17). 

Our observations do not make it possible to 
distinguish between the altematives given or to 
decide whether they are mutually exclusive. Nev- 
ertheless, they identify a limited range of models 
for the relative arrangements of matrix protein 
and lipoprotein which are accessible to experimen- 
tal investigation. Experiments on the in vitro reas- 

From packing density considerations, invoking the 
mass of the matrix protein and the unit cell complement 
of three molecules, as well as the lattice constant and the 
approximate thickness of the monolayer, it appears that 
only a small portion of the molecule can protrude 
through the lipid layer. 

sociation of purified lipoprotein and matrix pro- 
tein and on immunochemical studies are in prog- 
ress in this laboratory. Hopefully, these experi- 
ments will allow us to distinguish between the 
alternative models formulated here and bring us 
closer to an understanding of the architecture and 
operation of the outer membrane of Gram-nega- 
tive bacteria. 
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