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Although immune checkpoint inhibitors have improved the overall survival rate

of skin cutaneous melanoma (SKCM) patients, there is a wide variation and low

response rate to these treatments in clinical immunotherapy for melanoma

patients. These problems can be addressed through the induction of

immunogenic cell death (ICD).We constructed an ICD-based prognostic

model to predict the prognosis of SKCM patients and the efficacy of

immunotherapy. Information on melanoma and normal samples obtained by

TCGA and GTEx was stratified by ICD-related genes. The samples were divided

into two subtypes according to high and low expression of ICD using an

unsupervised clustering method (K-means). Patients with ICD-high subtype

showed longer overall survival. We found that the ICD-related differential genes

were associated with several cell death and immune-related pathways through

GO, KEGG and GSEA. Immunoscore and tumor purity of ICD-associated genes

was calculated using ESTIMATE, and ICD-high subtypes had higher

immunoscore and lower tumor purity than ICD-low subtypes. Seven ICD-

associated genes were obtained by one-way Cox regression and Lasso

regression of ICD genes. Risk models were constructed to classify melanoma

patients into high- risk and low-risk groups. The expression of ICD-related

pivotal genes was lower in the high-risk group than in the low-risk group, and

the survival time was significantly higher in the low-risk group than in the high-

risk group. We then found that ICD risk characteristics had predictive value for

the clinical efficacy of immunotherapy, with higher ICD risk scores in the

immunotherapy non-responsive group. Combined with clinicopathological

factors, a nomogram was established. the ROC and calibration curves

assessed the ability of the nomogram to predict prognosis. We developed a

new classification system for SKCM based on the characteristics of ICDs. This

stratification has important clinical implications for estimating the prognosis

and immunotherapy of SKCM patients.
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Introduction

Skin cutaneous melanoma (SKCM) is one of the most

aggressive malignancies, characterized by insidious pathogenesis,

metastasis and poor response to treatment, and accounts for 80%

of all deaths from skin tumors (1, 2). It is a highly immunogenic

cancer (3). In recent years, several studies have made progress in

understanding the cellular and molecular mechanisms involved in

tumorigenesis, metastasis and immune escape and have

introduced a variety of new immunotherapies (4, 5). With the

rapid development of Immune Checkpoint Inhibitors (ICIs),

antibodies against programmed cell death protein 1(PD-1),

Programmed cell death-ligand 1(PD-L1)and cytotoxic T-

lymphocyte-associated protein 4(CTLA-4) have been approved

one after another for the treatment of melanoma (4, 6). The

objective response rate of these inhibitors can reach 30-40% (7, 8).

Although ICIs offer new hope to melanoma patients, some

patients have low response rates to immunotherapy due to the

heterogeneity of the tumor and have serious adverse effects (9).

Many studies have shown that the induction of immunogenic

death (ICD) can significantly enhance the anti-tumor

immune response.

ICD can promote immune stimulation in patients by

enhancing the antigenicity of tumor cells (10). Immunotherapy

activates or enhances the immune system to attack tumor cells,

inducing specific anti-tumor immunity and prolonged

immunogenic memory responses. ICD inducer-treated tumor

cells stimulate the exposure of tumor-associated antigens,

known as damage-associated molecular patterns (DAMP) (11),

including calreticulin. DAMP promotes dendritic cells

maturation, activation of cytotoxic T lymphocytes and secretion

of a variety of cytokines (interferon-I) (12). ICDs enable anti-

tumor T cells and secretion of multiple cytokines to alter the
Frontiers in Oncology 02
tumor microenvironment, thereby enhancing the response to

immunotherapy (13). The results of this study are summarized

below. In many previous studies, ICD inducers increased

immunotherapeutic sensitivity (14–16). However, there is little

research on using ICD inducers in preclinical models.

Therefore, to make current immunotherapy more precise

and effective, it is necessary to identify new therapeutic targets

and approaches to classify melanoma patients accurately. Our

study developed risk models for ICD-related genes to predict

prognosis and response to immunotherapy in SKCM patients

and can be used as prognostic biomarkers.
Materials and methods

Datasets

The data filtering process is shown in Figure 1. The training

set data used in this study consisted of 880 samples, including

413 normal samples and 467 SKCM samples. RNA sequencing

data and associated clinical information were downloaded from

the Cancer Genome Atlas data portal (TCGA, https://portal.gdc.

cancer.gov/) and the GTEx data portal (https://www.gtexportal.

org/home/datasets/). A total of 472 SKCM samples were

downloaded from the TCGA database, and 467 datasets were

included in the training group after excluding 5 datasets without

follow-up time, survival information and detailed clinical

information. Also, 17 samples without tumor mutation burden

(TMB) information were excluded. A total of 214 SKCM

samples from dataset GSE65904 were downloaded from the

Gene Expression Omnibus (GEO) database, normalised and

data from 4 patients without clinical outcomes were excluded,

and 210 data were included in the validation set.
FIGURE 1

Flow-diagram of the datasets selection process.
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The study ultimately included 677 patients with SKCM,

including 413 (61.00%) males and 264 (39.00%) females, with

an age at initial pathological diagnosis between 15 and 91 years,

with no statistically significant differences between the two

groups for the characteristic variables (p > 0.05, Table 1).
Consensus clustering of genes
immunogenic cell death

Cluster analysis using the R package ConsensionClusterPlus

(17). Subsequently, we used a pam cluster approach with 1-

pearson correlation distances to partition the ICD-associated

genes. This process was repeated 1000 times for 80% of the

samples to ensure the stability of the results. The optimal

number of clusters was determined using an empirical

cumulative distribution function plot.
Identification of differentially
expressed genes

Samples of 2 distinct ICD group were analyzed by the

empirical Bayesian approach of the R package limma (18)

(version 3.52.2) to identify DEGs between different ICD group,

and adjusted p value < 0.05 and | fold change| > 1 were

considered as differential genes.
Functional enrichment analysis

For gene set functional enrichment analysis,we utilized the R

package clusterProfiler (19) (version 4.4.4) to enrichment

analysis, and we used the enrich GO function of the R package

org.Hs.eg.db (version 3.15.0), setting the minimum gene set to
Frontiers in Oncology 03
10, the maximum gene set to 500, pvalueCutoff = 0.05,

pAdjustMethod = “BH”. Adjusted p value < 0.05 were

considered statistically significant to obtain gene set

enrichment results. Using the enrichKEGG function, setting

the minimum gene set to 10 and the maximum gene set to

500, pvalueCutoff = 0.05, pAdjustMethod = “BH”. Adjusted p

value < 0.05 were considered statistically significant and gene set

enrichment results were obtained.
Gene set enrichment analysis

For the Gene set enrichment analysis (GSEA), we

downloaded two subsets, h.all .v7.5.1.entrez.gmt and

c7.immunesigdb.v7.5.1.entrez.gmt, from the Molecular

Signatures Database, and then enriched the two gene sets

using differential genes to assess relevant pathways and

molecular mechanisms. Based on gene expression profiles and

phenotype groupings, set the minimum gene set to 10, the

maximum gene set to 500, pvalueCutoff = 0.05, and

pAdjustMethod = “BH”. Adjusted p value < 0.05 and were

considered statistically significant to obtain gene set

enrichment results.
Characterization of immune landscape
between two ICD subgroups

To characterize the immunological properties of the two

subgroups of SKCM, the R package estimate (version 1.0.13 (20).

https://R-Forge.R-project.org/projects/estimate/.) StromalScore,

ImmuneScore, ESTIMATEScore and tumor purity between the

two subgroups.

Using the R script (version 1.03) and Leukocyte signature

matrix (LM22) (21) provided by CiberSort (https://cibersortx.
TABLE 1 Data source and clinicopathologic characteristics of patients.

Characteristics Training cohort TCGA (N=467) Validation cohort GSE65904 (N=210) Total (N=677) p

Age

Mean ± SD 58.17 ± 15.76 62.35 ± 14.40 59.48 ± 15.45

Median[min-max] 58.00[15.00,90.00] 64.00[22.00,91.00] 61.00[15.00,91.00]

Sex 0.54

Female 178 (26.29%) 86 (12.70%) 264 (39.00%)

Male 289 (42.69%) 124 (18.32%) 413 (61.00%)

OS

Mean ± SD 1805.00 ± 1938.39 981.40 ± 1222.82 1549.53 ± 1788.24

Median 1089 534 839

Event 0.71

0 249 (36.78%) 108 (15.95%) 357 (52.73%)

1 218 (32.20%) 102 (15.07%) 320 (47.27%)
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stanford.edu/), the analysis was repeated 1000 times to

determine the relative percentages of the 22 immune cell

types. We then compared the relative percentages of the 22

immune cell types between the two ICD subgroups.
Prediction of response to
immunotherapy

Immunotherapy response was determined using tumour

immune dysfunction and rejection (TIDE) analysis (22). TIDE

(http://tide.dfci.harvard.edu/) is an analysis technique that uses

two major mechanisms of tumour immune evasion (T cell

dysfunction and T cell infiltration suppression in tumours

with low CTL levels) to predict immunotherapy response.
Somatic mutation analysis

Somatic mutation data of the SKCM samples were obtained

from TCGA GDC Data Portal in “maf” format. Waterfall plots

were then performed using the R package mafTools (23).
Survival analysis

All SKCM patients were divided into two groups by the

median risk score.Kaplan-Meier (KM) analysis was conducted

for comparison of the overall survival (OS) between low and

high subtype ICD and the low and high ICD risk cohort utilizing

the R software packages survminer and survival (version 3.3-1).
Construction of the ICD-related
risk signature

Patient survival time, survival status, and gene expression

data were integrated using the R package glmnet (24).

Prospective prognostic indicators were identified by

including 23 ICD-related genes in univariate Cox analyses

(25). LASSO cox regression analysis was then performed to

calculate the exact coefficient values for each identified

association. LASSO is a commonly used regression analysis

method that combines variable selection and regularization to

improve the predictive performance and interpretability of the

resulting statistical model. Multivariate Cox analysis was used to

identify independent risk factors for SKCM.

We then constructed a nomogram using the multivariate

cox approach and assessed the prognostic significance of

these features in 453 samples. The overall C-index of the

model was: 0.706833299737956,95% CI (0.669570706055558-

0.744095893420355), p value =1.4488773564683e-27. The
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discriminative power of the nomogram was assessed by ROC

curves. Calibration curves were plotted to investigate the

agreement between the actual operating system and the

operating system predicted by the nomogram.
Statistical analysis

Categorical variables were compared using Pearson’s chi-

square test. To compare the OS of patients between

subgroups, we used the Kaplan-Meier method. The risk

model was constructed using univariate Cox and LASSO

regression analysis. To assess the independent prognostic

value of the risk model, we used univariate and multivariate

Cox regression models. When comparing immune cell

infiltration between the two groups, the Kruskal-Wallis

rank sum test was used. A two-tailed p-value <0.05 was

considered statistically significant. All statistical analyses

were done using R software (v4.2.1).
Results

Consensus clustering identified two ICD-
associated subtypes

Based on Abhishek et al. (26) previously summarized the

extensive literature identifying genes associated with ICD (TNF,

CXCR3, P2RX7, CASP1, NLRP3, IL1B, LY96, CD4, CD8A,

CD8B, PRF1, IFNG, IL17RA, HSP90AA1, EIF2AK3, PIK3CA,

CASP8, ATG5 IL1R1, MYD88, IFNGR1, CALR, TLR4), we

performed protein-protein interaction (PPI) network analysis

using the STRING database to suggests a link between these

ICD-associated gene nodes (Figure 2A). To confirm the

expression of these ICD-related genes in melanoma, we

compared these 23 ICD-related genes that differed between

melanoma and normal samples, with a total of eight genes

significantly different (PRF1, LY96, ILR1, HSP90AA1, CD8A,

CD4, CALR, CXCR3), as shown in Figure 2B. Next, we used

consensus clustering to identify the ICD-related clusters of

SKCM. After k-means clustering, SKCM patients were divided

into two clusters with different expression patterns of the ICD

gene (Figure 2C). The number k of clusters was selected from 2

to 10 (Figure 2D).Overall, C2 showed high expression levels of

ICD-associated genes, indicating a high ICD subtype. In

contrast, the relevant genes showed low expression levels in

the C1 cluster (Figure 2E). Therefore, we defined the C1 cluster

as the ICD-low subtype and the C2 cluster as the ICD-high

subtype. Furthermore, survival analysis showed that the ICD-

high subtype was associated with better overall survival (OS),

while the ICD-low subtype was associated with poorer

OS (Figure 2F).
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Identification of differentially expressed
genes and signaling pathways

We identified key genes and signaling pathways in both

subtypes to understand the molecular mechanisms associated

with prognosis. Melanoma patients were divided into two

subgroups, ICD-high and ICD-low, based on ICD gene

expression. A total of 111 genes were significantly differentially

expressed between ICD-high and ICD-low(p<0.05). There were

30 differential genes with | fold change|>1. Of these, 28 genes

were down-regulated such as (KRT14, KRT17, S100A7, KRT16,

KRT6A, KRT6B, KRT6C, KRT5, SPRR1B, PI3, S100A2,

S100A14, SFN, KRTDAP, SBSN, IVL, SPRR1A, LGALS7B,

CALML5, CALML3, SPRR2E, SLPI, SPRR2A, S100A8, KRT1,

SPRR2G, S100A9, GJB2), and 2 genes were upregulated (IGHM,

IGHV4-39) (Figure 3A). The main signaling pathways involved

in melanoma are a number of cell death and immune response

related pathways with varying levels of gene enrichment, such as
Frontiers in Oncology 05
the RAS signaling pathway, KRAS-related pathway, chemokine

signaling pathway, B-cell receptor signaling pathway, primary

immunodeficiency, interaction of viral proteins with cytokines

and their receptors, T-cell receptor complex, and estrogen

response (Figures 3B–E).

ICD-related genes are highly expressed and enriched for the

function of LEE_DIFFERENTIATING_T_LYMPHOCYTE、

PU JANA_ATM_PCC_NETWORK、REACTOME

_SIGNALING_BY_THE_B_CELL_RECEPTOR_BCR、

ZHENG_BOUND_BY_FOXP3, low expression enrichment

f u n c t i o n f o r J A E G E R _ M E T A S T A S I S _ D N、

REACTOME_DEVELOPMENTAL_BIOLOGY、REACTOME

_FORMATION_OF_THE_CORNIFIED_ENVELOPE、

SMID_BREAST_CANCER_BASAL_UP.The high expression

group was shown to be mainly associated with the stage of T-

lymphocyte differentiation, mutation of the HMMR locus,

signalling of the B-cell receptor, and regulation of CD4+ T-cell

subsets by the transcription factor Foxp3, while the low expression
A B

D

E F

C

FIGURE 2

Identification of ICD-associated subtypes by consensus clustering. (A) Protein interactions between ICD-associated genes; (B) heat map
showing the expression profiles of 23 ICD genes in normal and SKCM samples from the TCGA database; (C) heat map depicting the consensus
clustering solution (k = 2) for 23 genes in 467 SKCM samples; (D) d-area curves of the shared clusters representing the cumulative distribution
function from k = 2 to 10 (CDF) curves under the relative change in the area; (E) Heat map of the expression of 23 ICD-related genes in
different subtypes. Red represents high expression, and blue represents low expression; (F) Kaplan-Meier curves for ICD high subtype and ICD
low subtype OS. p < 0.0001).
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group was mainly associated with the molecular mechanisms of

progression and metastasis of malignant melanoma (Figure 3F).
Somatic cell mutations and the tumor
microenvironment

There were different somatic mutation profiles in the high

and low ICD subtypes in SKCM. TTN, MUC16, BRAF and

DNAH5 had the highest mutation frequencies. They were

71%, 66%, 51%, 50% in the low ICD subtype and 73%, 68%,

50%, 49% in the high ICD subtype. the high ICD subtype

tumor mutation burden (TMB) was slightly higher.

(Figures 4A, B). To reveal genetic variation in ICD subtypes,

we plotted K-M survival curves based on TMB levels,
Frontiers in Oncology 06
indicating longer OS in the high TMB group (p = 0.01,

Figure 4C). We divided the patients into four subgroups

based on the median ICD subtype and TMB, as shown in

Figure 4D, with the longest OS in the high TMB value and high

ICD subgroups, and the shortest OS in the low TMB value and

low ICD subgroups (p < 0.001).

There is growing evidence that ICDs strongly influence the

activation of specific antitumor immune responses. In the present

study, we analyzed the composit ion of the tumor

microenvironment between the two subtypes. Overall, the high

ICD subtype had higher immune scores and lower tumor purity

than the low ICD subtype (Figures 5A, B). Figure 5C demonstrates

the percentage of immune infiltrating cells in each sample from

SKCM patients. Next, we assessed the correlation between gene

expression and infiltration of 22 immune cells by collecting 467
A

B

D

E

F

C

FIGURE 3

Identify differentially expressed genes (DEGs) and potential signaling pathways in different subtypes. (A) Volcano plot showing the quantitative
distribution of DEGs between ICD-high and ICD-low subtypes in the TCGA cohortlog2-fold change in threshold > 1 and p < 0.05 (B–E) Bubble
plots showing enrichment analysis of KEGG and GO signaling pathways. The size of the dots represents gene counts, and the color of the dots
represents -log10(p adjust-value); (F) GSEA analysis identifies potential signaling pathways between ICD high and ICD low subtypes.
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samples from TCGA using the CIBERSORT method in

combination with the LM22 marker matrix. We found

significant differences in naive B cells, plasma cells, CD8 T cells,

resting CD4 T memory cells, activated CD4 T cells, helper T cells,

regulatory T cells, resting NK cells, activated NK cells,

macrophages M0, M1, M2 activated myeloid dendritic cells and

eosinophils. Of these, CD8 T cells, B-cell plasma, activated CD4 T

memory cells, helper T cells, and regulatory T cells were

significantly upregulated, whereas they were significantly

downregulated in macrophages M0 and M2 (Figure 5D). In

addition, ICD high subtypes were upregulated in 12 common

immune checkpoints, and the opposite was true for ICD low

subtypes (Figure 5E). These results suggest that these ICD-related

genes are more closely associated with immunotherapy.
Frontiers in Oncology 07
Construction and verification of ICD
risk signatures

We then developed a prognostic model predicated on ICD-

related genes. 17 ICD-related genes were found to be significantly

associated with patient OS by Cox univariate analysis (Figure 6A).

Seven differential genes (CD8A, PRF1, IFNG, EIF2AK3, CASP8,

ATG5, TLR4) were detected and selected as predictive models in

LASSO regression analysis We determined the optimal penalty

parameter lambda and calculated the corresponding coefficient

criterion based on the minimum criterion through 1,000-

fold cross-validation. (Figures 6B, C). Therefore, a risk

prediction model for seven ICD-related genes was constructed.

riskScore=(-0.129496376834374)*CD8A+(-0.0034750461455518)
A

B

DC

FIGURE 4

Correlation of different ICD subtypes with somatic mutations. Oncoprint visualizes the ten most frequently mutated genes in the ICD-low
subtype (A) and the ICD-high subtype (B). Kaplan-Meier curves for the high TMB and low TMB groups (C).Kaplan-Meier curve stratification of
patients according to TMB and ICD genetic characteristics (D).
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*PRF1+(-0.0113364597991046)*IFNG+(-0.129296018992947)

*EIF2AK3+(- 0.154479588206008)*CASP8+(-0.0312

155447535074)*ATG5+(-0.00138961924731843)*TLR4.

Calculate the risk score for each patient. Based on the median risk

score, 453 SKCM patients were divided into high-risk group

(n=226) and low-risk group (n=227). Low-risk group with low

risk score and vice versa. Risk score distribution and survival

status show more surviving states in the low-risk cohort than in

the high-risk cohort (Figure 6D).

The importance of this risk profile in SKCM was further

determined using KM analysis. The TCGA cohort found a

significant difference between high-risk scores corresponding

to poorer OS, which was further corroborated by comparable

results in the GEO cohort (Figures 6E, F). Mortality was

significantly higher (p=0.00029) for patients in the high-risk

group compared to the low-risk group by Wilcoxon

statistics (Figure 6G).
The Association of ICD risk signature
with tumor microenvironment

Given the essential biological role of ICD in the anti-tumor

immune response, we confirmed the association between ICD

risk scores and the tumor microenvironment in 467melanoma
Frontiers in Oncology 08
patients by Spearman correlation analysis. We verified that

patients with higher risk scores were negatively associated with

memory B cells, CD8, Tregs cells, helper T cells, activated CD4

memory cells, and plasma cells (Figure 7A). We then used TIDE

to assess the predictive value of ICD risk characteristics for the

potential clinical efficacy of immunotherapy. The results showed

that the ICD risk score was lower in the immunotherapy-

responsive group, implying that patients with a low ICD risk

score are more suitable for immunotherapy (Figure 7B).
The independent prognostic value of ICD
risk characteristics was assessed using
univariate and multifactorial Cox
analyses

Univariate analysis showed that a high ICD risk score and

stage were significantly associated with poorer OS (Figure 8A).

Multi-factor analysis showed that the ICD risk score could be an

independent prognostic factor for patients with SKCM

(Figure 8B). We then constructed nomogram based on risk

score and stage to examine the probability of survival for 1, 3 and

5-year survivors (Figure 8C). The area values for 1-year, 3-year

and 5-year survival under the ROC curve were 0.72, 0.8 and 0.77,

respectively, indicating accurate discrimination (Figure 8D).
A

B D

E

C

FIGURE 5

Immune landscape of ICD-high and ICD-low subtypes. (A, B) Fractional violin plots showing median and interquartile estimates of each immune
score and tumor purity score; (C) relative proportions of immune infiltration in ICD-high and ICD-low subtypes; (D) Violin plots showing
immune cells that differ significantly between subtypes; (E) box plots indicating differential expression of multiple immune checkpoints. *p <
0.05, **p < 0.01, ***p < 0.001, & ****p < 0.0001.
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Also, calibration curves were plotted to assess the agreement

between the predicted and actual values of OS (Figure 8E).
Discussion

Many preclinical studies have identified the ICD as an

important predictor of effective anti-tumor immunity (11, 27).
Frontiers in Oncology 09
However, it has not yet been fully established as a method for

discovering prognostic biomarkers. Although we know that

higher immune cell infiltration is associated with better

treatment outcomes. But much emerging evidence suggests

that prognostic analysis needs to take into account immune

tumour heterogeneity. abhishek et al. (26) also made some

conflicting observations about the prognostic impact of ICD-

related risk signals. For example, identified immunostimulatory
A
B

D
E

F G

C

FIGURE 6

Construction and validation of risk models. (A) Univariate Cox analysis to assess the prognostic value of ICD genes in terms of OS; (B, C) Lasso
Cox analysis to identify the seven genes most associated with OS in the TCGA dataset; (D) Heat map of the risk score distribution, survival status
and prognostic 7-gene signature for each patient in the TCGA database; (E, F) Kaplan- Meier analysis demonstrating the prognostic significance
of the risk model in the TCGA and GSE65904 cohort; (G) Box plots representing the relationship between patient survival status and risk score.
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factors (e.g. IFNG in lung cancer) are associated with a negative

prognosis, whereas immunosuppressive factors (e.g. FOXP3/

IL10 in ovarian cancer) are associated with a positive

prognosis. Many of the different cancer types do not show the

expected outcomes with their immunotherapy. Immunogenic

death has not been studied in depth in melanoma. In this study,

we clustered all samples into high and low ICD subtypes based

on ICD-related genes in 467 cases. The high ICD subgroup is

associated with a better prognosis and higher levels of immune

cell infiltration than the low ICD subgroup. Some studies have

reported better efficacy of tumor-applied immunosuppression

when suppressor receptors are highly expressed (28), which is

consistent with our findings. Among the different subtypes of

ICD, the frequency of mutations was slightly higher in the high

ICD subtype than in the low subtype group. Previously

published studies have shown that tumor mutation burden

(TMB) is strongly associated with response to ICIS therapy
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(29, 30).TMB reflects the presence of somatic mutant loci in the

tumor genome that contribute to the generation of new antigens

and immunogenicity, leading to T cell responses (31). CD8 T cell

levels in SKCM are positively correlated with neoantigen load,

and tumor types with high mutational load may have better

immunotherapeutic outcomes. However, tumor specificity

makes a difference in outcomes (32), and mutational load and

immunotherapeutic response need further investigation.

The ICD-related genes analyzed were identified by Abhishek

et al. (26) through the Web of Knowledge, Scopeus and PubMed

collections and were studied in vitro and in vivo experiments. In

our analysis, a prognostic risk profile was constructed for these

seven ICD-related genes strongly associated with the prognosis

of SKCM patients, classifying SKCM patients into high- and

low-risk cohorts. For OS, this risk profile showed a high

predictive value and may serve as an independent prognostic

indicator for SKCM patients. At the same time, we elucidated by
A

B

FIGURE 7

Association of ICD risk score with the tumor microenvironment. (A) Scatter plot showing the correlation of risk score with infiltration of CD8,
activated NK cells and activated CD4 memory cells. (B) Plot showing the association of ICD risk score with response to immunotherapy.
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TIDE analysis that risk scores were higher in immunotherapy

non-responders, reinforcing that people with high ICD subtypes

have a better response to immunotherapy.

It has been noted that the oncogenic effects of model genes

and the efficacy of anti-tumor therapy are closely related.

CD8A and EIF2AK3 are essential ICD genes in prognostic

models. It has been reported that in triple-negative breast

cancer (TNBC) patients, the inflammatory DAMP subtype

has the most significant proportion of CD8 T cells and is

associated with the best predictive outcome, that M2-like

macrophages in the suppressor subtype of DAMPs

significantly increase inflammation, and that triple-negative

breast cancers with high CD8A expression benefit from ICI

(33, 34). Xu et al. (33) study also showed that ICD was

significantly enhanced by upregulating CD8A and releasing

HMGB1 in tumor tissues, which resulted in an enhanced role

of immune cells infiltrating the tumor microenvironment after

cancer antigen exposure in the presence of ICD (35, 36). In

contrast, EIF2A3 is eukaryotic translation initiation factor 2a
kinase three. It was demonstrated that eIF2a phosphorylation

constitutes a convenient biomarker to predict cancer cell

immunogenicity in medically induced stress (37). When we

classified SKCM patients into high and low risk based on seven

genes, including CD8A and EIF2AK3, the high-risk group was

associated with a poor prognosis, and the high-risk score could

be for as an independent prognostic indicator for SKCM. This
Frontiers in Oncology 11
suggests an essential value in predicting the prognosis of

SKCM patients.

In conclusion, we have further demonstrated the close

correlation between the high ICD subgroup and the immune

microenvironment through the grouping of high and low ICD

and the risk profile consisting of CD8A, PRF1, IFNG, EIF2AK3,

CASP8, ATG5, TLR4 to further identify relevant biomarkers of

ICD in SKCM, bringing more accurate uti l i ty for

immunotherapy of SKCM.
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