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Abstract

Background: Association mapping is a statistical approach combining phenotypic traits and genetic diversity in natural
populations with the goal of correlating the variation present at phenotypic and allelic levels. It is essential to separate the
true effect of genetic variation from other confounding factors, such as adaptation to different uses and geographical
locations. The rapid availability of large datasets makes it necessary to explore statistical methods that can be
computationally less intensive and more flexible for data exploration.

Methodology/Principal Findings: A core collection of 168 Brassica rapa accessions of different morphotypes and origins was
explored to find genetic association between markers and metabolites: tocopherols, carotenoids, chlorophylls and folate. A widely
used linear model with modifications to account for population structure and kinship was followed for association mapping. In
addition, a machine learning algorithm called Random Forest (RF) was used as a comparison. Comparison of results across
methods resulted in the selection of a set of significant markers as promising candidates for further work. This set of markers
associated to the metabolites can potentially be applied for the selection of genotypes with elevated levels of these metabolites.

Conclusions/Significance: The incorporation of the kinship correction into the association model did not reduce the
number of significantly associated markers. However incorporation of the STRUCTURE correction (Q matrix) in the linear
regression model greatly reduced the number of significantly associated markers. Additionally, our results demonstrate that
RF is an interesting complementary method with added value in association studies in plants, which is illustrated by the
overlap in markers identified using RF and a linear mixed model with correction for kinship and population structure.
Several markers that were selected in RF and in the models with correction for kinship, but not for population structure,
were also identified as QTLs in two bi-parental DH populations.

Citation: Pino Del Carpio D, Basnet RK, De Vos RCH, Maliepaard C, Paulo MJ, et al. (2011) Comparative Methods for Association Studies: A Case Study on
Metabolite Variation in a Brassica rapa Core Collection. PLoS ONE 6(5): e19624. doi:10.1371/journal.pone.0019624

Editor: Pär K. Ingvarsson, University of Umeå, Sweden
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Introduction

In plants association mapping has been developed as a tool to

relate genetic diversity, expressed as allelic polymorphisms, to the

observed phenotypic variation in complex traits without the need

to develop mapping populations. Results obtained with association

mapping methods in various crops indicate that this technique can

be successful in the identification of markers linked to genes and/

or genomic regions associated to a desirable trait [1–6].

However, one of the most important constraints in the use of

association mapping in crop plants is unidentified population

sub-structure, which arises as a result of adaptation, genetic

drift, domestication or selection [3,7]. Spurious associations

due to population structure may lead to false positive

associations, if the cause of the correlation is not tight genetic

linkage between polymorphic locus and the locus involved in the

trait, but disproportional representation of the trait in one

subpopulation [8].

As a consequence, when association mapping is used to identify

genes responsible for quantitative variation in a group of

accessions, there is enough evidence that confounding will be a

significant problem, especially if the trait varies geographically, as

is the case for example of flowering time [3,9,10].

Several methods can be used to infer multiple levels of

relatedness in a population [10,11]. The STRUCTURE program

uses a Bayesian approach to cluster accessions of a collection into
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subpopulations on the basis of multilocus genotype data [12–14].

Designed statistical tests using PCA have also been used to check

the existence of population structure in a data set and monitor the

number of significant principal component axes [15–17]. Similar-

ly, kinship coefficients approximate identity by descent between

pairs of accessions. In several association studies information about

population structure and/or kinship has been included into the

general linear regression and mixed linear models [6,10,12,18].

Results obtained in some studies suggest that the method that

accounts both for subpopulations and kinship (also called the ‘‘QK

method’’) is the most appropriate for association mapping [10]. A

different statistical approach, which carries one or more

advantages above most other methods, is the Random Forest

[19]. This is a tree-based method, that has been used for marker

trait associations with human disease data, because it allows the

ranking and selection among very large sets of predictor variables

(markers) that best explain the phenotype [20,21]. This method is

computationally very fast, scale-free and makes no strong

assumptions about the distribution of the data. For emerging

types of datasets like metabolite profiles, transcript profiles and the

very large SNP datasets that emerge due to the rapid development

of whole genome sequencing technology, it is necessary to consider

and validate association methods that can handle these high

dimensional data sets.

Furthermore, the power to detect epistasis in moderately sized

populations in general is low, while Random Forest can implicitly

use interactions among regressor variables to predict the

phenotype and can help identify multi-locus epistatic interactions

[22,23].

For this study we choose to work with a core collection of 168

Brassica rapa accessions, representing the wide variation in crop

types (hereafter called morphotypes) and geographical origins.

Brassica rapa has been cultivated for many centuries in different

parts of the world, increasing the variation within the species as a

result of breeding. B.rapa is a diploid species which includes

vegetable-, fodder-and oil crops. The leafy vegetables include both

heading types (Chinese cabbage) and non-heading types (among

others Pakchoi, mizuna, mibuna, komatsuna and broccoletti,

consumed for its inflorescenses), the turnips include vegetable and

fodder turnips, and the oil crops include both annual and biannual

crops. Most leafy vegetables, turnips and biannual oil types are

self-incompatible and as a consequence the genebank accessions of

this type are heterogeneous and plants are heterozygous. A smaller

group of Brassica rapa is formed by the sarsons (brown sarson

(Dichotoma), toria (Dichotoma) and yellow sarson (trilocularis)) cha-

racterized by very early flowering and self-compatibility of many

accessions, which results in heterogeneous accessions with merely

homozygous plants [24]. Modern cultivars and breeding lines from

seed companies are homogeneous heterozygous hybrids and

homozygous inbred lines.

In a previous study the genotypic fingerprinting of a large

collection of 160 accessions showed that there is considerable

genotypic variation within the B. rapa gene pool [24]. The

hierarchical cluster analysis revealed that accessions from the same

geographical region (Europe, Asia and India) are more related to

each other genetically than accessions representing similar

morphotypes from different geographical regions. These acces-

sions from the same origin are genetically related possibly because

they share part of their breeding history [24].

Previously, in a collection of 160 B. rapa accessions association

analysis with correction for population structure led to the

identification of 27 AFLP markers, related to the variation in leaf

and seed metabolites as well as morphological traits [6]. In the

present study we consider the genetic association between markers

and tocopherols, carotenoids, chlorophylls and folate in a core

collection of 168 B. rapa accessions of different morphotypes and

origin. We explore the results obtained with association methods

that correct for kinship and population structure which mainly aim

to reduce the rate of false-positive associations, and in addition we

make use of Random Forest for comparison to the commonly used

association methods.

Results

Principal coordinate analysis (PCO) and population
structure of the core collection

The genetic population structure of the core collection of 168

accessions was inferred using 553 markers (AFLP, Myb and SSR

polymorphic bands).

The Bayesian clustering method as implemented in STRUC-

TURE revealed 4 subpopulations. Subpopulation 1 included oil

types of Indian origin, spring oil (SO), yellow sarson (YS) and rapid

cycling (RC) (SO, YS and RC); subpopulation 2 included several

types from Asian origin: pak choi (PC), winter oil, mizuna,

mibuna, komasuna, turnip green, oil rape and Asian turnip

(PC+T); subpopulation 3 included mainly accessions of Chinese

cabbage (CC) and subpopulation 4 included mostly vegetable

turnip (VT), fodder turnip (FT) and broccoletto accessions from

European origin (VT+FT) (Figure 1B).

There was a high level of admixture between the different

subpopulations. Of the 168 accessions, 109 were assigned to a

subpopulation with a membership probability of p.0.70. Fifty-

nine accessions were assigned to more than one subpopulation and

had membership probabilities below 0.7 corresponding to several

subpopulations (Table S1).

The PCO-MC is a method, which couples principal coordinate

analysis to a clustering procedure for the inference of population

structure from multi-locus genotype data. The PCO and

STRUCTURE output produced comparable results. After the

PCO analysis, in the second dimension one small distinct,

statistically significant subpopulation, corresponding to oil types

of Indian origin, could be distinguished. This subpopulation

corresponds to subpopulation 1 (SO, YS and RC) as identified in

STRUCTURE (Figure 1A). In the first dimension, the three

subpopulations as defined in STRUCTURE form three clusters

with overlap. On the right, the cluster of yellow dots corresponds

to accessions in subpopulation 4 (VT and FT from Europe) as

defined in STRUCTURE, and on the left the blue dots represent

the accessions corresponding to subpopulation 3 (CC), while the

green dots represent accessions that correspond to subpopulation 2

(PC and T from Asia). When the top 5 components are calculated,

they together account for 30% of the total variation present in the

core collection. As many principal component loadings would

have been needed to account for the variation within this

collection, we decided to include STRUCTURE output into the

association model to correct for population structure.

In figure 2 we show the frequencies of the different kinship

coefficient classes. The highest frequency was found for values

between 0–0.05 (79.47%) while the second highest frequency was

found for values between 0.05–0.1 (11.21%). These values are

similar to the ones obtained in Brassica napus [25]in which the

kinship calculation indicates a low level of relatedness between the

accessions, with only few accessions being more related to each

other.

Metabolite variation
To estimate the variation within and between the different

B. rapa morphotypes, boxplots were constructed based on the total

Comparative Association Studies in Brassica rapa
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content value per metabolite in each subpopulation as defined by

STRUCTURE (Figure 3). Visual inspection of the box plots and

the least significant differences (LSD) in metabolite content

between subpopulations showed variation in the amount of most

of the carotenoids and folate between these subpopulations.

Conversely, the content of chorophyll b and lutein was significantly

different between few subpopulations and the content of

tocopherols was just significantly different between the Chinese

cabbage (CC) subpopulation 3 compared to the other subpopu-

lations (Table S2).

Association analysis
Using linear and linear mixed models. Because many of

the phenotypic trait values showed a distribution highly correlated

to the underlying population structure it was expected that the

number of significantly associated markers would differ to a large

Figure 1. Principal coordinate analysis (A) and STRUCTURE (B) results. Colors define subpopulations: red (oil: Population 1), green (PC+T:
population 2), blue(CC: population 3) and yellow (VT+FT: population 4).
doi:10.1371/journal.pone.0019624.g001
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extent between different metabolites and between analysis

methods, as shown in Table 1.

To test for marker-trait associations we first applied an

approach that did not include any correction for the level of

relatedness or structure between accessions (model 1). As a result

the number of significantly associated markers to a specific

metabolite after multiple test correction was strongly inflated and

ranged from 2 (for d tocopherol) to 98 (for folate) per metabolite.

The highest numbers of significant markers associated to a trait

(.80) were found for b-carotene, neoxanthin, violaxanthin and

folate; these metabolites also showed the greatest variation in

content between subgroups.

To account for the level of relatedness between individuals we

included the kinship correction (K matrix) in model (3). However,

with the inclusion of this correction the number of significantly

associated markers remained high (2–94). The results of these two

models are highly similar not only in number but also in the

identity of the significant markers for each metabolite.

In addition to the K matrix we introduced the STRUCTURE

Q matrix as a correction. After accounting for population

structure in model (2) the number of significant markers found

per metabolite after a multiple correction step was dramatically

reduced. Only for violaxanthin and folate few markers were

identified. This drop down was as strong for the metabolites with

subpopulation variation (carotenoids and folate) as for the

tocopherols, which showed significant variation only between the

CC subpopulation and the other subpopulations.

When we combined the information from the Q matrix and the

K matrix in the full model (4), following the described approach

[10], the performance is comparable to model (2), which includes

the Q matrix only, in both the obtained number of associations

and the identity of associated markers, except for b-carotene with

five markers identified in model 4.

After correcting for multiple testing in the KQ correction

model, only ten markers remained significantly associated with

metabolites: Alu_M476_0, pTAmCAC_148_3, Hae_M294_2,

pGGmCAA_335_2 and pTAmCAT_312_3 for b-carotene;

Alu_263_6, pTAmCAC_101_7 and pTAmCAC_270_9, Br13

and Br46 for violaxanthin and pGGmCAA_335_2 for folate.

To summarize the results obtained from the full model (4), we

constructed a network with a total of three Myb, five AFLP and

two microsatellite markers significantly associated to the metab-

olites (P,0.05). This network allowed us to connect the

metabolites of similar pathways through markers (Figure 4).

The overlap of significant associated markers between all

the pathways (carotenoids, tocopherols, chlorophylls and folate)

was very limited as expected if we consider that biochemically

different precursors are involved. We found only one marker

(pGGmCAA_335_2) that was significantly associated to folate and

b -carotene.

Random Forest. The number of significantly associated

markers per metabolite ranged from eight for a-tocopherol to 39

for neoxanthin. Interestingly, when compared to the simple model

(1), the number of significant markers obtained with the RF

approach was much lower for all the metabolites except for

d-tocopherol.

Nonetheless, the overlap of significant markers between

methods is large; many of the significant markers found with RF

were also significant with the simple model (1) and with the model

with correction for kinship (3). For example, an overlap between

20% and 30% of significant markers was observed for b-carotene,

neoxanthin, violaxanthin, folate, a-tocopherol and b-tocopherol

(Table 1 and Table S3).

In contrast, when the results obtained with Random Forest are

compared to the results obtained with the full model (4) six out of

the ten markers from this model are included in the Random

Forest output.

In the case of the microsatellite markers the overlap between

significantly associated markers in Random Forest and in model

(1) was high and almost complete for both markers except for those

identified for d-, b- and a-tocopherol. Additionally, one out of two

significant SSR markers from model (4) were found also significant

in the Random Forest output.

Discussion

An important consideration for the use of association mapping

in crop plants is the presence of population structure. If a group of

diverse accessions is chosen for this type of studies the risk exists

that some of the accessions are more closely related to each other

than the average pair of individuals taken at random in a

population [8]. In our study we identified with STRUCTURE the

presence of 4 subpopulations, which showed correlation with the

origin and morphotypes of B. rapa. Results from both principal

coordinate analysis (PCO) and STRUCTURE illustrate the highly

admixed nature of the accessions within this collection. We

decided to use membership probabilities obtained from STRUC-

TURE in the association mapping model to correct for

populations structure, as it is a widely used method. In addition

correction for kinship was included in other models.

In the four models we explored the impact from STRUCTURE

(model 2), kinship coefficients (model 3) or both (model 4) in the

association models.

Correcting for the level of relatedness using the Q matrix from

the STRUCTURE output, resulted in a significant reduction of

the number of marker-trait associations as shown by comparing

model (1) and both models (2) and (4). Although there was always

some overlap between the marker-trait associations identified by

these models, new associations arose with models (2) and (4).

The inclusion of the kinship matrix in models (3) and (4) did not

reduce the number of significant marker-trait associations. This

was most likely due to the fact that kinship values were very low

and the accessions of the core collection showed similar levels of

relatedness. The results from STRUCTURE and the identical

levels of relatedness as observed in K seem to contradict.

Similarities based on the Jaccard measure were also tested in

Figure 2. Distribution of kinship coefficients among 168
accessions of the B. rapa core collection.
doi:10.1371/journal.pone.0019624.g002
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model (3), with the same results as obtained with the similarities

obtained from SPAGeDi.

We tested thereafter both corrections in phenotypic models

identical to models (2) and (3) but without the marker effect, and

compared the resulting residual variance with the ‘‘empty’’

model: trait = error. We found that whereas Q explained the

phenotypic variation by as much as 60% for some traits, the K

matrix did not seem to explain any part of the phenotypic

variation, for all traits. This seems to support earlier evidence that

K alone in some cases may not correct for population structure

[25]. In terms of how these methods performed in reducing the

false positive rate, we observed that metabolites with a

distribution highly correlated to the underlying population

structure, like for example the carotenoids, still retained the

highest number of associated markers in all the statistical models.

As a result, in spite of introducing a correcting term in our models

we still expect some false positives within this list of significant

markers. Even in association studies with Arabidopsis inbred lines

it is difficult to distinguish true associations from false ones

because of confounding by complex genetics and population

structure [26].

In the present study we considered the use of Random Forests

(RF) as a complementary method to our association study. The

performance of this method in association analysis has been

recently tested in Arabidopsis [27]. Within that study the overlap

of RF and Fisher’s exact test was considerable.

In our study we evaluated the RF results in comparison to the

results obtained with the already validated and widely used model

(4) and the simple model (1). One striking result of the RF analysis

is the small number of associated markers that are found for all the

metabolites in comparison to model (1). Random Forests is rather

robust to outliers, as opposed to linear models, making it an

attractive alternative to the traditional linear models. We decided

to evaluate the overlap of RF and the simple model (1), which does

Figure 3. Boxplots of metabolite content variation present in sub-populations. The numbers indicate subpopulation as defined with
STRUCTURE. Oil: Population 1, PC+T: population 2, CC: population 3 and VT+FT: population 4.
doi:10.1371/journal.pone.0019624.g003
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not include any correction, and the full model, which includes the

Q and K matrix correction (4). Seven out of eleven marker-trait

associations found significant after multiple test correction with

model (4) were also found significant with RF, while also many

Random Forest markers were identified with models 1 and 3 (K

correction).

Several markers that are associated with the metabolites studied,

were also identified in QTL studies for the same metabolites in

DH populations derived from crosses between two accessions

(yellow sarson (YS 143) x pakchoi (PC 175) and their reciprocal

cross (Table S3), or map to regions that harbour structural genes in

the metabolic pathway based on Arabidopsis-B. rapa genome

synteny (data not shown). This is a confirmation of the effect of the

marker-trait association and makes these markers important

candidate genes for further study.

For eight of the eleven metabolites analyzed, Random Forest

selected at least one marker that mapped in the QTL interval for

the respective metabolites in the biparental QTL studies. For

several metabolites except the tocopherols, these markers were also

identified in model 1 (no correction) and 3 (kinship correction) but

not in models 2 and 4 (with Q correction).

In these same two doubled haploid populations QTL for lutein

and chlorophyll-a and -b overlap in the region where the marker

pTAmCAC_148_3 is located and identified as significant for b-

carotene by all models. In this genomic region of linkage group

A03 the genes e-cyclase, b-carotene hydroxylase and carotenoid

isomerase are predicted based on synteny with Arabidopsis [28]

and represent potential candidate genes for b-carotene and lutein.

In the case of violaxanthin the marker Alu_263_6 was identified as

associated in model 4 (K and Q correction). Alu_263_6 is 5 cM

apart from the structural gene Phytoene desaturase that we

mapped in the biparental DH population. For most markers

mappositions are not available, however the linked microsatellite

marker Br13 and marker Alu_263_6 on A08, were both associated

to violaxanthin.

In this study we have identified several markers that can be

applied to screen B. rapa collections or breeding populations to

identify genotypes with elevated levels of important metabolites

that are considered as healthy compounds. While further

validation of these markers for marker assisted selection in B. rapa

is needed, at least the eight myb and AFLP markers and two

microsatellites markers found significant with model (4), after

multiple testing correction [29], and also with Random Forest,

plus the markers identified using both Random Forest and the

models (1) and (3) should be considered as likely candidates for

further work.

At present we are in the process of expanding the core collection

so that association mapping within the four subpopulations

becomes feasible and to increase the power of the statistical

analysis. In an attempt to separate true from spurious associations

and/or false negatives in future association studies using the

present core collection we will follow a similar approach, which

takes into account the level of relatedness between individuals (K

and Q) and the use of Random Forest.

Materials and Methods

Plant material
The Brassica rapa core collection included a total of 168

accessions of diverse morphotype and origin (Table S1).

The leafy vegetables, (Chinese cabbage, pakchoi and Japanese

cultivars), neep greens, turnip rape, brocoletto (turnip tops) and

turnip types are mainly self-incompatible and as a consequence the

accessions are heterogeneous and heterozygous. The annual
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yellow sarson oil seed accessions are self-compatible, which results

in homozygous plants. The modern cultivars and breeding lines

from seed companies are homogeneous hybrids and inbred lines.

137 accessions were obtained from the Dutch Crop Genetic

Resources Center (CGN) in Wageningen, the Chinese Academy of

Agricultural Sciences (CAAS)-Institute for Vegetable and Flowers

(IVF) and the CAAS Oil Crop Research Institute (OCRI)

genebanks and the Osborn Lab, while six different breeding

companies (Table S1) provided 31 accessions. For the metabolite

profiling two plants per accession were sown in the greenhouse

(2006) under the following conditions: 16 hours light and

temperature fluctuation between 18 and 21uC. The plants were

distributed over two tables in a randomized design with one plant

per accession on each table. In the 5th week after transplanting the

leaf material (youngest expanded leaves) was harvested per plant.

Upon harvesting, all plant materials were snap-frozen in liquid

nitrogen and ground into a fine powder using an IKA A11 grinder

cooled with liquid nitrogen. Frozen powders were stored at 270uC
until analyses. DNA was extracted from the ground and frozen

material with the DNAeasy kit (Qiagen, USA).

Metabolite analyses
Folate extraction and analysis. From each frozen powder,

0.15 g was weighed and 1.8 ml of Na-acetate buffer containing

1% ascorbic acid and 20 mM DTT, pH 4.7, was added. After

sonication for 5 min and heating at 100uC for 10 min, total folate

content of samples was quantified using a Lactobacillus casei–

based microbiological assay, after enzymatic deconjugation for 4 h

at 37uC pH 4.8, with human plasma as a source of c-glutamyl

hydrolase activity [30]. Each extract was assayed in 4–6 replicates

using different dilutions. The total technical variation of this

analysis was determined using 7 replicate extractions from the

same frozen powder of two different randomly chosen genotypes,

and was 5.5% and 6.9%, respectively.

HPLC analyses of lipid-soluble phytonutrients. Extrac-

tion and analyses of carotenoids, tocopherols and chlorophylls

were performed as described in Bino et al. [31]. In short, 0.5 g of

FW of frozen powder was taken and extracted with methanol-

chloroform-Tris buffer twice, the chloroform fraction was dried

using nitrogen gas and taken up in 1 ml of ethylacetate.

The chromatographic system consisted of a W600 pump system,

a 996 PDA detector and a 2475 fluorescence detector (Waters

Chromatography), and an YMC-Pack reverse-phase C30 column

(25064.6 mm, particle size 5 mm) at 40uC was used to separate the

compounds present in the extracts. Data were analyzed using

Empower Pro software (Waters Chromatography). Quantification

of compounds was based on calibration curves constructed from

respective standards. The total technical variation was between 2

Figure 4. Network of partial correlation between metabolites, and marker-metabolite association under model 4 (KQ correction).
The thicker the line, the stronger the correlation and or association. Shape and color of vertices indicate metabolites and associated markers: b-
carotenoids – round-orange; chlorophylls – triangle-red; folate- diamond-purple; lutein- round-yellow; neoxanthin- diamond-brown; tocopherols-
round-black; violaxanthin- diamond-yellow and associated markers (model-4)- square-green. The allele frequency distribution of each associated
marker according to STRUCTURE sub-populations is illustrated with barplot. Colours in barplots represent different marker alleles. *- indicates markers
that are common between model 4(KQ correction) and RF.
doi:10.1371/journal.pone.0019624.g004
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and 8 percent, depending on compound, as was established using

12 extractions of the same frozen powder from a randomly chosen

genotype.

Genotypic data
The AFLP procedure was performed as described by de Vos

et al.[32]. Total genomic DNA (200 ng) was digested with two

restriction enzymes Pst I and Mse I and ligated to adaptors. Pre

amplifications were performed in 20 ml volume of 1x PCR buffer,

0.2 mM dNTPs, 30 ng of adaptor primer, 0.4 Taq polymerase

and 5 ml of a 10x diluted restriction ligation mix, using 24 cycles of

94uC for 30 s, 56uC for 30 s and 72uC for 60 s. Pre-amplifications

products were used as template for selective amplification with

three primer combinations (P23M48, P23M50 and P21M47).

For the Myb family targeted profiling, total genomic DNA was

digested using the following enzymes per reaction: Hae III, Rsa I,

Alu I and Mse I and ligated to an adaptor. Pre amplifications with

one primer directed to a common myb motif (Dr. Gerard van der

Linden, Wageningen UR Plant Breeding , unpublished results)

and one adaptor primer were performed in 25 ml of 1X PCR

buffer (with 15 Mm MgCl2), 0.2 mM dNTPs, 0.8 pMol Gene

specific primer, 0.8 pMol Adapter primer, U Hotstar Taq

polymerase (Qiagen) and 5 ml of a 10X diluted restriction ligation

mix. Amplification products were used as template for selective

amplification.

AFLP and Myb profiling images were analyzed using Quantar

ProTM software. This marker dataset (359 polymorphic bands) was

scored as present (1) or absent (0) and treated as dominant

markers. A map position could be assigned for 69 markers from

this dataset; these markers were distributed over different positions

in the linkage groups of a doubled haploid population (Pino Del

Carpio, unpublished results).

For microsatellite (SSR) screening, 28 primers were selected for

amplification in the accessions of the core collection. From the

primers 10 were genomic and 18 were new Est based SSRs (Dr.

Ma RongCai, Dr Tang Jifeng (WUR-PBR)). The primers were

selected because of their map position in different maps of B. rapa

and distribution over all the linkage groups (A01–A10) [33].

Microsatellites scores were converted to binary data per observed

allele (194 fragments of defined size) as present (1) or absent (0) and

were also treated as dominant markers.

Assessment of population structure
Marker data (AFLP, Myb, SSR) were used to identify the

different subgroups and admixture within the accessions of the

core collection through a model of Bayesian clustering for inferring

population structure. For the SSRs only the most frequent SSR

allele was taken into account to avoid over representation of the

SSR loci.

A total of 539 markers was included in the analysis, and

ploidy was set to one. The number of subpopulations was

determined using the software STRUCTURE 2.2 (http://

pritch.bsd.uchicago.edu/software), by varying the assumed

number of subpopulations between one and ten, with a total

of 300,000 iterations for Markov Chain Monte Carlo repetitions

and 100,000 burns in.

In addition, we also followed the procedure PCO-MC as

described in [16], to assess population structure. The method uses

principal coordinate analysis (PCO) and clustering methods to

infer subpopulations in a collection of accessions. We chose this

method to complement the analysis performed by STRUCTURE

because it is computationally efficient and model free and has been

shown to be capable of capturing subtle population structure [16].

We used software NTSYS version 2.2 [34] to produce pairwise

distances, among all accessions, based on the Jaccard measure.

Principal coordinates were obtained based on the distance

matrix as described by Reeves and Ritchards [16]. Then the

procedure PROC MODECLUS in SAS 9.1 software (SAS

Institute, Cary, NC) was used to group the accessions into

subpopulations according to kernel density estimates in the PCO

space. Subpopulations were formed by decreasing order of the

kernel densities, starting with the largest estimated kernel density

(by setting method = 6 at PROC MODECLUS). We performed a

test to determine which subpopulations were significantly distinct

from the rest, using PROC MODECLUS, and estimated stability

values for the subpopulations using the PCO MC software.

(http://lamar.colostate.edu/̃reevesp/PCOMC/PCOMC.html)

[16]. The PCO plot of the first two components was drawn in

DARwin software version 5.0.155 [35].

Summary statistics of metabolite variation
Box plots were chosen as a tool to explore the variation of

metabolite concentrations according to different STRUCTURE

subpopulations. One-way ANOVA was performed for each

metabolite to find the mean differences among the four

STRUCTURE subpopulations. Least significant differences

(LSD) were calculated to compare the differences of means of

metabolite content between the four subpopulations obtained with

STRUCTURE. Boxplots, ANOVA and LSD calculations were

performed using R statistical software.

Association analysis
Association analysis was performed in several steps of increasing

complexity; with and without correction for population structure

[10] using TASSEL (www.maizegenetics.net). A total of 243

markers with an allelic frequency higher than 10% was included in

the association analysis. Since AFLP and Myb markers gave

dominant marker scores and TASSEL works with co-dominant

data, within TASSEL we set the ploidy to one to work with

dominant scores as we had done with STRUCTURE. In the case

of the 28 microsatellites all alleles were included within TASSEL

in a different run as codominant markers.

In the first step a ‘‘naı̈ve’’ model was used to associate each

marker to the trait,

trait~markerzerror ð1Þ

This model was fitted by a least squares fixed effects linear model

in TASSEL where the markers are considered as a factor taking

the value 0 (fragment absent) or 1 (fragment present). In this case a

t-test could also have been used to test association since we only

have two classes for the marker. In this ‘‘naı̈ve’’ model population

substructure was not taken into account.

In the second step the vector of cluster memberships Q obtained

from Structure was added as a fixed term to the previous model

trait~markerzQzerror ð2Þ

In the third step we corrected for kinship using a linear mixed

model available in TASSEL. The model can be written as

trait~genotypezmarkerzerror ð3Þ

where random terms are underlined. Genotype is a random factor

with the different genotypes or accessions in the population.

Kinship coefficients were calculated using SPAGeDi [36]. Like for

the calculation of STRUCTURE, for the SSRs only the most
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frequent SSR allele was taken into account to avoid over

representation of the SSR loci. We have VG =s2K; VG is the

variance-covariance matrix of the random genotype effects, K is

the matrix of kinship coefficients and s2 is the additive genetic

variance.

In the fourth and final step we correct for kinship as well as

population structure using a linear mixed model that combines the

information contained in the two previous models. It is also known

as the Q+K method [10].

trait~genotypezQzmarkerzerror ð4Þ

As before, genotype is a random factor, with covariances given by

the kinship matrix K and Q is a fixed term containing the cluster

memberships. The model is similar to that described by Yu et al.

[10] and Malosetti et al. [18]. Here we used the same set of AFLP,

Myb and SSRs data to estimate both K and Q. The percentage of

variation was also implemented in TASSEL and extracted from

the output for further analysis and comparison.

Correction for multiple testing
The p-values resulting from all the models for association

analysis were corrected for multiple testing using a resampling

method as implemented in the R package ‘‘multtest’’ [37].

Random Forest
Random Forest (RF) regression [19] was used in this study to

find markers (among the 243 AFLP and Myb, and 28 SSR marker

set) associated to the tocopherol, carotenoids, flavonoids and folate

metabolites. This method uses a bagging approach by boot-

strapping samples [38] and gives the relative importance of each

marker in the regression of metabolites. In this study, RF was

performed using 5,000 regression trees for each analysis. Each tree

is formed on a bootstrap sample of the individuals (training

dataset), while individuals that are not in the bootstrap sample

(out-of-bag samples = OOB), are used for estimation of the mean

squared error of prediction. Within each regression tree, at each

split of the tree, a random subset of the markers is considered as a

candidate set of markers for a binary split among the set of

individuals. The partitioning of the samples is continued until

homogeneous groups of small number of samples remain.

This procedure is fast and can handle high-dimensional data

(predictor variables .. number of samples). Each tree is fully

grown (unpruned) to obtain low-bias, high variance (before

averaging) and low correlation among trees. Finally, RF averages

are calculated over all the trees and result in low bias and low

variance of predictions of the trait based on the markers used in

the Random Forest [39] . This method has an internal cross-

validation (using the OOB samples) and has only a few tuning

parameters which, if chosen reasonably, do not change results

strongly [38].

The parameter ‘‘mtry’’, which indicates the number of random

variables considered at each splitting node, was optimized by

choosing the ‘‘mtry’’ with the highest percentage of explained

variation among separate RF analyses done on ‘‘mtry’’ values 3, 6,

12, 24, 48 and 96 successively on the same data set. The variance

explained in RF is defined as 1-(Mean square error (MSE) /

Variance of response), where MSE is the sum of squared residuals

on the OOB samples divided by the OOB sample size [40]. The

‘‘mean decrease in MSE’’ (InMSE) was considered to quantify the

importance of each marker. The higher the ‘‘InMSE’’ value of the

marker, the greater the increase in explained variation when it is

included in the model.

In general RF yields only the relative importance of markers

that explain the variation present in metabolites, but does not give

a significance threshold level to select a subset of associated

markers. Therefore, a permutation method was used to calculate

the significance of each marker association in this study [41]. All

the observations of a metabolite (the response in the regression)

were permuted to destroy the association between markers and

metabolite, and RF analyses were repeatedly conducted on the

permuted metabolite data 1000 times. For each metabolite, the

‘‘IncMSE’’ values of each marker from 1000 RF runs on permuted

metabolites were stored, and uses as a ‘‘null distribution’’ of the

IncMSE value to assess the significance threshold of each marker.

Then, the IncMSE values of each marker obtained from RF

analysis on the original unpermuted metabolite data set was

compared to this ‘‘null distribution’’ at 0.05 level of significance to

determine significantly associated markers.

RF regressions of metabolites on markers were conducted using

the ‘‘Random Forest’’ package of the R-software [42].

Network visualization of metabolite and marker
correlation

A network is an extended graph, which contains additional

information on the vertices and edges of the graph [43]. We used

full-order partial correlation coefficients to construct correlation

network of metabolites to remove the correlation between

metabolites due to direct and indirect dependencies on the up-

stream metabolites in the pathway. We included in the network

graph all the markers that were associated to the metabolites after

correction for multiple testing (a= 0.05). Since we are focusing on

the tocopherols, carotenoids and folate pathway, correlation

analysis can give spurious correlation between the metabolites

due to the effect of upstream metabolites of the pathway. Partial

correlation measures only the direct or unique parts of relation

between metabolites controlling the effects of other metabolites of

the pathway [44]. The only significant non-zero pairwise partial

correlation coefficients (a= 0.05) between metabolites were shown

in network. The vertices of the network are the metabolites, in this

case tocopherols, carotenoids, chlorophylls and folate, and

associated markers, whereas the edges correspond to metabolite-

metabolite partial correlations and marker-metabolite association.

For the visualization of the marker-metabolites association, the

P-values obtained from model (4) were transformed into –log10

(P-value). The network was constructed using the Pajek graph

drawing software [45].

Supporting Information

Table S1 Membership probabilities and group assign-
ment of all accessions used in this study based on
STRUCTURE.

(XLSX)

Table S2 LSD result of metabolite variation based on
STRUCTURE subgroups

(XLSX)

Table S3 Overview of associations between markers
and metabolites for all metabolites investigated in this
study across methods with p-values after multiple
testing correction. For mapped markers genetic map positions

are listed. For RF only significant markers are indicated. In the last

column QTL identified in DH populations from crosses between

YS 143 and PC 175 and their reciprocal cross (map presented in

[46]) are listed.

(XLSX)

Comparative Association Studies in Brassica rapa

PLoS ONE | www.plosone.org 9 May 2011 | Volume 6 | Issue 5 | e19624



Acknowledgments

We would like to thank Harry Jonker and Yvonne Birnbaum for their help

in the isoprenoids and folate analyses, and Johan Bucher for his help in the

molecular marker work and greenhouse experiments.

Author Contributions

Conceived and designed the experiments: DPC RKB MJP GB. Performed

the experiments: DPC RKB RCHV. Analyzed the data: DPC RKB MJP

CM. Contributed reagents/materials/analysis tools: DPC RKB MJP

RCHV CM GB. Wrote the paper: DPC RKB GB.

References

1. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, et al.

(2001) Structure of linkage disequilibrium and phenotypic associations in the

maize genome. Proceedings of the National Academy of Sciences 98:
11479–11484.

2. Simko I (2004) One potato, two potato: haplotype association mapping in
autotetraploids. Trends in Plant Science 9: 441–448.

3. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, et al.

(2001) Dwarf8 polymorphisms associate with variation in flowering time. Nature
genetics 28: 286–289.

4. Agrama H, Eizenga G, Yan W (2007) Association mapping of yield and its
components in rice cultivars. Molecular Breeding 19: 341–356.

5. Kraakman A, Martı́nez F, Mussiraliev B, van Eeuwijk F, Niks R (2006) Linkage
Disequilibrium Mapping of Morphological, Resistance, and Other Agronom-

ically Relevant Traits in Modern Spring Barley Cultivars. Molecular Breeding

17: 41–58.
6. Zhao J, Paulo MJ, Jamar D, Lou P, van Eeuwijk F, et al. (2007) Association

mapping of leaf traits, flowering time, and phytate content in Brassica rapa.
Genome 50: 963–973.

7. Wright SI, Gaut BS (2005) Molecular Population Genetics and the Search for

Adaptive Evolution in Plants. Molecular biology and evolution 22: 506–519.
8. Breseghello F, Sorrells ME (2006) Association Analysis as a Strategy for

Improvement of Quantitative Traits in Plants. Crop Science 46: 1323–1330.
9. Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, et al. (2005) Genome-Wide

Association Mapping in Arabidopsis Identifies Previously Known Flowering
Time and Pathogen Resistance Genes. PLoS Genet 1: e60.

10. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, et al. (2006) A unified

mixed-model method for association mapping that accounts for multiple levels of
relatedness. Nat Genet 38: 203–208.

11. Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding
coefficients. Genetics Research 67: 175–185.

12. Pritchard JK, Stephens M, Donnelly P (2000) Inference of Population Structure

Using Multilocus Genotype Data. Genetics 155: 945–959.
13. Falush D, Stephens M, Pritchard JK (2003) Inference of Population Structure

Using Multilocus Genotype Data: Linked Loci and Correlated Allele
Frequencies. Genetics 164: 1567–1587.

14. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure

using multilocus genotype data: dominant markers and null alleles. Molecular
Ecology Notes 7: 574–578.

15. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, et al. (2006)
Principal components analysis corrects for stratification in genome-wide

association studies. Nat Genet 38: 904–909.
16. Reeves PA, Richards CM (2009) Accurate Inference of Subtle Population

Structure (and Other Genetic Discontinuities) Using Principal Coordinates.

PLoS ONE 4: e4269.
17. Patterson N, Price AL, Reich D (2006) Population Structure and Eigenanalysis.

PLoS Genet 2: e190.
18. Malosetti M, van der Linden CG, Vosman B, van Eeuwijk FA (2007) A Mixed-

Model Approach to Association Mapping Using Pedigree Information With an

Illustration of Resistance to Phytophthora infestans in Potato. Genetics 175:
879–889.

19. Breiman L (2001) Random Forest. Machine Learning 45: 5–32.
20. Lunetta K, Hayward LB, Segal J, Van Eerdewegh P (2004) Screening large-scale

association study data: exploiting interactions using Random Forest. BMC
Genetics 5: 32.

21. Ye Y, Zhong X, Zhang H (2005) A genome-wide tree- and forest-based

association analysis of comorbidity of alcoholism and smoking. BMC Genetics 6:
S135.

22. Jiang R, Tang W, Wu X, Fu W (2009) A Random Forest approach to the
detection of epistatic interactions in case-control studies. BMC Bioinformatics

10: S65.

23. Chen X, Liu C-T, Zhang M, Zhang H (2007) A Forest-Based Approach to
Identifying Gene and Gene-Gene Interactions. Proceedings of the National

Academy of Sciences of the United States of America 104: 19199–19203.
24. Zhao J, Wang X, Deng B, Lou P, Wu J, et al. (2005) Genetic relationships within

Brassica rapa as inferred from AFLP fingerprints. TAG Theoretical and Applied
Genetics 110: 1301–1314.
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