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Our previous studies using Bax knockout (Bax-KO) mice, in which newly generated
granule cells continue to accumulate, disrupting neural circuitry specifically in the dentate
gyrus (DG), suggest the involvement of the DG in binding the internally-generated spatial
map with sensory information on external landmarks (spatial map-object association) in
forming a distinct spatial context for each environment. In order to test whether the DG
is also involved in binding the internal spatial map with sensory information on external
events (spatial map-event association), we tested the behavior of Bax-KO mice in a
delayed-non-match-to-place task. Performance of Bax-KO mice was indistinguishable
from that of wild-type mice as long as there was no interruption during the delay
period (tested up to 5 min), suggesting that on-line maintenance of working memory
is intact in Bax-KO mice. However, Bax-KO mice showed profound performance deficits
when they were removed from the maze during the delay period (interruption condition)
with a sufficiently long (65 s) delay, suggesting that episodic memory was impaired
in Bax-KO mice. Together with previous findings, these results suggest the role of
the DG in binding spatial information derived from dead reckoning and nonspatial
information, such as external objects and events, in the process of encoding episodic
memory.
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Introduction

Hippocampus plays an essential role in encoding episodic (or episodic-like) memory
(Scoville and Milner, 1957; Nadel and Moscovitch, 1997; Eichenbaum et al., 1999;
Squire et al., 2004), which is the memory of a specific past event that occurred at
a particular time and place (Morris, 2001; Clayton et al., 2001; Dere et al., 2006;
Ferbinteanu et al., 2006; Eacott and Easton, 2010; Eichenbaum et al., 2012). Hippocampal
neurons in rodents show strong location-specific discharges (O’Keefe and Dostrovsky,
1971; Jung and McNaughton, 1993), indicating that allocentric spatial information is
represented in the hippocampus. Hippocampal neuronal activity is also modulated by
various nonspatial factors, such as odor (Wood et al., 1999; Deshmukh and Bhalla, 2003),
navigation mode (Song et al., 2005; Ravassard et al., 2013), reward (Kobayashi et al.,
1997; Hölscher et al., 2003; Smith and Mizumori, 2006), punishment (Segal et al., 1972;
Berger et al., 1976; McEchron and Disterhoft, 1997; Múnera et al., 2001; Moita et al.,
2003, 2004), value (Lee et al., 2012a), movement trajectory (Frank et al., 2000; Wood et al., 2000),
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history of past choices and outcomes (Eichenbaum et al.,
1987; Lee et al., 2012a), and elapsed time (Itskov et al., 2011;
MacDonald et al., 2011; Naya and Suzuki, 2011), indicating that
the hippocampus conjunctively conveys spatial and nonspatial
information that are building blocks of episodic memory.

Although the hippocampal role in encoding episodic
memory is well established, it is unclear how spatial and
nonspatial information are integrated in the hippocampus.
Entorhinal cortex (EC), which consists of medial and lateral
divisions, provides major inputs to the hippocampus (van
Strien et al., 2009). Characteristics of grid cells found in
the medial EC (Hafting et al., 2005; Sargolini et al., 2006)
suggest representation of the internally-generated spatial map
(i.e., spatial map generated by dead reckoning) in this brain
structure (Leutgeb et al., 2005; O’Keefe and Burgess, 2005;
Fuhs and Touretzky, 2006; McNaughton et al., 2006; Witter
and Moser, 2006; Gorchetchnikov and Grossberg, 2007). By
contrast, neurons in the lateral EC show little spatially-
selective, but object-dependent firing (Hargreaves et al., 2005;
Yoganarasimha et al., 2011), suggesting segregation of spatial
and nonspatial information processing in the medial and
lateral EC, respectively (Knierim et al., 2006; Eichenbaum
et al., 2007; Kerr et al., 2007; Deshmukh and Knierim, 2011).
Because inputs from the medial and lateral EC converge
in the dentate gyrus (DG) and CA3, it has been proposed
that the internally-generated spatial map is associated with
external landmarks in the DG-CA3 network, forming a
distinct spatial context for each environment (Redish and
Touretzky, 1997; Hafting et al., 2005; O’Keefe and Burgess,
2005; Knierim et al., 2006, 2014; Witter and Moser, 2006;
Gorchetchnikov and Grossberg, 2007; Leutgeb and Leutgeb,
2007).

In this regard, we have shown previously that hippocampal
spatial firing is dissociated from external landmarks in Bax
knockout (Bax-KO) mice (Lee et al., 2009, 2012b), in which
newly generated granule cells continue to accumulate, disrupting
neural circuitry specifically in the DG (Sun et al., 2004; Kim
et al., 2009). Behaviorally, Bax-KO mice were impaired in
finding a target location based on visual landmarks when
target locations predicted by dead reckoning and visual
landmarks were made incongruent (Lee et al., 2009). These
results suggest the involvement of the DG in binding the
animal’s internal spatial map with the sensory information on
external landmarks in forming a distinct spatial context for
each environment. However, considering that the EC provides
major cortical inputs to the hippocampus (van Strien et al.,
2009), it is likely that the DG plays a more general role in
encoding episodic memory than merely forming a distinct
spatial context for each environment (Kesner, 2007). In the
present study, we examined whether intact DG is necessary
for remembering ‘‘what happened where’’ (i.e., spatial map-
event association) in addition to remembering ‘‘what is where’’
(i.e., spatial map-object association) using a delayed-non-
match-to-place task. We obtained results that are consistent
with a general role of the DG in binding spatial and
nonspatial information in the process of forming episodic
memory.

Materials and Methods

Subjects
Five Bax-KO mice and five wild-type littermates (C57BL/6J
genetic background) were used in the present study.
Homozygous Bax-KO and wild-type littermate mice were
obtained by crossing heterozygous males and females as
previously described (Sun et al., 2004). All animals were water-
deprived with free access to food (maintained >80% of ad
libitum body weight) and handled extensively before behavioral
training began. They were maintained at a 12-h light/dark
cycle and performed the behavioral task in the dark phase. The
experimental protocol was approved by the Institutional Animal
Care and Use Committee of the College of Medicine, Korea
University.

Behavioral Task
The animals were tested in a delayed-non-match-to-place task
in an open eight-arm radial maze (central platform, diameter:
20 cm; arms, length: 35 cm, width: 5 cm; height of walls along
the arms: 20 cm) that was placed near one corner of the testing
room (3 × 4 m) containing rich visual cues. A trial began
by placing an animal at the central platform and opening the
door of a randomly chosen arm (sample arm) with all of the
other doors closed. The animal was rewarded with 15 µl of
water at the end of the sample arm (sample phase). The door
of the sample arm was closed when the animal came back to
the central platform, which marked the beginning of a delay
period. The animal was either allowed to stay in the maze during
the delay period (no interruption condition) or placed in its
home cage (located ∼50 cm away from the maze; the same
location throughout the experiment), and then placed back on
the central platform immediately before the end of the delay
period (interruption condition). The doors of the sample arm
and a randomly-chosen adjacent arm were open at the end of
the delay period (test phase; Figure 1). The animal was rewarded
with 15 µl of water by visiting an arm other than the sample arm.
Each daily session consisted of a total of six trials with 2 min
inter-trial intervals.

Statistical Analysis
Two-way ANOVA (repeated measure), linear regression
analysis, and Student’s t-tests (two-tailed) were used for
statistical comparisons of the animal’s performance. A p value
< 0.05 was used as the criterion for a significant statistical
difference. All data are expressed as mean ± S.E.M.

Results

The animals were initially trained with a 15 s delay under
the interruption condition (i.e., they were removed from
the maze during the delay period; phase 1 training). The
number of correct choices gradually increased over 6 days
of training in wild-type littermates (linear regression analysis,
slope = 0.429, t-test, p = 4.9 × 10−4), but not Bax-
KO mice (slope = −0.051, p = 0.616; Figure 2A). Two-
way ANOVA indicated a trend for significant group × day
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FIGURE 1 | Behavioral task. The animals were tested in a delayed
non-match-to-place task in an eight-arm radial maze. They were forced to visit
one of the eight arms (sample phase) that was presented with a
randomly-chosen adjacent arm (test phase) with a delay. The animals either
remained in the maze (no interruption condition) or were removed from the
maze (interruption condition) during the delay period.

interaction (main effects of the animal group: F(1,8) = 3.411,
p = 0.102; training day: F(5,40) = 1.706, p = 0.155; group ×

day interaction: F(5,40) = 2.392, p = 0.055), and post hoc
Bonferroni comparison indicated significant differences between
wild-type and Bax-KO mice on days five (p = 0.035) and six
(p = 0.004).

When the delay duration was reduced to 2 s with no
interruption (i.e., the animals were allowed to stay in the
maze; phase 2 training), both groups performed well. As the
delay duration increased to 15 s and then to 5 min, Bax-KO
mice performed comparably to the control group (2 s delay:
t(8) = 0.447, p = 0.667; 15 s delay: t(8) = 0.756, p = 0.471;
5 min delay: t(8) = 0.258, p = 0.803), although the level
of performance dropped progressively as the delay duration
increased (Figure 2B). These results show that Bax-KO mice, as
long as there was no interruption, could retain working memory
of a previously visited location for a relatively long period of
time.

When the animals were re-trained with a 15 s delay with the
removal from the maze during the delay (interruption condition;
phase 3 training), both wild-type littermates and Bax-KO mice
showed significant enhancement of behavioral performance (the
number of correct choices) over 7 days of training (linear
regression analysis, wild-type littermates, slope = 0.207, t-test,
p = 0.026; Bax-KO mice, slope = 0.200, p = 0.046). Two-way
ANOVA also indicated a significant main effect of training
day (F(6,48) = 5.140, p = 3.8 × 10−4) without a significant
main effect of animal group (F(1,8) = 0.371, p = 0.559) or
group × day interaction (F(6,48) = 0.961, p = 0.462; Figure 2C).
These results suggest that the initial learning deficit of Bax-
KO mice was likely due to a problem in representing the
relationship between actions and outcomes or learning a task
rule.

FIGURE 2 | Behavioral performance. The animals went through four
different phases of training during 20 days. Shown are mean numbers of
correct choices per daily session (out of a total of six trials per daily session)
during phase 1 (A, interruption condition, delay duration = 15 s, days 1–6),
phase 2 (B, no interruption condition, delay duration = 2, 15 and 300 s, days
7–9), phase 3 (C, interruption condition, delay duration = 15 s, days 10–16),
and phase 4 training (D, interruption condition, delay duration = 35 and 65 s,
days 17–20). On day 20 (the last day of training) the animals were tested with
two opposite arms (indicated as 180◦) instead of two adjacent arms. *,
significant difference between animal groups (p < 0.05).

This pattern persisted up to 35 s delay (phase 4 training;
comparison between Bax-KO and wild-type mice, day 17,
t(8) = 0.343, p = 0.740, Figure 2D). However, as the delay
duration increased to 65 s (animals removed from the maze),
the performance of Bax-KO mice was dramatically impaired
compared to the wild-type littermates (day 18, t(8) = 4.025,
p = 0.004; day 19, t(8) = 2.646, p = 0.029, Figure 2D). The
impairment at 65 s delay persisted even when the correct arm
was the opposite of the sample arm, instead of an adjacent arm
(day 20, t(8) = 2.887, p = 0.020, Figure 2D).

Discussion

We have shown previously that spatial firing of hippocampal
neurons in Bax-KO mice was dissociated from an external
landmark, and that Bax-KO mice followed dead reckoning
instead of landmarks when there was a mismatch between
dead reckoning- and landmark-based prediction of a goal
location (Lee et al., 2009, 2012b). These results provide empirical
evidence for the involvement of the DG in aligning the
internally-generated spatial map to external landmarks. The
present study shows that Bax-KO mice are impaired not only
in using external sensory stimuli, but also in remembering a
previously visited location in navigating toward a rewarding
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location. Performance of Bax-KO mice was intact even with
a long (up to 5 min) delay, as long as there was no
interruption during the delay. However, Bax-KO mice were
profoundly impaired when the delay was sufficiently long
(65 s) and there was an interruption during the delay,
suggesting that the nature of the deficit is not the inability
to hold information on-line as working memory, but more
likely to be impaired episodic memory. These results suggest
a broader role of the DG in associating spatial (‘‘where’’)
and nonspatial information (objects and events; information
on ‘‘what’’) that are required for encoding episodic memory
(Figure 3). A recent study that created false fear memory by
activating neutral context-associated DG neurons during fear
conditioning in a different context (Ramirez et al., 2013) is
also consistent with the role of the DG in binding spatial
and nonspatial information. In addition, context learning is
correlated with synaptic plasticity in the EC-DG pathway,
which has a different time course from synaptic plasticity in
intrahippocampal circuits during associative learning (Gruart
et al., 2014; Carretero-Guillén et al., 2015). Future studies should
investigate whether the DG is generally involved in binding
spatial and nonspatial information across different experimental
settings.

A previous study tested the behavioral performance of mice
lacking an N-methyl-D-aspartate (NMDA) receptor subunit in
the DG in a six-arm radial maze (Niewoehner et al., 2007).
In this study, three arms were always baited, and the other
three were never baited. Thus, the animals had to remember
which three arms to visit to obtain rewards (spatial reference
memory). In addition, in each trial, the animals had to remember
which arm to visit next (spatial working memory). On the one
hand, the NMDA-receptor mutant mice showed intact reference
memory, which is consistent with our previous findings that
Bax-KO mice showed intact performance in spatial reference
memory tasks as long as there was no mismatch between dead
reckoning and visual landmarks (Lee et al., 2009). On the
other hand, the NMDA-receptor mutant mice were impaired
in the working memory component of the task. It is difficult

FIGURE 3 | A model for the role of the dentate gyrus (DG) in binding
spatial and nonspatial information in encoding episodic memory. The
schematic diagram shows simplified functional connections between the
entorhinal cortex (EC) and DG. The DG receives converging inputs from the
medial and lateral EC. The medial EC carries spatial information derived from
dead reckoning (internally-generated spatial map), and the lateral EC carries
nonspatial information (sensory information on external objects and events).
The two streams of information are combined in the DG in the process of
encoding episodic memory.

to directly compare this result with ours because the task
structures are different. It is worth noting, however, that this
task is similar to the interruption condition of our task in
that the mice had to remember multiple visited locations with
intervening behavior. Previous studies have also shown that the
hippocampus is required for intact performance in multiple-
location spatial working memory tasks (Olton et al., 1979;
Murray et al., 2011). Thus, neural processes supporting on-
line working memory, such as persistent neural activity (Fuster
and Alexander, 1971; Kubota and Niki, 1971; Funahashi et al.,
1989), might be insufficient to keep track of multiple locations
that the animal has visited. Instead, it is more likely that
the episodic memory function of the hippocampus is required
to solve the three-arm working memory task. Although there
exists uncertainty regarding the nature of impaired neural
processes underlying impaired performance in a spatial working
memory task, these and our results are in line with the
requirement of the DG in forming memories of ‘‘what happened
where’’.

Because the medial and lateral EC send converging
projections to the DG and CA3, it has been proposed that
spatial and nonspatial information are combined in the DG-CA3
network (Redish and Touretzky, 1997; Hafting et al., 2005;
O’Keefe and Burgess, 2005; Knierim et al., 2006; Witter and
Moser, 2006; Gorchetchnikov and Grossberg, 2007; Kesner,
2007; Leutgeb and Leutgeb, 2007). Previous DG-manipulation
studies (Lee et al., 2009, 2012b; Dees and Kesner, 2013; Morris
et al., 2013) and the current study are consistent with this
proposal. However, a recent study (Tang et al., 2014) has
raised the possibility that layer II grid cells in the medial EC
might be pyramidal neurons that do not project to DG/CA3,
but rather project to CA1 (Kitamura et al., 2014). If this
is the case, then the DG might have no access to the dead
reckoning map. Contrary to this possibility, however, an in
vivo intracellular recording study in mice engaged in a virtual
navigation task has shown grid cell activity in both stellate
and pyramidal cells in the medial EC layer II (Domnisoru
et al., 2013). Moreover, a neural network simulation study
has shown that physiological properties and connectivity of
stellate cells can give rise to stable grid firing (Tamamaki and
Nojyo, 1993; Couey et al., 2013). Clearly, additional studies
are needed to clarify what type of information is provided
from the EC to the DG and CA3. Nevertheless, previous
empirical studies (Lee et al., 2009, 2012b; Dees and Kesner,
2013; Morris et al., 2013) and the current one provide evidence
for a role of the DG in combining spatial and nonspatial
information. Underlying neural mechanisms could be very
different, however, depending on whether or not grid cells
project to the DG.

A number of candidate functions have been proposed for
the DG, and ‘‘pattern separation’’ in particular has garnered
much attention, as well as empirical support (Kesner, 2007;
Treves et al., 2008). In the present study, however, performance
of Bax-KO mice was impaired at a 65 s delay even when
the correct arm was the opposite of the sample arm, instead
of an adjacent one, suggesting that behavioral impairment of
Bax-KO mice was not due to reduced capability for spatial
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pattern separation (Gilbert et al., 2001; McHugh et al., 2007;
Neunuebel and Knierim, 2014). It is worth noting that binding
of spatial and nonspatial information and pattern separation
are not incompatible functions of the DG. Pattern separation
can also be achieved (or facilitated, at least) by conjunctive
spatial and nonspatial coding (Kesner, 2007; Morris et al., 2013).
Formation of a detailed spatial map of an environment and
associating important events/objects with the map will allow
fine discrimination of spatial locations where important events
took place. In this regard, behavioral studies demonstrating
impaired spatial discrimination following DG manipulation
(Gilbert et al., 2001; Morris et al., 2012) might as well be
explained by impaired spatial-nonspatial conjunctive coding.
Likewise, impaired discrimination of similar contexts following
DG manipulation (McHugh et al., 2007; Eadie et al., 2012) might
also be explained by impaired spatial-nonspatial conjunctive
coding. It would be difficult to discriminate two similar contexts
solely based on nonspatial cues. Adding additional information
that two contexts are located at two different places, which can be
achieved by incorporating dead reckoning information in normal
animals, might facilitate discrimination of two similar contexts.
It remains to be determined whether the pattern separation
function of the DG is a natural outcome of spatial-nonspatial
conjunctive coding or represents a separate neural process.

It should be noted that we cannot completely rule out other
deficits than impaired place-event association as the source for
impaired performance of Bax-KO mice in the present task. Bax-
KO mice might be impaired in remembering the temporal order
of visited arms rather than place-event association. Because the
animals were tested multiple times (20 days of training; six
trials per day; total 120 trials per animal), they visited all arms
multiple times over 20 days of training. If Bax-KO mice were
impaired in discriminating between the time that a sample arm
was visited (the arm visited in the current trial) and the time that
an adjacent arm was visited (the arm that was visited a day ago,
for example), then both will be recognized simply as previously
visited arms. Although we cannot rule out this possibility, the
finding that the hippocampus is not necessary for familiarity-
based discrimination (Eichenbaum et al., 2007; Squire et al.,
2007) argues against this possibility. Another possibility is that
Bax-KO mice were impaired in processing spatial information
(information on ‘‘where’’) rather than place-event association.
This is not likely, either, because the performance of Bax-KO
mice was as good as that of wild-type mice in the Morris
water maze task as long as goal locations predicted by dead

reckoning and landmarks were congruent (Lee et al., 2009).
Moreover, DG granule cells in Bax-KO mice showed location-
specific discharges, albeit with lower spatial selectivity (Lee
et al., 2009), indicating that the DG of Bax-KO mice represents
spatial information. In addition, that Bax-KOmice were similarly
impaired in the current task even when the correct arm was
the opposite of the sample arm (day 20) also argues against
impaired spatial information processing as the underlying cause
for impaired performance of Bax-KO mice in the current task.
As another possibility, the DGmight process ‘‘what’’ information
separately from spatial information in normal animals (with
spatial-nonspatial conjunction occurring elsewhere, such as in
CA3) and, in Bax-KO mice, ‘‘what’’ information may not be
maintained when the delay is long (65 s) with an interruption.
Although we cannot rule out this possibility, converging inputs
from the lateral and medial EC to individual granule cells
(Knierim et al., 2014; Moser et al., 2014) suggest that diverse
types of information are integrated rather than processed
separately in the DG. This possibility can be rejected if granule
cells are found to concurrently code spatial and nonspatial
information, as CA1 cells do (Wood et al., 1999; Frank et al.,
2000; Ferbinteanu and Shapiro, 2003), which remains to be
determined. Finally, we cannot rule out the possibility that
the DG might be involved in transforming working memory
into long-term memory regardless of its content (spatial or
nonspatial of information). Information that exceeds working
memory capacity might be stored temporarily in the DG before
it is stored as a long-term memory, which remains to be
tested.
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