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Abstract: The preparation of metal–ceramic layered composites remains a challenge due to the
incompatibilities of the materials at the high temperatures of the co-firing process. For densification,
the ceramic thick-film materials must be subjected to high-temperature annealing (usually above
900 ◦C), which can increase the production costs and limit the use of substrate or co-sintering
materials with a low oxidation resistance and a low melting point, such as metals. To overcome
these problems, the feasibility of preparing dense, defect-free, metal–ceramic multilayers with a
room-temperature-based method should be investigated. In this study, we have shown that the
preparation of ceramic–metal Al2O3/Al/Al2O3/Gd multilayers using aerosol deposition (AD) is
feasible and represents a simple, reliable and cost-effective approach to substrate functionalisation
and protection. Scanning electron microscopy of the multilayers showed that all the layers have a
dense, defect-free microstructure and good intra-layer connectivity. The top Al2O3 dielectric layer
provides excellent electrical resistance (i.e., 7.7 × 1012 Ω·m), which is required for reliable electric
field applications.

Keywords: aerosol deposition; multilayers; interdigitated aluminium electrodes; alumina insulat-
ing layers

1. Introduction

Thick-film multilayer technology is of great value in the electronics industry. It enables
the development and design of a wide variety of products, such as microsystems, electronic
circuit boards and micro-electromechanical systems. The fabrication of conventional
thick-film multilayers involves well-developed technologies, i.e., tape-casting and screen-
printing, followed by a co-firing process at elevated temperatures [1]. The co-firing process
poses many problems in the fabrication of metal–ceramic multilayers. First, the mismatch
of firing temperatures significantly limits the choice of compatible materials, as metals
require much lower temperatures than ceramics. Second, a high-temperature process
facilitates metal oxidation and diffusion between the layers, which can lead to functional
degradation, posing major challenges in material selection [2]. On the other hand, a high-
temperature firing process can be avoided by using aerosol deposition (AD), which is a
room-temperature spray-coating method for producing dense, micrometre-thick films. It
requires dry powders of approximately micrometre-sized particles that are mixed with a
carrier gas to form an aerosol [3]. In the deposition process, the aerosol jet hits the substrate
with a high kinetic energy under vacuum conditions. The AD method is often referred to
as a simple and rapid deposition method capable of producing very dense films without
adding any external thermal energy to the aerosol or deposited films [4]. The high density of
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the deposited materials is achieved by the hammering effect of powder particles colliding
with the surface of the substrate, fragmenting and re-bonding [4–6]. This deposition
mechanism is referred to as a room-temperature, impact-consolidation mechanism [6]. AD
is a unique approach to the deposition of ceramic coatings at room temperature, which
means the vast majority of research has been conducted on ceramic coatings, such as
simple oxides (Al2O3 [7], TiO2 [8], Y2O3 [9]), perovskites (Pb(Zr,Ti)O3 [10], BaTiO3 [11])
and others (AlN [12], hydroxyapatite [13]). However, AD is not limited to ceramics;
metals, glasses or polymers can also be deposited. The deposition of metal layers is often
associated with other spray-coating techniques, such as cold spray, which requires heating
of the carrier gas (up to 700 ◦C). In contrast to cold spray, the AD process is much more
advantageous for the deposition of metal layers, since the deposition at room temperature
avoids deleterious oxidation, decomposition and thermal shock to the coating and the
substrate [14]. However, the AD of metal films is still poorly understood, since in the AD
community research is mainly focused on ceramic deposition. The deposition of metals
poses a great challenge because the modification of powder parameters (e.g., particle size
distribution, morphology and agglomeration state) is much more challenging for metals
compared to ceramic materials. For example, ceramic powders can be coarsened very easily
by partial sintering, which only requires heating the powder at ambient atmosphere. In
addition, the brittleness of ceramic powders allows straightforward particle size reduction
and de-agglomeration in a ball milling process. On the other hand, metal powders are
much more susceptible to oxidation during heat treatment and their ductile behaviour
significantly complicates the milling process. The first dense metal films prepared using
AD at room temperature were reported less than 10 years ago [15]. The development of
metal films by AD is still in its early stages. Thus far, AD has been used to deposit metal
films such as Cu [16,17], Ag [15,18], Fe [19,20] and Fe-based amorphous alloys [21]. In this
study, we have deposited metal layers of Al, which has not yet been reported.

The AD method is mostly used for the fabrication of single layers [4]. Although AD is
considered as an additive technology, only a few multilayers have been demonstrated thus
far. There are few reports involving the fabrication of multilayers using a combination of
different deposition methods. For example, functional ceramic layers are deposited by AD
and conductive metal electrode layers are deposited by physical vapour deposition [22,23].
Such an approach can pose difficulties because the metal layers deposited via physical
vapour deposition are very thin and their properties degrade after an additional AD of
ceramic layers on top. The impact of the ceramic powder on the metal layer is particu-
larly problematic, leading to roughening of the metal–ceramic interface and a potential
connectivity loss of the metal layer. There are few reports dealing with the fabrication of
multilayers using the AD method. Simple structures consist of ceramic–ceramic [24] or
metal–metal multilayers [20]. Thus far, only Leupold et al. [19] have fabricated a ceramic–
metal multilayer structure. In this report, multiple thick-film layers of Al2O3 and Fe were
interchangeably deposited, but the microstructural analysis again revealed the connectivity
loss of the metal layers. It is obvious that using the AD method to build a metal–ceramic
multilayer without structural defects is still a challenge.

In this investigation, we look at the possibility of fabricating a laminated metal–
ceramic composite, i.e., a multilayer with a good intra-layer connectivity, using only the
AD method. Ceramic alumina (Al2O3) and metallic aluminium (Al) powders were selected
for the deposition due to their low price, high abundance and because they are one of the
most commonly used dielectric and electrically conductive materials, respectively. Al2O3
is often used as an insulating and protective coating, while Al is used as an electrode
material. In our previous report we showed that an Al2O3 thick film deposited on a Gd
substrate provides an excellent electrical insulating layer [25]. Based on this, we used AD
to build a metal–ceramic multilayer structure with an inter-digitated electrode layer to
add functionality to the system. The deposited Al2O3/Al/Al2O3 multilayers on the Gd
substrate provide an excellent starting point for the development of future electrowetting-
on-dielectric devices, such as those used as thermal switches in the magnetocaloric cooling
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process [26,27] or potentially in any other solid-state, fluidic or mechanical thermal control
devices [28,29]. In this study, we have shown that multilayer fabrication using AD is
feasible and represents a simple, reliable and cost-effective approach to add functionality
and protection to existing substrates.

2. Materials and Methods

In the AD, a raw Al powder (99.96 %, 2 HPC, Toyal Europe, Accous, France) and
an Al2O3 powder (99.8 %, A 16 SG, Almatis, Ludwigshafen, Germany) were used. The
Al2O3 powder was thermally treated in a chamber furnace (Custom-made, Terna, Ljubljana,
Slovenia) at 1150 ◦C for 1 h (with 5 K·min−1 heating and cooling rates) and additionally
milled in a planetary ball mill (PM400, Retsch, Haan, Germany) at 200 min−1 for 5 h using
Al2O3 milling jar and yttria-stabilised-zirconia milling balls with diameters of 3 mm in
iso-propanol as a liquid medium. The thermal treatment and the subsequent ball milling
of the Al2O3 powder are necessary to achieve suitable particle size distribution for efficient
AD [25]. In the case of Al, the as-received powder already resulted in successful film
deposition. Therefore, no further powder modification was required. Prior to the AD, both
powders were sieved through an 80-micrometre mesh and vacuum dried for 12 h at 100 ◦C
and at 10 mbar. The AD apparatus was provided by InVerTec e.V., Bayreuth, Germany.
Commercial gadolinium foils (Metall Rare Earth Limited, Hong Kong) were used as the
substrate material. The process parameters used during the AD are shown in Table 1. The
number of scans was adjusted to achieve the desired film thickness.

Table 1. Process parameters used during the AD.

Process Parameters Al2O3 Powder Al Powder

Carrier gas species N2

Nozzle geometry (slit size) (0.5 × 10) mm2

Distance between nozzle and
substrate 5 mm

Sweep speed 5 mm·s−1

Gas flow rate 4 L·min−1 2 L·min−1

Pressure in aerosol chamber 180 mbar 120 mbar

Pressure in deposition
chamber 2 mbar 1 mbar

Particle size analyses of the raw Al powder and treated Al2O3 powders were per-
formed using a light-scattering laser granulometer (S3500, Microtrac, York, PA, USA) with
isopropanol as the medium. Scanning electron microscopy (SEM) and energy dispersive
spectroscopy (EDS) analyses were performed using a field-emission scanning electron
microscope (FE-SEM, JSM-7600F, JEOL, Tokyo, Japan) equipped with an energy dispersive
X-ray spectrometer (Inca Oxford 350 EDS SSD, Oxford Instruments, Abingdon, UK). For
the SEM powder analyses, Al2O3 and Al powders were deposited on carbon tape. For the
cross-sectional analysis of the multilayers, the samples were cut, mounted in epoxy resin,
ground and fine-polished with a colloidal silica suspension. Prior to the SEM analyses, all
the samples were coated with a 3-nanometre-thick carbon layer using a Precision Etching
and Coating System (PECS 682, Gatan, Pleasanton, CA, USA).

The X-ray diffraction (XRD) analysis was performed using a high-resolution diffrac-
tometer (X’Pert PRO, PANalytical, Almelo, The Netherlands) with Cu–Kα1 radiation.
Diffraction patterns were recorded in the BraggBrentano geometry with a 100-channel
X’Celerator detector in a 2θ range 10–120◦ with a step of 0.017◦ and an integration time of
100 s per step. The software X’Pert HighScore Plus 2.1, PANalytical was used to analyse
the XRD patterns and to estimate the penetration depth of X-rays in the multilayer sam-
ples during XRD analysis. In the case of the multilayer sample, the X-rays penetrate all
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deposited layers (top Al2O3 layer, middle Al layer and bottom Al2O3 layer) and reach the
Gd substrate, since the penetration depth is higher than the thickness of deposited layers.
The total thickness of deposited layers is ~8 µm; while the calculated penetration depth for
Al and Al2O3 at 2θ of 10◦ is ~30 µm and the value even increases with increasing 2θ angle.

The Topas R package (version 2.1, Bruker AXS GmbH, Karlsruhe, Germany) was
employed for the Rietveld refinement and the Fundamental Parameters Approach (FPA)
was used for line-profile fitting of all samples [30]. The FPA uses the geometrical properties
of the diffraction experiment to build up the instrumental linewidth from first principles.
It, thus, allows an explicit determination of the sample-dependent, line-broadening contri-
butions to the peak profile, which are dominated by the microstrain and the broadening of
the crystallite size [31].

The topography of the layers was analysed using atomic force microscopy (AFM)
and contact stylus profilometry. The 20-micrometre line scans were acquired using an
atomic force microscope (Jupiter XR, Asylum Research, Santa Barbara, CA, USA) in AC
air topography mode. A Si tip on a Si/Al cantilever with a diameter of ~7 nm (AC240TS-
R3, Asylum Research, Santa Barbara, CA, USA) was used for scanning. A contact stylus
profilometer (DektakXT, Bruker, Karlsruhe, Germany) was used to measure 2-millimetre
line scans. Then, the root-mean-square surface roughness (Rq) was determined from the
roughness profile obtained after high-pass filtering of the primary profile with a cut-off
wavelength of 0.08 mm.

Silver electrodes with a diameter of 0.75 mm were deposited on the top Al2O3 layer
before electrical characterisation. Current density–electric field (J–E) measurements were
performed using a Keithley 237 high-voltage-source measurement unit (Keithley Instru-
ments, Cleveland, OH, USA). A step-like electric field in the range ±75 kV·cm−1 was
applied between Al layer and silver electrodes. The electrical resistivity was determined
from the slope of the J–E curve, assuming Ohm’s law.

3. Results

We prepared an Al2O3/Al/Al2O3 multilayer structure on the surface of a magne-
tocaloric gadolinium element. A schematic representation and a photograph of the multi-
layer structure are shown in Figure 1a,b, respectively. First, the Gd substrate was almost
completely covered with an Al2O3 layer, followed by the deposition of an Al layer. Then,
the Al2O3 layer was deposited on top of the Al layer, keeping certain areas free to allow for
electrical connections (i.e., placement of the contact wires). The first Al2O3 layer protects
the Gd substrate from the environment and prevents corrosion and mechanical damage.
The second Al layer is an electrically conductive electrode layer covered by the third Al2O3
layer, which electrically insulates the Al surface and completes the multilayer structure
with an embedded electrode.
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(d50) of the Al2O3 and Al powders is 0.6 and 1.5 µm, respectively. The most abundant par-
ticle size fraction of the Al2O3 powder is represented by the peak at 0.6 µm, while the Al 
powder contains three peaks at 0.2, 0.5 and 3 µm. Both powders have an acceptable par-
ticle size range for the AD. In the literature, particles with sizes between a few hundred 
nm and a few µm are generally considered suitable for deposition and produce dense 
thick films with good adhesion [4,6]. According to the SEM analysis, the Al powder ex-
hibits round particles, often with a perfect circular shape (Figure 2d). In contrast, the Al2O3 
particles are irregularly shaped with smooth edges (Figure 2c). 

 
Figure 2. (a,b) Particle size distributions (grey) and cumulative curves (blue) determined using the 
laser granulometry and (c,d) scanning electron microscopy (SEM) images of Al2O3 and Al powders. 

Figure 1. (a) Schematic representation of the deposition process in the multilayer fabrication. (b) A
photograph of the multi-layered structure with an electrical contact.

The Al2O3 and Al powders used in the deposition were analysed using laser granu-
lometry and SEM. Laser granulometry shows a monomodal (Figure 2a) and a multi-modal
(Figure 2b) particle size distribution of the Al2O3 and Al powders, respectively. The particle
size range of the two powders is between 0.1 and 20 µm, and the median particle size (d50)
of the Al2O3 and Al powders is 0.6 and 1.5 µm, respectively. The most abundant particle
size fraction of the Al2O3 powder is represented by the peak at 0.6 µm, while the Al powder
contains three peaks at 0.2, 0.5 and 3 µm. Both powders have an acceptable particle size
range for the AD. In the literature, particles with sizes between a few hundred nm and a
few µm are generally considered suitable for deposition and produce dense thick films
with good adhesion [4,6]. According to the SEM analysis, the Al powder exhibits round
particles, often with a perfect circular shape (Figure 2d). In contrast, the Al2O3 particles are
irregularly shaped with smooth edges (Figure 2c).
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XRD analysis (Figure 3) was performed on the Al2O3 and Al powders, on the Gd
substrate and on the multilayer sample after deposition. The XRD patterns of the Al2O3
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and Al powders contained only Al2O3 (JCPDS 46-1212) and Al reflections (JCPDS 89-2769),
respectively. Therefore, no significant powder contamination in the ball milling process of
the Al2O3 powder was detected. The very sharp peaks indicate large crystallites (>100 nm)
and no microstrain in both powders. As expected, the XRD pattern of the Gd substrate also
exhibits sharp Gd reflections (JCPDS 89-2924) with no impurities. After deposition, the
XRD pattern of the multilayer (purple) shows the reflections of the Al layer, the Al2O3 layer
and the Gd substrate. None of the three phases underwent a phase transformation. In the
multilayer, the Gd reflections (marked with a red cross) did not undergo any peak shift or
change in the peak shape. Only the intensity of the Gd decreased, since the substrate was
covered by Al2O3 and Al layers. After the deposition, the multilayer sample exhibits peak
broadening of the Al2O3 (marked with a grey asterisk) and Al (marked with blue dash)
reflections, indicating a decrease in the crystallite size and/or an increase in the microstrain
due to the fragmentation of the colliding powder particles in the AD process [4,32]. To
quantitatively evaluate the crystallite size and microstrain in the Al2O3 and Al deposited
layers, we performed a Rietveld refinement. The calculated crystallite size and microstrain
in the Al2O3 layers are 22 ± 4 nm and 0.46 ± 0.14%, respectively. On the other hand,
the crystallites in the Al layers are larger, i.e., 98 ± 8 nm, while the microstrain is almost
insignificant, i.e., 0.04 ± 0.01%. In conclusion, the XRD results show that the deposition
of Al2O3 leads to a much larger decrease in crystallite size and an increase in microstrain
compared to Al.
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Figure 3. X-ray diffraction (XRD) patterns of the Al2O3 powder (grey), Al powder (blue), Gd substrate
(red) and prepared multilayer sample (purple).

Previously, it was reported that a significant reduction in the crystallite size and an
increase in the microstrain after the deposition of an oxide powder are necessary conditions
for successful film deposition [33]. According to our XRD analysis, the same hypothesis can
be valid for the AD of ceramic Al2O3, but not completely for the AD of metallic Al. Both
Al2O3 and Al powders formed consolidated layers, but only the ceramic Al2O3 powder
obtained significant peak broadening, indicating that the cracking and fragmentation of
particles predominate in the deposition mechanism. On the other hand, the deposition
mechanism of ductile metals is different from that of ceramics. The less intense XRD peak
broadening of Al indicates that plastic deformation is more prevalent in the deposition
mechanism of metals.

The SEM and EDS analyses of the multilayer structure in cross-section are shown in
Figure 4. All the deposited layers are very dense without any visible pores (Figure 4a). The
thickness of the deposited Al2O3, Al and Al2O3 layers (bottom-up) is 5.0, 1.7 and 1.6 µm,
respectively. Apparently, the roughness of the interfaces increases with the number of
increasing layers. However, a sufficient layer thickness ensures good connectivity of the
deposited layers. The interface between the layers is well defined (enlarged SEM images in
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Figure 4b,c), indicating good adhesion without any reactions. An additional adhesion test
revealed no peeling off or delamination of the deposited layers (Supplementary material:
Figure S1). The EDS map scans (Figure 4d–f) of the multilayer show a typical elemental
distribution of the layers, which confirms no reaction between the layers.

The surface roughness of the deposited layers including the Gd substrate was evalu-
ated using AFM and contact profilometry. The AFM map scans and the contact-profilometry
line scans are shown in Figure 5a,b, respectively. A comparison of the root-mean-square
surface roughness (Rq) between the two measurement methods is shown in Figure 5c.
As expected, the values obtained with AFM are lower than those obtained with contact
profilometry due to the hundred-times-smaller scanned area (20-micrometre lines in the
case of the AFM and 2-millimetre lines in the case of the contact profilometry). However,
the same trend is observed for both methods. The Rq is lowest for the Gd substrate and
increases with each deposited layer. The Rq of the top Al2O3 layer is about 200 nm.

To test the electrical insulation of the upper Al2O3 layer, measurements of the current
density (J) versus the electric field (E) were performed (Figure 6). The upper Al2O3
layer withstands high electric fields (75 kV·cm−1) without an electrical breakdown. The
calculated electrical resistivity at room temperature is very high (7.7 × 1012 Ω·m) and
corresponds to the resistivity of the commercially available Al2O3 ceramics for electrical
insulation [34,35].
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sponds to the resistivity of the commercially available Al2O3 ceramics for electrical insu-
lation [34,35]. 

Figure 5. (a) Atomic force microscopy (AFM) map scans and (b) contact-profilometer line scans of
the deposited layers, including the Gd substrate. The corresponding Rq values of the two methods,
AFM (cyan) and contact profilometry (dark blue), are shown in (c).
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4. Conclusions

We used the AD method to prepare an Al2O3/Al/Al2O3 multilayer composite on a Gd
substrate. The complete room-temperature processing of the AD enabled the integration
of metallic and ceramic materials that are otherwise incompatible at high temperatures.
Inexpensive commercial powders with appropriate micrometre-sized particles were used
for the successful film deposition. The SEM analysis revealed a dense multilayer with a
defect-free microstructure and good intra-layer connectivity. In addition, the top Al2O3
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dielectric layer provides excellent electrical resistance, which is required for reliable electric
field application. In summary, we have shown that the fabrication of ceramic–metal multi-
layers using AD is feasible and represents a simple, reliable and cost-effective approach to
functionalise and protect existing substrates. For example, the deposited Al2O3/Al/Al2O3
multilayers on the Gd substrate provide an excellent starting point for the development of
future electrowetting-on-dielectric devices.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14164548/s1, Figure S1: Images of the sample surface (top Al2O3 layer) taken with an
optical light microscope. (a) before and (b) after the adhesion test.
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