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The molecular mechanisms and genetic risk factors underlying Alzheimer’s disease (AD) pathogenesis are only partly understood.
To identify new factors, which may contribute to AD, different approaches are taken including proteomics, genetics, and functional
genomics. Here, we used a bioinformatics approach and found that distinct AD-related genes share modules of transcription factor
binding sites, suggesting a transcriptional coregulation. To detect additional coregulated genes, which may potentially contribute to
AD, we established a new bioinformatics workflow with known multivariate methods like support vector machines, biclustering,
and predicted transcription factor binding site modules by using in silico analysis and over 400 expression arrays from human
and mouse. Two significant modules are composed of three transcription factor families: CTCF, SP1F, and EGRF/ZBPF, which are
conserved between human and mouse APP promoter sequences. The specific combination of in silico promoter and multivariate
analysis can identify regulation mechanisms of genes involved in multifactorial diseases.

1. Introduction

Alzheimer’s disease (AD) is the most common form of
dementia, which slowly destroys neurons and causes serious
cognitive disability [1]. Characteristics of AD are insoluble
amyloid plaques and neurofibrillary tangles in the brains of
AD patients, which extend progressively to neocortical brain
areas during AD [2]. AD exists in a sporadic and famil-
ial (heritable) form. Mutations in amyloid-beta precursor
protein (APP), presenilin1, and presenilin2 are associated
with early-onset forms of familial AD, whereas sporadic AD
occurs in people over the age of 65 years [3].

APP was the first gene linked to AD and is located
on chromosome 21. APP is cleaved by different proteases
named α-, β-, and γ-secretase. These proteases control
the generation of the amyloid-β peptide (Aβ), which is
considered the culprit in AD. β- and γ-secretase cleavage
leads to Aβ formation. β-secretase is the aspartyl protease
BACE1 [4, 5]. A homolog of BACE1, BACE2, cleaves within
the Aβ domain and does not contribute to Aβ generation. γ-
secretase is a heterotetramer consisting of the four subunits
presenilin 1 or 2 (PS1, PS2), Aph1, Nicastrin, and Pen-2
[6]. Aggregates of Aβ are neurotoxic and start the so-called
amyloid cascade, which describes the molecular mechanisms
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leading to AD, including formation of plaques and tangles
[1]. The third protease, the alpha-secretase ADAM10 [7, 8],
avoids formation of Aβ, because it cleaves APP inside the Aβ
sequence [9]. Additionally, α-secretase generates the soluble
sAPPα, which enhances memory in normal and amnesic
mice [10]. In AD patients, the amount of sAPPα in the
cerebrospinal fluid is reduced [11].

Microarray studies measure the changes in expression
level for thousands of genes simultaneously, detect single
nucleotide polymorphisms, and therefore are an unbiased
approach to identify genes with an altered expression, for
example, in diseases such as AD [12, 13]. Aims of the analysis
of microarray datasets include the discovery of gene function
[14], getting insights into human disease progression [15],
and prediction of gene regulatory elements like transcription
factor binding sites (TFBSs) of coregulated genes [16].

TFs bind predominantly to the upstream region of
genes, and each TF has its own specific binding motif. TFs
with a similar binding motif are grouped to a TF-family.
Combinations of TFs in a defined order, distance range,
and orientation are known as TFBSs modules [17]. Modules
common to a set of genes, which act together in the same
biological context, are able to control the expression of these
gene products [18]. Conversely, the finding that the expres-
sion of different genes is coregulated in a certain biological
process may indicate that they are functionally linked in this
process. This may be applicable to the identification of new
disease-linked genes, for example, in AD.

Our aim was to identify modules of transcription factor
binding sites in the promoters of AD-linked genes, which
may contribute to AD pathogenesis. In our study, we
developed a workflow and included three already existing
microarray datasets, which were established under different
conditions and in summary contain over 400 arrays, for anal-
ysis by using state-of-the-art bioinformatics tools focussing
on multivariate methods. Multivariate variable selection was
performed because variables (transcripts) contribute only in
combination with other variables to the discrimination of
input dataset rather than in isolation, which help to identify
highly correlated genes (i.e., interaction networks) [19]. We
hypothesized that beta- and gamma-secretase, which are
responsible for Aβ formation, are coregulated. Thus, we
started by analyzing TF binding modules in the genes for
β- and γ- secretase, that is, BACE1, PS1, and PS2. We also
included the BACE1 homolog BACE2.

2. Materials and Methods

2.1. In Silico Promoter Analysis. Promoter analysis was done
with Genomatix software (Munich/Germany). All promoter
sequences are derived from the promoter sequence retrieval
database ElDorado (Release 4.9, Human Genome NCBI
build 37/hg19). The DiAlignTF task of GEMS Launcher
was used to check for conserved TFBSs between the human
and mouse APP promoter sequence (Matrix Family Library,
Version 8.0, Vertebrates; Genomatix: 690 matrices from 162
families). The Frameworker tool (GEMS Launcher) searches
for all modules composed of two or more TFBSs in aligned

promoter sequences. A module is defined as a set of two or
more TFBSs with a defined order, distance range between
the individual TFBSs, and strand orientation. A total of 727
matrices from 170 families (Matrix Family Library, Version
8.2, Vertebrates; Genomatix) were used for the analysis.
The ModelInspector searches for all determined modules of
TFBSs in the human promoter library (first approach: ElDo-
rado 07–2009: 93372 promoter regions; second approach:
ElDorado 02–2010: 97259 promoter regions; Genomatix
Promoter Database).

2.2. Microarray Datasets. We used three microarray datasets
downloaded from the Gene Expression Omnibus in this
study. The dataset of Blalock et al. [12] consists of hip-
pocampal probes: 9 controls and 22 AD patients with
different severity (GSE1297). Gene expression was mea-
sured using GPL96: Affymetrix Human Genome U133A
Array (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GPL96) covering 22283 probesets.

The second dataset used in our analysis consists of total
RNA of brains from five-month-old double-transgenic (6
ADAM10/APP, 6 dnADAM10/APP, 6 monotransgenic APP
control) mice (GSE10908) from Prinzen et al. [20]. Gene
expression was measured using GPL1261: Affymetrix Mouse
Genome 430 2.0 Array (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GPL1261) covering 45101 probesets.

The third dataset from Webster et al. [21] consists
of human cortical samples: 187 controls and 176 patients
with diagnosis of late onset AD (LOAD) (GSE15222).
Gene expression was measured using GPL2700: Sentrix
HumanRef-8 Expression BeadChip (http://www.ncbi.nlm
.nih.gov/geo/query/acc.cgi?acc=GPL2700) covering 24354
probesets.

2.3. Multivariate Analysis. Statistical analysis was performed
with R statistical software (R version 2.8.0, http://www.r-
project.org/). Background correction and normalization of
the microarray datasets (GSE1297, GSE10908) was done
with the R function expresso from the R package affy. The
parameter setting was as follows: bgcorrect.method (back-
ground adjustment method) = “mas”, normalize.method
(normalization method) = “quantiles”, pmcorrect.method
(perfect matches and mismatches adjustment) = “mas”,
and summary.method (computation of expression values) =
“mas”. The dataset GSE15222 is already rank-invariant
normalized. We applied multiclass support vector machines
with recursive feature elimination (mSVM-RFE). A SVM
considers a set of objects (i.e., biological replicates) as classes,
so that around the class boundaries the broadest possible
range remains, which is free of data points. We used the svm
function from the e1071 package in R for SVM prediction
and developed an algorithm for multiclass gene selection
with recursive feature elimination according to Zhou and
Tuck [22] and Guyon et al. [23]. We implemented our own
mSVM-RFE method, as described in the following, because
such a specific combination of mSVM and RFE is not avail-
able in R until now. First, the samples of a microarray dataset
are randomly grouped into stratified four folds, which are
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four equally sized folds, such that each class is uniformly
distributed among the four folds, and all combinations of
three folds are used for mSVM-RFE (four combinations
for mSVM-RFE). Stratified cross validation has smaller bias
and variance than regular cross validation [24]. mSVM-
RFE starts with all the features of a microarray, in our case
gene expression values, and recursively eliminates 10% of
the remaining expression values, which are not good enough
for classifying according to the cost function of the SVM
classifier (based on the coefficients and support vectors),
until a given number of expression values are reached. By
starting mSVM-RFE, this given number (stop condition for
iterations) is turned over to the program as parameter and
in our case this parameter, is 400 in the first part and 1000
in the second part of the workflow. This grouping into folds
was done three times (to obtain stable results), and mSVM-
RFE algorithm was applied twelve times on different subsets
of the original dataset (in total, we did three groupings into
four folds with four times mSVM-RFE per grouping, because
of four combinations of three folds per grouping). We got
twelve different gene selections and computed the frequency
of each gene occurring in all the gene selections to identify
the most important genes. The mSVM-RFE output in the
first part of the workflow is restricted to genes occurring
at least in 2 out of 12 gene selections, and in the second
part of the workflow genes occurring at least in 1 out of 12
gene selections are taken. The gene selection in the second
part is less stringent than in the first part of the workflow,
since a rigorous restriction of the number of input genes
for the subsequent biclustering analysis reduces the number
of genes in the resulting clusters. The function svm was
used with default settings except the parameters type = “C-
classification”, kernel = “linear”, cost = 0.1.

The dataset GSE15222 was not filtered by mSVM-RFE
but by the illumina detection score [25]. Transcripts that
have a detection score ≥0.99 in less than 90% of cases or
90% of controls are excluded, and 8650 probesets remain
[21]. Furthermore, a two-sample t-test was performed for
the expression values of the remaining 8650 probesets by
the R function t-test with default settings, and afterwards
FDR correction [26] was applied by the R function p.adjust
with method = “fdr”. Significantly regulated genes were
considered if the FDR value is equal to or below 0.05.

Pearson’s chi-squared tests were performed with the R
function chisq.test from the R package stats to show whether
the overlap between two different genesets is significant. The
function chisq.test was used with default settings.

Next, we applied biclustering by the biclust function from
the biclust package in R to the output of the mSVM-RFE
and the 8650 probesets of the third microarray study and
used the method BCPlaid according to Turner et al. [27] to
group coregulated genes into clusters. The method allows a
gene to belong to more than one cluster, and each cluster is
defined with regard to some, but not necessarily all, samples.
In principle, we used default parameters except the following
ones. Parameter setting for AD patients: cluster = “r”
(to cluster rows (probesets)), row.release (threshold to prune
rows in the clusters depending on row homogeneity) = 0.1,
col.release (as before, with columns) = 0.2, shuffle (before

cluster is added, its statistical significance is compared against
random clusters defined by this parameter) = 10, back.fit
(after a cluster is added, additional iterations can be done to
refine the fitting of the cluster) = 10, max.layers (maximum
number of clusters) = 10, iter.startup (number of iterations to
find starting values) = 80, and iter.layer (number of iterations
to find each cluster) = 80.

Parameter setting for double transgenic mice: cluster =
“r”, row.release = 0.3, col.release = 0.5, shuffle = 100,
back.fit = 500, max.layers = 100, iter.startup = 1000, and
iter.layer = 1000. Parameter setting for LOAD patients:
cluster = “r”, row.release = 0.3, col.release = 0.5, shuffle =
10, back.fit = 100, max.layers = 20, iter.startup = 100, and
iter.layer = 100.

The expression profiles were established with the R
function matplot from the R package graphics. The function
was used with default values except col (colour of lines in
plot) = c(1), type (type of plot) = “l”, and lty (line type) =
“solid”. The coloured lines of the described genes are added to
the plot by matplot function with the parameter add = TRUE
(if TRUE, plots are added to current one), and the width of
the coloured lines is enlarged by the parameter lwd = 4.

2.4. Enrichment Analysis. Each cluster of coregulated genes
was explored for enrichment of genes in Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathways (version
6.07.2010). After retrieving the number of coregulated genes
in each pathway, the P value was computed by the R function
fisher.test, and afterwards FDR correction [26] was applied
by the R function p.adjust with method = “fdr”. For the
pathway analysis, we report the P value and FDR value.
Additionally, we analyzed the enrichment of the modules in
the corresponding cluster of coregulated genes in contrast
to the whole set of human promoters. After searching for
each module in human promoters, once again the P value
computation was performed, and afterwards FDR correction
[26] was applied by the R function p.adjust with method =
“fdr”. The results are indicated to be significant if the FDR
value is equal to or below 0.05.

2.5. Literature Mining. Literature search by PubMed was
done to extract information about the target genes of the
TF modules identified and their relation to AD. Target
genes are genes which are regulated by TF modules. To
verify the modules, searches were performed for TFBS-target
gene interactions in all PubMed abstracts with the help
of two text mining programs Pathway Studio 7.1 (Ariadne
Genomics) and EXCERBT (MIPS, Helmholtz Zentrum
München; http://tinyurl.com/excerbt/) [28] based on the
natural language processing (NLP) technology. Additionally,
information about the TFs of the modules was collected from
the BIOBASE Biological Databases (Wolfenbüttel/Germany):
TRANSPATH. Mouse Genome Informatics (MGI) database
(Mouse Genome Database, The Jackson Laboratory, Bar
Harbor, Maine; http://www.informatics.jax.org/) [29] was
searched for expression tissue of genes, and gene ontology
was used for the functional annotation and classification of
the target genes [30].
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Figure 1: Workflow of bioinformatics analysis of promoter sequences and gene expression data to identify modules of TFBSs in AD-related
genes. The workflow is divided into two parts, the first and second approach. The coloured boxes describe the methods which were used.
The yellow boxes represent tools of the Genomatix Software (1DiAlignTF, 2FrameWorker, 3ModelInspector), and the blue boxes indicate
multivariate methods or filtering by illumina detection score. The beginning and the end of the arrow specify input and output of the
methods, respectively. The grey arrow denotes the comparison of the target genes of the modules with genes differentially regulated in
microarray analyses. The scheme at the end of the second approach indicates a module composed of three TFBSs (blue, red, and green),
which is common to three promoter sequences with transcription start site at the red arrow.

3. Results and Discussion

3.1. Workflow. The workflow (Figure 1) consists of two dif-
ferent approaches starting at different points, but resulting in
similar modules in the end.

The first approach starts with an alignment between
human and mouse APP promoter sequences to search for
conserved TFBSs. The result yielded 22 conserved TFBSs
(data not shown). Some of them have previously been
verified. For example, the transcription factors CTCF and
AP1F (including JUN) bind to APP [31, 32], and some are
expressed in the hippocampus according to MGI database.
In the next step of the approach, the conserved TFBSs and
the promoter sequences of genes involved in Aβ formation
(APP, BACE1, PS1/2, PEN-2, APH1A, and NCSTN) and the
homolog of BACE1, BACE2, were used as input to search for
all modules of TFBSs, which occur in a multiple alignment
of a subset of AD key genes. With this analysis, we got 17
modules composed of two or more TFBSs families (Table 1).
Modules regulating key genes of AD are thought to play a
role in AD. The three microarray datasets should verify these
modules by searching for significantly regulated genes on
the microarray. We applied mSVM-RFE, a frequently used
tool, because it is very accurate and fast in classification
and has a low error rate [22]. RFE is applied due to
the large number of the gene expression values on the
microarray and helps to reduce the search space and avoids
overfitting. Each of the TFBSs families is represented by
several TFs (Table 2). After searching for these 17 modules in
all human promoters, we limited the result to genes, which
have been tested for genetic association with AD according
to the AlzGene database (http://www.alzgene.org/; Version:
12.05.2010) [33] in order to get only those target genes

possibly involved in AD. AlzGene database is a regularly
updated aggregation of all published genetic association
studies including GWAS (genome-wide association studies)
performed on AD phenotypes. It is an important resource for
AD and contains all considerable genetic association studies
and key genes of AD. We detected these 17 modules in the
promoters of 369 putative AD-risk genes.

Subsequently, the 369 putative AD-risk genes were
compared to the output from the mSVM-RFE of microarray
datasets. We obtained for the AD patients dataset, which
is composed of data from AD patients at different stages
of severity and control, in the end 948 genes after mSVM-
RFE and an overlap with the putative AD-risk genes of 31
genes. Applying a chi-squared test, we got a P value of
0.0001182, which shows that 31 is a significant high number
of overlapping genes between the two gene sets compared
to the number of genes in the whole dataset. Additionally,
we took a second dataset from a transgenic mouse model
of AD to affirm the results of the AD patients dataset. The
probes of the dataset are expressed in the brain, and the
amount of plaques in the mice is controlled by the active as
well as the dominant-negative form of α-secretase ADAM10
in order to imitate the situation of plaque formation in AD
brain. The three mouse lines show different amounts of
plaques in the brain. Fewer plaques are found in the brains
of ADAM10/APP mice, medium plaques occur in brains of
monotransgenic APP control mice, and most plaque forma-
tion appears in dnADAM10/APP mice. The reason for differ-
ent plaque formation is that neurotoxic Aβ peptide levels are
increased, and neuroprotective sAPPα is drastically decreased
in dnADAM10/APP mice, and in ADAM10/APP mice the
levels of the APP fragments are vice versa. The different
mouse lines show different stages of plaque formation just

http://www.alzgene.org/
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Table 1: Modules identified by the first approach: 17 modules composed of two or more TFBSs families. The TFBSs families consist of
several TFs (Table 2). The second column specifies the key genes of AD the TFs of the module bind to, according to the search of the module
in all human promoters by ModelInspector. Human and mouse APPs are indicated by hAPP and mApp, respectively.

Module AD key genes—targets of module

CTCF-E2FF-SP1F hAPP, mApp, BACE1, NCSTN, APH1A,

CTCF-SP1F hAPP, mApp, BACE1, PS2, NCSTN, APH1A

E2FF-E2FF-EGRF hAPP, mApp, BACE1, BACE2, PEN-2, APH1A

CTCF-E2FF-EGRF hAPP, BACE2, PEN-2, NCSTN, APH1A

CTCF-E2FF-EGRF hAPP, mApp, BACE1, BACE2, PEN-2, APH1A

CTCF-HAND-SP1F hAPP, mApp, BACE2, PS2

CTCF-SP1F-SP1F hAPP, mApp, BACE1, BACE2

CTCF-NRF1-SP1F hAPP, mApp, BACE1, APH1A

CTCF-EGRF-NRF1 hAPP, BACE2, PS2, PEN-2

CTCF-SP1F-ZBPF hAPP, mApp, BACE2

CTCF-EGRF-ZBPF hAPP, BACE2, PS2

CTCF-NRF1 hAPP, mApp, BACE1, BACE2, PEN-2

CTCF-EGRF-SP1F hAPP, BACE2, PS2

NRF1-ZBPF hAPP, mApp, BACE2, PEN-2, APH1A

CTCF-EGRF hAPP, mApp, BACE1, BACE2, PS1, PEN-2, APH1A

CTCF-E2FF hAPP, mApp, BACE1, BACE2, NCSTN, APH1A

SP1F-ZBPF-ZBPF BACE1, PS1, PEN-2, APH1A

Table 2: Composition of the TF families of the modules. Each TF family consists of several transcription factors (TFs). Additional
information about description and binding domains of the families is given in the second and fourth column, respectively.

TF family Description TFs Binding domains

CTCF
CTCF and BORIS gene family,
transcriptional regulators with 11
highly conserved zinc finger domains

CTCF, CTCFL C2H2 zinc finger domain

E2FF E2F-myc activator/cell cycle regulator
E2F1, E2F2, E2F3, E2F4, E2F5, E2F6, E2F7,
E2F8, TFDP1, TFDP2, TFPD3

E2F winged helix

EGRF EGR/nerve growth factor-induced
protein C and related factors

EGR1, EGR2, EGR3, EGR4, WT1, ZBTB7A,
ZBTB7B

C2H2 zinc finger domain

HAND Twist subfamily of class B bHLH
transcription factors

HAND1, HAND2, LYL1, MESP1, MESP2,
NHLH1, NHLH2, SCXA, SCXB, TAL1, TAL2,
TCF12, TCF15, TCF3, TWIST1, TWIST2

bHLH

KLFS Krueppel-like transcription factors
KLF1, KLF2, KLF3, KLF4, KLF6, KLF7,
KLF8, KLF9, KLF12, KLF13, KLF15

—

NRF1 Nuclear respiratory factor 1 NRF1 bZIP

SP1F GC-Box factors SP1/GC
KLF10, KLF11, KLF16, KLF5, SP1, SP2, SP3,
SP4, SP5, SP6, SP7, SP8

C2H2 zinc finger domain

ZBPF Zinc binding protein factors
ZKSCAN3, ZNF148, ZNF202, ZNF219,
ZNF281, ZNF300

C2H2 zinc finger domain

like AD patients at different stages of severity [34]. Thus, this
AD mouse model and its microarray dataset are appropriate
to be included in this analysis to verify modules [20]. The
double-transgenic mice dataset was reduced by mSVM-RFE
to 878 genes with an overlap of 26 to the 369 AD-related
genes. A chi-squared test with P value = 4.21 × 10−12 shows
that 26 is a significant high number of overlapping genes
compared to the whole number of genes on the array. The

third dataset was not filtered by mSVM-RFE, since it is
already reduced by illumina detection score and therefore
consists of only 8650 normalized expression values, which
is a suitable number to apply biclustering. Comparing the
8457 genes of the GSE15222 dataset with the 369 putative
AD-risk genes, we got an overlap of 199 genes between these
two genesets. The P value = 8.99 × 10−15 of the chi-squared
test indicates a significant number of overlapping genes.
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Starting point of the second approach is the three
microarray datasets established from AD patients at
three different stages of severity [12], double-transgenic
ADAM10/APP, dominant negative ADAM10/APP as well
as APP control mice [20], and AD patients with late-
onset AD (LOAD) [21]. Not differentially regulated genes
are excluded by mSVM-RFE, and regulated genes of these
microarrays may potentially play a role in AD. By mSVM-
RFE, we reduced the dataset of the AD patients at three
different stages of severity from 22283 probesets to 4844
probesets, and then after biclustering these 4844 probesets,
we got five and eight clusters of coregulated genes from
two biclustering runs with the same parameter setting. The
double-transgenic mice dataset was reduced by mSVM-RFE
from 45101 to 5198 probesets, and after biclustering, we
obtained 13 clusters of coregulated genes. The third dataset of
LOAD patients is already reduced by illumina detection score
to 8650 probesets, and therefore, we did not apply mSVM-
RFE. By biclustering, we got 18 clusters of coregulated genes.
By grouping the regulated genes into clusters of coregulated
genes and searching for modules in the promoters of these
coregulated genes, we got modules possibly responsible for
the common regulation of these genes and also putatively
playing an important role in the modification of AD. At
the end, we obtained several modules for each cluster
of coregulated genes. The target genes of three selected
modules, which are described in more detail in section 3.3,
3.4, and 3.5, are listed in the Supplementary Tables 1–8
(see Tables 1–8 in Supplementary Material available online
at doi: 10.4061/2011/154325). Target genes are activated or
repressed by TF modules and have corresponding TFBSs in
their promoter sequences.

After the whole analysis composed of the first and second
approach, we got four different sets of TFBSs modules.
We obtained one set of 17 TFBSs modules from the first
approach and three sets (one set for each microarray study)
of on average five different TFBSs modules per cluster
from the second approach. We compared these four sets
with regard to similar modules and found two modules in
common: CTCF-EGRF-SP1F as well as CTCF-SP1F-ZBPF
(Figure 2). According to the first module, the target genes
VAPA and EIF5 overlap between AD patients and double-
transgenic mice dataset, and the target genes REEP5 and SYP
overlap between double-transgenic mice and LOAD patients
dataset. The overlapping target gene ADD3 between AD
and LOAD patients dataset of module CTCF-SP1F-ZBPF
is also target gene of the module KLFS-SP1F-ZBPF, which
is common to the three microarray datasets in the second
approach. The third module has additionally overlapping
target genes between AD and LOAD patients dataset: CLU
and NUCKS1.

In general, TFBSs frequently occurring in modules of
both approaches are CTCF, EGRF, SP1F, and ZBPF, but the
composition of the TFBSs for a module is slightly different
between the first and second approach. The modules of
the second approach mostly contain one TFBS, which
is not conserved between human and mouse APP, and
therefore these modules could not be found by the first
approach focussing on conserved TFBSs. Moreover, the

starting points of the two approaches are different, because
in the first approach we include conservation and in the
second approach not. This leads to slightly different modules
between the two approaches, but in the end, we have two
modules in common.

Although TFBSs can occur almost anywhere in the
promoter and do not show any pattern with respect to
location, TFBSs are often grouped together and such func-
tional modules have been described in many cases. The
arrangement of TFBSs of a promoter module seems to
be much more restricted than the variety and distribution
of TFBSs in the promoter sequence [35]. However, TFBSs
modules found in the promoter of genes suggest functional
connection but do not prove it [36]. The common regulation
of genes from different gene classes can depend on regulatory
modules of TFBSs, which are often conserved regions in
the promoter sequences and therefore can be identified,
while other TFBSs are nonconserved between the promoters
[37, 38].

This workflow with the combination of multivariate
analysis methods and in silico promoter analysis based on
the hypothesis that the key genes of AD are coregulated
is a new approach and different to already existing ones
to find possible transcriptional regulations addressing AD
pathogenesis. The confirmation of this hypothesis would
offer better possibilities to develop new strategies for
the therapeutic treatment of AD. In this study, commer-
cial software has been used as part of the bioinformat-
ics workflow, but comparable open-source software and
databases can be used as well. VISTA (http://genome.lbl.gov/
vista/index.shtml) and JASPAR (http://jaspar.genereg.net/)
can be used for the analysis of TFBSs. For literature min-
ing, STRING (EMBL, http://string-db.org/) and EXCERBT
(MIPS, http://tinyurl.com/excerbt/) are available, and for
finding tissue expression or binding partners of the genes, the
GeneCards database (Weizmann Institute of Science, http://
www.genecards.org/) is one alternative.

3.2. Modules and Confirmations of TFBSs and AD-Risk Genes.
The first common module is composed of the binding
sites of the three TF families: CTCF, EGRF, and SP1F, and
the second module consists of CTCF, SP1F, and ZBPF,
which are all conserved between human and mouse APP
promoter sequences. TFs representing both modules are
predicted to bind to the promoter sequences of significantly
frequent target genes in the corresponding cluster of the AD
patients dataset (FDR (CTCF-EGRF-SP1F) = 0.0003; FDR
(CTCF-SP1F-ZBPF) = 0.0003), of the transgenic mice dataset
(FDR (CTCF-EGRF-SP1F) = 4.2× 10−7; FDR (CTCF-SP1F-
ZBPF) = 1.3×10−12) and of the LOAD patients dataset (FDR
(CTCF-EGRF-SP1F) = 0.0139; FDR (CTCF-SP1F-ZBPF) =
0.0139), compared to the incidence in the whole set of
human promoters. The expression profiles of the coregulated
genes from the three datasets in each module show similar
expression patterns among a subset of microarray samples
(Figure 3 and supplementary Figure 1). Additionally, a third
significant module was detected established from a set
of coregulated genes of the AD (Figure 3(b)) and LOAD

http://genome.lbl.gov/vista/index.shtml
http://genome.lbl.gov/vista/index.shtml
http://jaspar.genereg.net/
http://string-db.org/
http://tinyurl.com/excerbt/
http://www.genecards.org/
http://www.genecards.org/
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Figure 2: Relations of predicted target genes of three TFBSs modules. This picture summarizes important target genes of the modules, the
relation of target genes to KEGG pathways playing a role in AD (blue rectangle), and the relation of the target genes to some AD key genes
(red pentagon). The target genes are coloured according to their membership to microarray studies, and some target genes with two colours
are derived from analysis of two different microarray studies. The grey arrows are the predicted regulations of the target genes by the modules
(orange rectangle), and the black lines indicate that the target gene is part of the corresponding KEGG pathway. Additionally, three different
relations of the target genes to AD key genes are shown by purple, green, and blue lines, which indicate protein-protein binding, protein
modification, and regulation, respectively.

patient’s dataset (Figure 3(c)). The corresponding motif of
this module consists of KLFS, SP1F, and ZBPF binding sites
and occurs in the promoter sequences of several interesting
genes in particular to Clusterin (CLU/APOJ), which is
according to AlzGene database the second most strongly
associated gene to AD [39]. The enrichment of the module in
the cluster of coregulated genes from the AD patients dataset
(FDR (KLFS-SP1F-ZBPF) = 0.0003) and the LOAD patients
dataset (FDR (KLFS-SP1F-ZBPF) = 0.0139) is significant
compared to the occurrence in all human promoters.

Already known regulations of AD key genes by the
transcription factors CTCF, EGR1, SP1, and ZNF202 confirm
these modules. EGR1 is known to upregulate Presenilin2
[40], CTCF binds to APBβ domain a nuclear factor bind-
ing site in proximal APP promoter as well as acts as a
transcriptional activator in the APP gene promoter [31],
and APOE is repressed by ZNF202 (ZBPF) according to
TRANSPATH database. SP1 can regulate both BACE1 and
BACE2 genes [41], activates the transcription of PS1 [42],
and upregulates APP gene expression [43]. In addition, we
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Figure 3: Expression profiles of five different clusters of coregulated genes. On the x-axis, the sample IDs (specified by accession numbers
of GEO/NCBI) incorporated in the cluster are given, and y-axis indicates values of expression. One gene corresponds to a single line in the
profile, and the target genes of the modules as mentioned in the text are coloured. The two upper profiles (a, b) are clusters of coregulated
genes of the AD patients dataset, the profile in the middle (c) corresponds to coregulated genes of the LOAD patients dataset, and the two
profiles below (d, e) correspond to coregulated genes of the double-transgenic mice dataset. The target genes of the profiles (a) and (d) were
used for the establishment of the module CTCF-EGRF-SP1F and the profiles (b) and (e) for the module CTCF-SP1F-ZBPF, at which (b)
was also used for the module KLFS-SP1F-ZBPF. The five lines in profile (e) correspond to genes, which are involved in the MAPK signaling
pathway. The target genes of the profile (c) were used for the establishment of the modules CTCF-SP1F-ZBPF and KLFS-SP1F-ZBPF.

found SP1 significantly regulated on the LOAD patients
microarrays (FDR = 3.4× 10−9), which is in agreement with
the results of a dysregulation of this transcription factor in
AD [44, 45]. While most of the transcription factors of all
families in the resulting modules play a role in apoptosis, the

transcription factor families have additional different main
functions according to TRANSPATH database. The CTCF
zinc finger proteins are involved in chromatin remodelling,
the early growth response transcription factors (EGRFs) in
learning and memory and brain development, the GC-Box
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factors (SP1Fs) in chromatin silencing as well as embryonic
development, the zinc binding protein factors (ZBPFs) in
lipid metabolism and the Krueppel-like transcription factors
(KLFSs) in nervous system development and response to
stress. Most of the TFs of the families are expressed in whole
brain, hippocampus, or cortex.

To evaluate the importance of the detected modules, we
incorporated information of the AlzGene database. Some
target genes of the modules are already mentioned in
AlzGene database to be associated to AD like Gsk3b, GOT1
(CTCF-EGRF-SP1F), Col25a1, Il33, and Tanc2 (CTCF-
SP1F-ZBPF), and CLU (KLFS-SP1F-ZBPF).

3.3. First Module CTCF-EGRF-SP1F. Literature mining
revealed known relations between the target genes of the
first module and AD (supplementary Tables 1, 2, and 3)
confirming this module. Long-term depression and calcium
signaling are pathways which are connected to AD by
the upregulation of calcium signaling leading to amyloid
metabolism with neuronal cell apoptosis and an enhance-
ment of long-term depression, which leads to loss of memory
initiated by long-term potentiation [46]. GNAS is incor-
porated in both pathways, which occur significantly often
in the cluster of the coregulated genes of the AD patients
dataset (P value = 0.0404, FDR = 0.0952 (human long-term
depression); P value = 0.0476, FDR = 0.0952 (human calcium
signaling)). The study from Zhang et al. shows that the gene
expression of APP and GNAS is significantly upregulated
in patients with endogenous depression [47]. Interestingly,
clinically significant depression develops in at least 40% of all
demented patients, and depressive symptoms like significant
loss of appetite, insomnia, and fatigue occur commonly in
the course of Alzheimer’s disease [48].

Another pathway related to AD is the mitogen-activated
protein kinase (MAPK) signaling pathway, which is involved
in the production of proinflammatory cytokines in the
hippocampus induced by Aβ and is a potential target for
future therapeutics in AD [49]. Cacna2d1, a target gene of
the double-transgenic mice dataset, is involved in MAPK
signaling in the mouse, and this pathway is significantly
overrepresented among the coregulated genes of the double-
transgenic mice dataset (P value = 0.0024, FDR = 0.0121).
The target gene Gsk3b is involved in AD pathway and
Wnt signaling (enrichment analysis: P-value = 0.0021, FDR
= 0.0121 (mouse AD pathway); P-value = 0.0206, FDR
= 0.0497 (mouse Wnt signaling)) and regulates the APP
accumulation after Aβ formation [50]. Another target gene
Ppp3cb is also involved in AD and MAPK signaling in the
mouse according to KEGG pathways, which are significantly
enriched as mentioned before.

Comparing the target genes of this module from the
AD patients and double-transgenic mice microarray study,
two overlapping genes are found, which provide more
evidence for the functionality of the module. Additional
literature search and text mining reveal relations to AD.
The target gene EIF5 (eukaryotic translation initiation factor
5) is not mentioned in AlzGene database, but in the EIF2
regulation pathway, it is downstream from its family member

EIF2AK2, which is listed in AlzGene database. Another
member of the gene family, EIF2alpha, is also linked to AD.
The phosphorylation of EIF2alpha leads to termination of
global protein translation and induces apoptosis. In addition,
degenerative neurons in AD brain show high immunoreac-
tivity for phosphorylated EIF2alpha concluding that phos-
phorylation of EIF2alpha is associated with the degeneration
of neurons in AD [51]. Additionally, GSK3B, which is
involved in AD pathway, EIF5, EIF2AK2, and EIF2alpha
play a role in the regulation of EIF2 according to BioCarta
(http://www.biocarta.com/pathfiles/h eif2Pathway.asp#).

The second overlapping target gene VAPA, a vesicle-
associated membrane protein, interacts with its family
member VAPB through the transmembrane domain [52],
and both are reduced in human amyotrophic lateral sclerosis
(ALS) patients, another neurodegenerative disease. Addi-
tionally, both genes interact with lipid binding proteins;
especially VAPA is involved in lipid export and neurite
outgrowth. The mutation VAPB-P56S, which forms sta-
ble aggregates that are continuous with the endoplasmic
reticulum (ER) and mitochondria and impairs normal
VAP function, may result in abnormal lipid transport and
biosynthesis and induce slow degeneration of neurons [53].
Approximately 30% of ALS patients with dementia have AD
[54].

Furthermore, two overlapping target genes from the
double transgenic mice and LOAD patients dataset were
found: SYP, REEP5. SYP, a synaptic vesicle marker, was
colocalized with the reactivity of APP and PS1, two key
genes of AD. SYP is also localized in the synaptosomal
vesicles, where also an association of N- and C-terminal
PS1 fragments and APP was detected [55]. Other diseases
associated with SYP are schizophrenia, ALS, and dementia,
and it is expressed in hippocampus and cortex according
to TRANSPATH database. The promoter region of SYP
contains four SP1 binding sites located within 100 bp from
the transcription start point [56]. An abnormally elevated
SYP level in the frontal cortex and hippocampal molecular
layer exists in old mice lacking BACE1. Studies demonstrate
that the absence of BACE1 eliminates plaque pathology.
Additionally, SYP deficits correlate with levels of soluble Aβ,
and the loss of the associated presynaptic protein SYP is a key
pathological feature of AD [57].

The second overlapping gene REEP5 (receptor accessory
protein 5) is expressed in the brain and central nervous
system according to MGI database and induces apoptosis
according to gene ontology. A common characteristic in the
brains of patients suffering from neurodegenerative diseases
like AD is massive neuronal death due to apoptosis, and
furthermore apoptotic cell death has been found in neurons
and glial cells in AD [58]. Several studies have shown the
direct effect of REEP5 on shaping ER tubules and propose
that this protein is involved in the stabilization of highly
curved ER membrane tubules. The peripheral ER consists of
a network of membrane tubules and in the study by Voeltz
et al. IP3 (inositol trisphosphate) receptor was a candidate
to be involved in ER network formation as well as rapid
Ca2+ efflux correlating with ER network formation [59].
Moreover, there exist indications that ER stress is involved

http://www.biocarta.com/pathfiles/h_eif2Pathway.asp
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in AD pathogenesis. The ER can release stored Ca2+ through
ER membrane receptor channels like IP3, and some findings
suggest that perturbed ER Ca2+ homeostasis contributes to
the dysfunction and degeneration of neurons that occur in
AD [60].

Concluding, literature search revealed several target
genes, which show a relation to AD, like SYP and Gsk3b
strengthening the assumption that this module may be part
of neurodegenerative processes as observed in AD.

3.4. Second Module CTCF-SP1F-ZBPF. The AD and LOAD
patients target genes of the second module (supplementary
Tables 4, 5) partially overlap with the AD and LOAD
patients target genes of the third module KLFS-SP1F-ZBPF
(supplementary Tables 6, 7), respectively. Additional hints
for the importance of the target genes putatively activated
or repressed by a module were also found for the double
transgenic mice target genes of the second module (sup-
plementary Table 8). For example, the C-terminal binding
protein CTBP2 (target gene of AD patients dataset) binds
ZNF219, a member of the ZBPF TF family, in vitro [61].

Verifications of the second module by double transgenic
mice target genes revealed Cdc42 to regulate synapse for-
mation in neurons and an increased Cdc42-GTPase activity
in neurons stimulated with Aβ1–42. Additionally, Cdc42 is
upregulated in neuronal populations of AD brains in com-
parison to controls [62] and involved in the mouse MAPK
signaling pathway (enrichment analysis: P-value = 0.0010,
FDR = 0.0242). The MAPK pathway, which is significantly
enriched in the coregulated genes of the double transgenic
mice, incorporates the target genes Map2k4, Mapk1, Mapk9,
and Ppm1a of the second module (Figure 3(e)). Further,
PS1, a AD key gene, inhibits the Map2k4 activity [63]. The
phosphorylation of Mapk1, an extracellular signal-regulated
kinase (Erk), is activated by Aβ, and this Erk signal is
involved in repression of L-glutamate uptake in astrocytes
possibly defending neurodegeneration in the pathogenesis
of AD [64]. Additionally, the activation of Erk cascades
through EGF yields an increased CTCF expression showing
that CTCF is a downstream target of Erk cascades [65]. The
ubiquitously expressed Mapk9 (JNK2) phosphorylates APP
and amyloid precursor-like protein 2 (APLP2) induced by
cellular stress. The phosphorylation is involved in neural
functions and AD pathogenesis [66]. Some studies indicate
that Mapk9 possibly interacts with SP1 and the JNK pathway
targets SP1 [67].

The gene ADD3 (adducin 3 (gamma)) overlaps between
the target genes of the AD and LOAD patients dataset.
According to TRANSPATH database, it is known to be
upregulated in ALS and to play a role in apoptosis, which
leads to neuronal death in AD. ADD3 belongs to the
adducin family of proteins, which is involved in postsynaptic
changes in the actin cytoskeleton that occur as a result
of synaptic activation. A study from 2005 suggests that
adducin is involved in setting synaptic strength, as well as
synaptic plasticity underlying learning and memory [68,
69]. Memory loss is the cardinal and one of the earliest
clinical manifestations of AD, and studies suggest that aging

promotes the formation of soluble Aβ assemblies mediating
negative effects on memory [70].

In summary, five target genes (Cdc42, Map2k4, Mapk1,
Mapk9, and Ppm1a) of the module are involved in MAPK
signaling confirming the relation of the module to AD, and a
possible new gene involved in AD, ADD3, was identified.

3.5. Additional Information of the Third Module KLFS-SP1F-
ZBPF. One TF of the third module, KLF3 (BKLF), a member
of the KLFS TF family, binds the AD patients target gene
CTBP2 in vivo [71], which is involved in the Wnt signaling
pathway. In our study, the human Wnt pathway genes are
significantly enriched in the cluster of coregulated genes
(P-value = 0.0149, FDR = 0.0464), and Wnt pathway has
been found to prevent neurodegenerative diseases like AD by
inhibiting Aβ-dependent cytotoxic effects [72].

Comparing the AD and LOAD patients target genes
from the third module, three genes were found in common:
ADD3, CLU, and NUCKS1. ADD3 is also in common for
the second module described above, and a relation to AD
by learning and memory is already known in literature.
Verifications by literature exist also for the target gene CLU,
which is induced by KLF4 overexpression [73] and contains
binding sites for SP1 [74]. Genome-wide association studies
in AD have detected CLU to be involved in developing AD by
finding a strong association for an intronic single nucleotide
polymorphism. Biologically, CLU seems to be involved in the
pathogenesis of AD by interacting with different molecules
like lipids or amyloid proteins, but also in brains of AD
patients the level of CLU mRNA is significantly higher than
in control brains [39]. Furthermore, APP/PS1 transgenic
mice showed increased plasma CLU, age-dependent increase
in brain CLU, and amyloid and CLU colocalization in
plaques [75]. Another disease associated with CLU is ALS
and according to gene ontology, CLU, which has increased
protein levels in frontal cortex and hippocampus in AD
[76], is involved in lipid transporter activity, apoptosis, and
neuron development.

The third overlapping target gene NUCKS1 (nuclear
casein kinase and cyclin-dependent kinase substrate 1) is
known to be a strongly associated gene to Parkinson’s
disease (PD) [77], another neurodegenerative disease. A
study in 2003 by Wilson et al. showed that progression of
classical symptoms of PD in old person is associated with
eight times as likely to develop AD as well. The results
of this study suggest a strong link between progressive
motor impairment and the development of AD. Interestingly,
pathologic findings like Lewy bodies are similar to PD and
dementia, and perhaps there is a connection in how the
two diseases progress over time [78]. Furthermore, NUCKS1
may play a role in cell proliferation [79]. The proliferation
of neural progenitor cells is reduced in mice transgenic for
a mutated form of amyloid precursor protein, transgenic
mouse model of AD, that causes early onset familial AD, and
it was shown that Aβ can affect the proliferation of neural
progenitor cells [80].

Taken together, all relations described here between
the target genes of the modules to AD key genes and
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KEGG pathways are shown in Figure 2. The three modules
composed of TFs, which are mainly expressed in brain and
partially associated with AD, are connected to each other by
common target genes or KEGG pathways playing a role in
AD. Some target genes have known relations to AD key genes
further verifying the relation of the modules with their target
genes to AD. Promising is the fact that three microarray
studies with different platforms, stages of AD in patients
and varying amounts of plaques in an AD mouse model
have in the end two modules in common. Additionally,
one module common to two microarray studies includes
the target gene CLU, which is the second most strongly
associated gene to AD according to AlzGene database.
Although the datasets are different, we got in the end
significantly regulated target genes of the modules, which are
even the same between datasets of different species and brain
tissues, again verifying the significance of the three modules
for AD.

4. Conclusion

As described above, many of the genes that we identified
in our bioinformatics analysis have links to the molecular
mechanisms of AD. In particular, the binding sites of
the TF families: CTCF, EGRF, KLFS, SP1F, and ZBPF
are proposed for further investigations and could provide
potential targets for therapeutic treatment of AD and other
neurodegenerative diseases. Already known regulations of
target genes by transcription factors confirm these modules,
such as CLU, which is linked to AD. Additionally, several
target genes like ADD3, which are not yet described as
AD-related genes, are possibly involved in AD pathogenesis.
The most likely candidate genes are ADD3, CLU, EIF5,
NUCKS1, REEP5, SYP, and VAPA, which are derived from
analysis of two different microarray studies. A next step is the
experimental validation of TFBSs target interactions to verify
the modules. At first, the differential regulation of candidate
genes from AD mouse models can be validated by qRT-
PCR. We also suggest a knockout (or knockdown) of single
or combinations of TFs in mice and then the measurement
of the expression compared to wildtype mice by qRT-PCR
of the best downstream candidate genes. Another possible
experiment would be the screening for SNPs in the sequences
of the candidate genes from postmortem AD patient’s
DNA.
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