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In mammalian synapses, the function of ionotropic glutamate receptors is
critically modulated by auxiliary subunits. Most of these specifically regulate
the synaptic localization and electrophysiological properties of AMPA-type
glutamate receptors (AMPARs). Here, we comprehensively investigated the
animal evolution of the protein families that contain AMPAR auxiliary sub-
units (ARASs). We observed that, on average, vertebrates have four times
more ARASs than other animal species. We also demonstrated that ARASs
belong to four unrelated protein families: CACNG-GSG1, cornichon, shisa
and Dispanin C. Our study demonstrates that, despite the ancient origin
of these four protein families, the majority of ARASs emerged during
vertebrate evolution by independent but convergent processes of neo/
subfunctionalization that resulted in the multiple ARASs found in present
vertebrate genomes. Importantly, although AMPARs appeared and diversi-
fied in the ancestor of bilateral animals, the ARAS expansion did not occur
until much later, in early vertebrate evolution. We propose that the surge in
ARASs and consequent increase in AMPAR functionalities, contributed to
the increased complexity of vertebrate brains and cognitive functions.
1. Introduction
Ionotropic glutamate receptors are key to the physiology of the nervous system,
as they mediate fast excitatory neurotransmission [1]. Previously, we reported
that the evolution of the proteins that form these tetrameric receptors has
been much more sophisticated than previously acknowledged [2]. We found
that beyond the well-known AMPA, Kainate, NMDA and Delta classes, there
are four other classes exclusive to invertebrate species. Because of this, species
with simple nervous systems, such as the sea anemone N. vectensis, have a simi-
lar number of ionotropic glutamate receptor subunits to animals with complex
brains, such as mammals [2]. We argued that the high diversity of neuronal
types [3] or the wide array of glutamate receptor functionalities [4] found in
vertebrates is unlikely to be the result of an increased repertoire of genes
coding for them. Notably, the subcellular traffic and function of ionotropic
glutamate receptors is controlled by their auxiliary subunits [5]. These proteins
add a new layer of complexity to glutamatergic transmission and might have
contributed to an expanded functionality of these receptors in animals with
complex brains. In mammals, sixteen proteins have been identified as ionotro-
pic glutamate receptor auxiliary subunits. Of these, fourteen modulate AMPA-
type glutamate receptors (AMPARs) [6], and they are referred to as AMPA
receptor auxiliary subunits (ARASs). Only one auxiliary subunit has been
reported for NMDA receptors, Neto1 [7], which also regulates Kainate recep-
tors, as does Neto2 [8,9]. Currently known mammalian ARASs belong to five
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protein families: CACNG and GSG1 (both within the
superfamily of claudins), cornichon, shisa and Dispanin C.

Genes belonging to the same family are defined as paralo-
gues; these originate from gene or genome duplication events
[10]. In vertebrates, many paralogues resulted from the two
rounds of whole-genome duplication (2R) occurred at the
base of this lineage, approximately 400 Ma [11]. After
duplication, the two new genes can experience processes of
neofunctionalization or subfunctionalization. In the first scen-
ario, one of the new genes retains all functions performed by
the ancestral gene, while the second acquires new ones
[12,13]. Alternatively, genes subfunctionalize when the mul-
tiple functions carried out by the ancestral gene are realized
separately by descendent paralogues [13,14]. Establishing if
paralogues have undergone a process of neo or subfunctionali-
zation requires a precise understanding of all functions carried
out by the ancestral gene and thedescendingparalogues.When
this knowledge is not available, it is not possible to determine
which one of these two processes took place [15]; in these
occasions, the term neo/subfunctionalization can be used [13].

Known invertebrate ARAS belong to the CACNG or
cornichon families. These have been described in C. elegans
[16,17] and the fruit fly [18,19]. The first ARAS to be reported
was CACNG2, also called stargazin, as it is mutated in
stargazer mice [20]. Although this protein is phylogenetically
related to CACNG1, an auxiliary subunit of voltage-
dependent calcium channels (VDCC), it specifically interacts
with AMPAR [21,22]. Subsequently, six other CACNGs have
been discovered in mammals (CACNG3 to CACNG8 [23,24]).
Apart from CACNG6, which also acts as a VDCC auxiliary
subunit [25,26], all other CACNGs function as AMPA recep-
tor auxiliary subunits [27–29]; these are usually referred to as
TARPs (transmembrane AMPA receptor regulatory proteins)
[27]. Phylogenetic analysis of mammalian TARPs identifies
that they are more related to each other than to auxiliary sub-
units of VDCCs [25,27], being divided in two types [27,30,31]
that differentially modulate AMPAR [28,29]. The most
recently identified ARAS is GSG1L [32,33]. In vertebrate gen-
omes, GSG1L has two paralogues: GSG1, which interacts
with the polymerase TPAP, and GSG1L2 [32,34], of unknown
biological function. These proteins also belong to the super-
family of claudins, like CACNGs. Despite its structural
similarity with TARPs, GSG1L modulates AMPAR in a differ-
ent way, downregulating its traffic to the plasma membrane
and accelerating deactivation and desensitization [35,36]. The
remaining ARASs have been identified in three other protein
families: cornichon, shisa and Dispanin C. In all cases, these
families contain ARAS and proteins with different biological
functions. Among cornichons, CNIH2 and CNIH3 modulate
AMPAR function, but CNIH1 and CNIH4 regulate the traffic
of TGFα and GPCRs, respectively [37–41]. Four members of
the shisa family, Shisa6 to Shisa9 (originally referred to as
CKAMPs [42–46]), interact with AMPAR, yet Shisa2 and
Shisa3 are involved in the traffic of FGF [47] and WNT [48]
receptors, respectively, and Shisa5 participates in the p53/
TP53-dependent apoptosis pathway [49]. Finally, SynDIG1,
from the Dispanin C family, has also been identified as an
ARAS [50,51], this protein has two paralogues in vertebrates,
SynDIG1L and TMEM91, with poorly understood functions.

The evolutionary origin of ARASs is well established for
cornichons, which have been identified in the ancestor of
eukaryotes and are present in a large range of species, includ-
ing plants and yeasts [52,53]. The claudin superfamily, towhich
CACNGandGSG1 proteins belong, present homologues in the
basal metazoan phylum of porifera [54,55], placing its origin
prior to the divergence of these organisms. While CACNG
homologues have been reported in different bilaterian species,
including vertebrates and the fruit fly or C. elegans [17,19], it is
still unknown when GSG1s appeared during evolution. In
addition, some shisa homologues have been described in por-
ifera and Dispanin C homologues have been identified in
brown algae [56,57]. Here, we present a comprehensive study
of the animal evolution of all protein families that include
AMPAR auxiliary subunits. Our work shows that cornichons,
present in the ancestor of all metazoans, would be the most
ancient of all ARAS. TARPs, which appeared together with
AMPARs in the ancestor of bilaterians, also function as
ARASs in invertebrate organisms. Nevertheless, most
ARASs, including shisas, GSG1L and SynDIG1, would have
been recruited to modulate AMPAR function early in ver-
tebrate evolution, suggesting that during this period there
was an evolutionary pressure that favoured an expansion of
the functionality of AMPARs.
2. Materials and methods
2.1. Identification of genes coding for AMPA receptor

auxiliary subunits in metazoan genomes
Phylogenetic analysis was performed as described previously
[2]. We searched sequences in 31 species belonging to different
metazoan phyla: Porifera, Ctenophora, Placozoa, Cnidaria,
Lophotrochozoa, Ecdysozoa, Hemichordata, Chordata and
Vertebrata. The same species were used to construct all phylo-
genies. We used slowly evolving species whenever possible.
All sequences were retrieved from public databases.
A. digitifera and P. flava sequences were obtained from the
Marine Genomics Unit [58,59]. A complete list of species
included in the analysis and the corresponding database
where sequence search was done can be found in electronic
supplementary material, table S1.

Sequences from protein families of interest were identified
by homology-based searches with reciprocal identifications.
Mouse proteinswere used as search queries, when different iso-
forms were present we used the longest amino acid sequence.
We searched for homologues using the BLASTP and TBLASTN
tools [60] with default parameters. Subject sequences with an
E-value below 0.05 were selected as candidate homologues.
These sequences were re-blasted against mammal proteins in
the NCBI database of ‘non-redundant protein sequences’
using the BLASTP and BLASTX tools, respectively. Identified
homologues which have a protein length that is less than 50%
of the query protein were discarded.
2.2. Phylogenetic analyses
The CACNG-GSG1 tree was constructed using a total of
114 sequences, from which fifteen are used as the outgroup
(electronic supplementary material, file S1). The cornichon
tree includes 70 sequences, of which five are cornichons from
Arabidopsis thalianaused as the outgroup (electronic supplemen-
tarymaterial, file S2). The shisa tree includes 98 sequences, eight
of which are used as the outgroup (electronic supplementary
material, file S3). Finally, the Dispanin C tree includes 41
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sequences, four of which were used as the outgroup (electronic
supplementary material, file S4).

Protein sequences were aligned with the MUSCLE algor-
ithm [61], included in the software package MEGAX [62] with
default parameters. ProtTest v3.4.2 was used to establish the
best evolutionary model [63]. Trees were constructed using
MrBayes v3.2.7 [64] for Bayesian inference and IQ-TREE [65]
for maximum-likelihood analysis. For Bayesian inference
phylogenies were run for 10 000 000 generations. Markov
chain Monte Carlo (MCMC) was used to approximate the
posterior probability of the Bayesian trees. Bayesian analyses
included two independent MCMC runs, each using four paral-
lel chains composed of three heated and one cold chain.
Twenty-five per cent of initial trees were discarded as burn-in.
Convergence was assessed when the potential scale reduction
factor (PSRF) value was between 1.002 and 1.000. In
maximum-likelihood analysis the starting tree was estimated
using a neighbour-joining method and branch support
was obtained after 1000 iterations of ultrafast bootstrapping
[66]. Gene/protein names were given based on their position
in the tree. Phylogenetic trees were rendered using FigTree
(http://tree.bio.ed.ac.uk/software/figtree/). Phylogenetic
calculationswereperformedat theCIPRESsciencegateway [67].

2.3. Protein nomenclature
Proteins from non-vertebrate species were systematically
named following this nomenclature: (i) the name of the subfam-
ily which they belong, or family if the sequence is not assigned
to a subfamily; (ii) a Greek letter to identify non-vertebrate
paralogues, if any; and (iii) a three-letter species code.

2.4. Prediction of PDZ motifs classes
The software Eukaryotic Linear Motif (ELM) [68] was used
to identify if the C-terminus of proteins presented a PDZ
binding motif and, if so, to what class it belonged.
3. Results
3.1. TARPs are ancient AMPAR auxiliary subunits

widespread in bilaterians
Among protein families including AMPA receptor auxiliary
subunits, CACNGs and GSG1s belong to the superfamily of
claudins [32,69,70]. We thus incorporated GSG1s into the phy-
logeny of CACNGs to investigate if they are part of the same
family within the claudin superfamily. We found that GSG1
proteins confidently fell within the ingroup (figure 1; electronic
supplementarymaterial, figure S1). Thus CACNGs andGSG1s
are more evolutionarily related to each other than they are to
the rest of the claudin superfamily, belonging to the same
family, which we have named CACNG-GSG1. We only
found CACNG-GSG1 sequences in bilaterian species
(table 1), indicating that this family appeared in a common
ancestor of bilaterians. Phylogenetic analysis identified four
subfamilies among CACNG-GSG1s: TARPs, GSG1s, VDCCs
and a protostome-specific subfamily. As these are widely rep-
resented among bilaterian phyla, we propose that the ancestral
CACNG-GSG1 experienced three duplication events before the
split of bilaterians (electronic supplementary material, figure
S2A). Nevertheless, only the TARP subfamily is conserved in
all bilaterians investigated. The other families were lost in cer-
tain lineages. For instance: (i) the GSG1 subfamily is only
present in deuterostomes; (ii) molluscs would have lost the
protostome-specific subfamily; and (iii) the VDCC-subunit
subfamily was independently lost by cephalochordates,
echinodermates and ecdysozoans.

Among the phyla studied, vertebrates present the highest
number of CACNG-GSG1s (11 proteins; table 1), of which 7
are ARAS. AlthoughCapitella teleta, an annelid, has eightmem-
bers in this family, of which six would be TARPs according to
the phylogenies, most invertebrates investigated generally
have fewer CACNG-GSG1s. All mammalian proteins within
the branch of TARPs are known AMPAR regulatory proteins
[27,28,71]. Due to their position in the trees we propose that
invertebrate orthologues to vertebrate TARPs and their bilater-
ian ancestor would interact and regulate AMPARs. However,
with the exception of cephalochordate sequences, invertebrate
TARPs are more divergent than their vertebrate counterparts,
as indicated by their longer branches. It is thus plausible that
the ability to interact with AMPARs has been altered in this
species. Functionally, vertebrate TARPs are classified into
Type I and Type II [27,28,71]. This classification is mirrored
by the phylogenies, as vertebrate sequences form two mono-
phyletic groups, one for each type. While invertebrate
proteins cannot be unambiguously related to Type I or Type
II TARPs, as the statistics metrics generated by the Bayesian
(figure 1) and maximum-likelihood (electronic supplementary
material, figure S1) phylogenies are not high enough, the trees
suggest that the majority of them belong to Type II and that
Type I would have been lost in non-vertebrates. Among
GSG1s, vertebrate GSG1Ls are the only ones known to act as
ARASs [32,33]. Yet, our tree indicates that all GSG1 paralogues
arouse from recent duplications at the base of the vertebrate
phylum, suggesting that the emergence of ARAS in this
family occurred by neo/subfunctionalization early in
vertebrate evolution.
3.2. Sequence analysis reveals common motifs in
CACNG-GSG1s

We next constructed multiple sequence alignments to investi-
gate primary sequence features among CACNG-GSG1s
(figure 2a; electronic supplementary material, figure S3). We
found a highly conserved motif of 7 residues in all
CACNG-SGS1s (consensus sequence: Y(174)SYGWSF, resi-
due numbering corresponds to human CACNG2). The last
five residues of this motif present the highest conservation,
S179 being the most conserved position. We also investigated
which proteins from this family would present PDZ binding
motifs, as mammalian TARPs [5] present Class 1 PDZ motifs.
These short C-terminal sequences contribute to the anchoring
of TARPs at the postsynaptic membrane [72,73]. All TARP
subfamily sequences except two, TARP_Pfl and TARPα_Pca,
are predicted to have a PDZ binding motif; most of these
being Class 1 motifs. TARP_Spu, TARP_Apl, TARPβ_Lgi
and TRAPβ_Aca are predicted to have changed this into
Class 2 motifs. Similarly, most GSG1 subfamily proteins
also have a PDZ binding motif, except GSG1s from hemichor-
dates (figure 2b). These motifs are present in GSG1 proteins
that act as ARAS but also in those with other functions. Inter-
estingly, this subfamily presents three types of PDZ motifs.
Vertebrate GSG1s are predicted to have Class 3 motifs,
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Table 1. Number of proteins found in the four families known to include AMPA receptor auxiliary subunits (ARASs). The number of ARASs is given in brackets.
Proteins from Homo sapiens are experimentally confirmed as ARAS. Invertebrate proteins are defined as candidate ARASs based exclusively in the phylogenies.

phylum species CACNG-GSG1 CNIH Shisa Dispanin C

Metazoa Bilateria Vertebrata H. sapiens 11 (7) 4 (2) 10 (4) 3 (1)

Chordata C. intestinalis 0 2 (1) 0 0

B. lanceolatum 3 (1) 3 (1) 6 (0) 1 (1)

B. belcheri 3 (2) 2 (1) 6 (0) 7 (1)

B. floridae 6 (4) 3 (2) 8 (0) 3 (0)

Hemichordata S. kowalevskii 3 (2) 2 (1) 16 (0) 1 (1)

P. flava 3 (1) 1 (0) 4 (0) 0

Echinodermata A. planci 2 (1) 1 (1) 2 (0) 0

S. purpuratus 1 (1) 1 (1) 1 (0) 2 (0)

Mollusca L. gigantea 3 (3) 2 (1) 0 2 (0)

C. gigas 3 (3) 3 (1) 0 1 (1)

A. californica 4 (3) 3 (2) 1 (0) 0

Annellida C. teleta 8 (6) 2 (1) 2 (0) 1 (0)

Arthropoda A. mellifera 2 (1) 1 (1) 0 0

S. maritima 1 (1) 1 (0) 1 (0) 0

Priapullida P. caudatus 3 (2) 2 (1) 0 0

non-Bilateria Cnidaria N. vectensis 0 2 (1) 0 0

A. digitifera 0 2 (1) 0 0

O. faveolata 0 2 (1) 0 0

H. magnipapillata 0 1 (1) 0 1 (0)

Placozoa T. adhaerens 0 2 (1) 0 0

Porifera O. carmela 0 2 (1) 0 2 (1)

S. cilliatum 0 1 (0) 0 0

L. complicata 0 2 (1) 0 1 (0)

A. queenslandica 0 2 (1) 0 0

Ctenophora M. leidyi 0 1 (1) 0 1 (0)
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although their cephalochordate orthologues would have Class
1 motifs. Mammalian GSG1L2 would also present Class 1
motifs although Danio rerio orthologues present a Class 3
motif. Finally, mammalian GSG1Ls, which are the only mem-
bers of the family known to interact with AMPARs, present a
PDZ motif class termed Trp-1 [74]. This motif results from an
insertion of 7 amino acids exclusive to the mammalian lineage.
Other vertebrate species present a Class 3 PDZmotif (electronic
supplementary material, figure S4).
3.3. A process of subfunctionalization would have led
to vertebrate cornichon ARAS

We next investigated the phylogeny of cornichon proteins.
Noticeably, we found cornichon sequences in all species
investigated, covering all metazoan phyla (table 1). Our phylo-
genetic analysis indicates that this family is divided into two
subfamilies: CNIH1/2/3 and CNIH4 (figure 3; electronic sup-
plementary material, figure S5). Furthermore, it also shows
that the ancestor of all metazoans already presented the two
genes that later gave rise to these two subfamilies (electronic sup-
plementary material, figure S2B). Interestingly, both cornichon
subfamilies are highly conserved, having experienced fewdupli-
cation or deletion events throughout metazoan evolution.
Nevertheless, while the CNIH1/2/3 subfamily is found in all
metazoan phyla studied, ctenophores and echinoderms appar-
ently lost the CNIH4 subfamily. From all species studied,
vertebrates have the highest number of cornichon proteins, pre-
senting four. Among invertebrates, B. lanceolatum, B. floridae,
C. gigas and A. californica are the species with more cornichons,
with three coding genes in their genomes.

The vertebrate CNIH4 protein interacts with GPCRs,
promoting their traffic to the cell surface [41]. The high conser-
vation of this subfamily allows us to hypothesize that all its
members will act in GPCR trafficking to the cell surface, like
their vertebrate counterparts. Instead, vertebrate members of
the CNIH1/2/3 subfamily have different functions. While
CNIH1 is involved in the maturation of TGFα [18], both
CNIH2 and CNIH3 function as ARASs [33]. These three
genes appeared by duplication in the vertebrate ancestor;
thus, the phylogeny alone does not allow us to hypothesize
about the function of the ancestral gene. Yet both the fruit fly
and C. elegans present a single cornichon orthologue each
[16,18]. Interestingly, the fly protein has been found to partici-
pate in the maturation of TGFα [18], as mammalian CNIH1s,
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with Jalview v2.11.0.
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while the C. elegans orthologue, cni-1, acts as an ARAS. To the
best of our knowledge the role of the fly protein as ARAS has
not been investigated, nor has the role of cni-1 been studied
in the context of TFGα maturation. Nevertheless, we propose
that the invertebrate orthologue of CNIH1, 2 and 3 performs
both functions and that in the vertebrate lineage this gene
was duplicated and subfunctionalized so that CNIH1 retained
the role as a factor for TFGα maturation, and the ancestor of
CNIH2 and 3 retained the ARAS function.
3.4. The phylogeny of the shisa family shows
independent expansions in deuterostome species

Shisa proteins were only found among bilaterian species,
although not in all of them. Species such as Ciona intestinalis,
an urochordate, or L. gigantea, a mollusc, have lost this family
(table 1). The phylogenies revealed that this family is orga-
nized in two subfamilies. The ancestral shisa gene would
have appeared in bilaterians and duplicated before their
diversification to generate these two subfamilies (electronic
supplementary material, figure S2C). Based on the proteins
they contain, we have termed them Shisa1/L1 and ShisaL2
(figure 4; electronic supplementary material, figure S6). The
Shisa1/L1 subfamily is better conserved, as it has only been
lost in echinoderms; instead, the ShisaL2 is only found in
deuterostome species, having been lost in the ancestor of pro-
tostomes. While the Shisa1/L1 greatly expanded in
vertebrates, the ShisaL2 expanded in cephalochordates and
hemichordates. Protostome species with shisas show a low
number of sequences compared to chordates and S. kowalevs-
kii, having 1 or 2 genes per species. The ML phylogeny shows
how the Shisa1/L1 subfamily might be further divided in
two classes: one comprising vertebrate Shisa4 and Shisa5
with invertebrate sequences and a second including ver-
tebrate shisas: L1, 2, 3 and 6 to 9 (electronic supplementary
material, figure S6). Nevertheless, the tree constructed with
the BI method presents a different topology for the Shisa1/
L1 subfamily (figure 4); this does not allow us to fully con-
clude that there would be two classes within the Shisa1/L1
subfamily, one being specific to vertebrates, as we found for
Type I TARPs.
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Vertebrate proteins from the Shisa1/L1 perform very differ-
ent biological functions. Shisa5 is involved in p53-induced
apoptosis, Shisa2 in FGF receptor traffic, Shisa3 in WNT recep-
tor function and Shisas 6 to 9 are ARASs. Due to its position in
both phylogenies and its grouping with invertebrate shisas, we
propose that Shisa5 would be phylogenetically closer to the
ancestral shisa than the other paralogues and that the ancestral
gene would also be involved in apoptosis. In this scenario the
emergence of ARAS in this subfamily would be the result of
neofunctionalization events occurring during vertebrate evol-
ution in the branch of Shisa6 to Shisa9.

3.5. The Dispanin C family is poorly conserved among
metazoans

SynDIG1, a member of the Dispanin C family, has recently
been reported as an AMPAR auxiliary subunit [75]. Our phy-
logenies indicate that members of this family can be traced to
the early-diverging phylum of Ctenophores (figure 5; elec-
tronic supplementary material, figure S7). Yet, this family has
been lost in multiple lineages and species during metazoan
evolution (table 1). Only half of the 26 species investigated pre-
sent at least one member of the Dispanin C family. Our trees
indicate that in metazoans this family is also divided into
two subfamilies, which we have named Dispanin C1 and Dis-
paninC2. The L. giganteaDispaninC1/2_Lgi does not belong to
any subfamily, since we didn’t find other proteins in the same
tree branch we did not define a new subfamily for it. The cte-
nophore sequence DispaninC_Mle is the first to diverge, not
belonging to any subfamily; thus we propose that the ancestor
of all metazoans had a single gene coding for Dispanin C and
after the split of ctenophores it duplicated, giving rise to the
two subfamilies (electronic supplementary material, figure
S2D). Virtually nothing is known about the two vertebrate
paralogues of SynDIG1, SynDIG1L and TMEM91, although
SynDIG1L has been found downregulated in mouse models
ofHuntington’s disease [57]. Due to the lackof functional infor-
mation in other vertebrate or invertebrate Dispanin Cs it not
possible to establish when SynDIG1 function as ARAS arose
during evolution.
4. Discussion
Evolutionary studies have demonstrated that the synaptic pro-
teome has importantly increased in vertebrates [76], expanding
the molecular tools available to synaptic physiology [77–79]
and multiplying synaptic molecular types [80,81]. The two
rounds of whole-genome duplication (2R) that occurred at
the base of the vertebrate lineage [82] were the major driving
force behind this expansion, as genes expressed at the synapse
were retained at high frequencies after these duplication events
[83]. The result of this increased complexity in the vertebrate
synaptic proteome has been associated with the higher cogni-
tive functions found in mammals [84]. Nevertheless, there are
exceptions to this general model of synaptic proteome evol-
ution. This is the case of glutamate receptors, key nervous
system proteins driving the excitatory synaptic transmission.
These proteins have undergone a highly sophisticated evol-
utionary pattern in animals, with many lineage-specific
gains, losses and expansions of entire classes of these receptors.
This process has resulted in a similar number of glutamate
receptors being present in most animal species, regardless of
the complexity of their nervous system [2]. Here, we present
how the neo/subfunctionalization of unrelated proteins into
ARASs has resulted in a different evolutionary strategy to
increase the synaptic proteome in vertebrates.

Mammalian ARASs were thought to belong to five protein
families: CACNG, GSG1, cornichon, sisha and Dispanin
C. CACNGs and GSG1s are known to belong to the superfam-
ily of claudins [85], a large group of proteins that presents over
40 members in mammals and that includes three families, one
of them being that of CACNGs [86]. Nevertheless, the exact
position of GSG1s within claudins was unknown. Our phylo-
genetic analysis indicates that GSG1s actually belong to the
CACNG family of claudins. We thus refer to this family as
CACNG-GSG1. Therefore, ARASs are organized into four evo-
lutionarily unrelated protein families. In contrast withwhat we
reported for the family of ionotropic glutamate receptors,
which diversified into 12 phylogenetic groups, including four
subfamilies and ten classes [2], the animal evolution of the
families containing ARAS has not been particularly complex.
cornichon, sisha and Dispanin C families can be divided into
just two phylogenetic groups (subfamilies) and the CACNG-
GSG1 family in four. Nevertheless, all these families have
increased their members along animal evolution, and ver-
tebrates have especially increased their number of ARAS.
This is particularly true for the CACNG-GSG1 and shisa
families, which include 11 and 10 proteins, respectively, in
the vertebrate species investigated, of which 7 and 4 are
ARASs. Altogether vertebrates generally present 14 ARASs,
while, based on our study, invertebrate bilaterals would have
fewer, between 1 and 7, and non-bilaterals even fewer, 1 or
2. Sequences from invertebrate bilaterals only fall confidently
in two subfamilies with experimentally identified ARAS: that
of TARPs within the CACNG-GSG1 family, and that of
CNIH1/2/3 among cornichons. Furthermore, non-bilaterals
would only present proteins phylogenetically related to the
ARAS subfamily of CNIH1/2/3 cornichons. Additionally, a
number of invertebrates, including the basal spongeO. carmela,
could have retained one Dispanin C1 phylogenetically close to
themammalian ARAS SynDIG1, although the phylogenies are
not fully conclusive in this regard. The loss of the shisa andDis-
panin C families in multiple invertebrate species, and even in
entire phyla, suggests a less relevant role of these proteins in
invertebrates as compared with vertebrates, which present
high conservation levels in both families. Furthermore, our
analysis suggests that ARAS from the shisa family are only
present in vertebrates, postulating them as an innovation of
this lineage.

As ARASs belong to four unrelated protein families that
include proteins with other functions, we aimed at using
our phylogenetic study to propose when in evolution these
proteins acquired their function as AMPAR modulators,
although functional information would be required to com-
pletely establish their role. Our data indicate that all
proteins identified in the TARP subfamily might function as
ARASs, which would mean that the TARP subfamily
would be the only one in which their proteins are solely dedi-
cated to modulating AMPAR function. On the other hand, we
found a possible example of vertebrate neofunctionalization
of ARASs in the subfamily of GSG1Ls, as its vertebrate para-
logue GSG1 is involved in trafficking of TPAP. Identifying the
function of non-vertebrate GSG1s would be required to estab-
lish more conclusively this event of neofunctionalization.
Vertebrates have two cornichons acting as ARASs (CNIH2
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and 3), emerging from a vertebrate-specific duplication. Their
closest paralogue is CNIH1, which is involved in TGFα matu-
ration. Interestingly, the fly sole orthologue to CNIH1, 2 and 3
is known to participate in the maturation of TGFα [18], while
the unique orthologue of these proteins in C. elegans has a
well-proven role as an ARAS [16]. We thus propose that
invertebrate orthologues of CNIH1/2/3 perform both func-
tions and that vertebrate paralogues underwent a process of
subfunctionalization by which CNIH1 retained the TGFα
maturation function and the ancestor of CNIH2 and 3
retained the ARAS role. Within the shisa family all known
ARASs (Shisa6 to 9) are in the Shisa1/L1 subfamily, yet this
phylogenetic group also contains proteins performing other
functions, as Shisa5 participates in p53-induced apoptosis
[49] and Shisa2 and 3, the closest paralogues to Shisas6–9
with known function, are involved in FGF [47] and WNT
[48] receptor trafficking, respectively. In opposition to what
we found in the CACNG-GSG1 and cornichon subfamilies
containing ARAS, the Shisa1/L1 subfamily includes very
few sequences from non-vertebrates. Thereby, TARPs and
CNIH1/2/3 subfamilies present 31 and 23 sequences from
invertebrate species, respectively, while the Shisa1/L1 sub-
family includes only eight. Importantly, all these eight
sequences fall in the branch of Shisa5, which is not an
ARAS. Thus, due to the topology of the phylogenetic trees
we propose that Shisa6 to 9 would have experienced a pro-
cess of neo/subfunctionalization early in the vertebrate
lineage to become ARASs. Finally, the phylogenetic evolution
of the Dispanin C family would also suggest a neo/subfunc-
tionalization process in the vertebrate lineage resulting in
members of the C1 subfamily becoming ARASs, although,
as before, research on vertebrate and invertebrate orthologues
of SynDIG1 will be required to fully validate this hypothesis.
The fact that large-scale proteomics experiments of synaptic



royalsocietypublishing.org/journal/rsob
Open

Biol.10:2

11
preparations [77–79] and repositories of synaptic proteins [87]
do not identify SynDIG1L or TMEM91 suggests that they are
unlikely to function as ARASs, thus supporting the hypoth-
esis of a neo/subfunctionalization process of ARASs in this
family.

In summary, this study reveals that the large set of ARASs
found in vertebrates is absent from other species. Interest-
ingly, the surge in ARASs happened much later than the
emergence of AMPARs [2]. The class of AMPA receptors
appears and diversifies in the ancestor of bilateral species,
around 800 Ma, while the increase in ARAS occurs early in
vertebrate evolution, approximately 400 Ma [11]. Our analy-
sis suggests that this increase is due to an expansion of
proteins belonging to the TARP subfamily, the neofunctiona-
lization of a group of Shisa1/L1 subfamily proteins and
parallel processes of neo/subfunctionalization occurring in
the cornichon and Dispanin C families. All these resulted in
the recruitment of a large number of ARASs early in
vertebrate evolution, which suggests that these proteins
might have importantly contributed to the development of
the complex nervous systems found in these animals. The
parallel recruitment of unrelated proteins to perform synaptic
functions represents another strategy by which evolution has
favoured an increased complexity in the synaptic proteome.
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