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Recently, cardiovascular disease, also known as loop circulatory systemdiseases or disorders, is one of the serious diseases including
heart disease, stroke, atherosclerosis, myocardial infarction, hypertension, hypotension, and thrombosis. Human pregnane X
receptor, PXR, plays a crucial role in exogenous and endobiotic metabolism for rabbit, rat, mouse, and human.The PXR activation
can protect the blood vessels fromdamage of hazardous substances. In this studywe aim to investigate the potent lead compounds as
PXR receptor agonist against cardiovascular disease. To improve drug development of TCM compounds, we aim to investigate the
potent lead compounds as PXR agonists from the TCM compounds in TCM Database@Taiwan. The top three TCM compounds,
bis(4-hydroxybenzyl) ether mono-𝛽-D-glucopyranoside (BEMG), ixerisoside, and tangshenoside II, have displayed higher potent
binding affinities than the positive control, PNU-142721, in the docking simulation. After MD simulations, which can optimize the
result of docking simulation and validate the stability of H-bonds between each ligand and PXR protein under dynamic conditions,
top TCM compounds, BEMG and tangshenoside II, maintainmost of interactions with PXR protein, which keep the ligand binding
stable in the binding domain. Hence, we propose BEMG and tangshenoside II as potential lead compounds for further study in
drug development process with the PXR protein.

1. Introduction

Recently, cardiovascular disease, also known as loop cir-
culatory system diseases or disorders, is one of the seri-
ous diseases including heart disease, stroke, atherosclero-
sis, myocardial infarction, hypertension, hypotension, and
thrombosis. It is the top leading cause of death in the United
States and most European countries. More than 83.6 million
Americans have the cardiovascular problems; the patients of
cardiovascular disease in other Western countries are also
growing yearly [1]. Family history, obesity, latent diseases,
such as diabetes, gout and kidney disease, and bad habits,
diet, the environment of toxic substances, and drugs are the
risk factors for cardiovascular disease [2–4]. Environmental

pollution and chemicals also promote the occurrence of
blood vessel function disorders and cardiovascular diseases.
We should consider how to regulate and protect the blood
vessels [5].

Nowadays, many distinct mechanisms of diseases have
been identified [6, 7] to determine the potential target
proteins for drug design against each disease [8–11]. Human
pregnane X receptor, PXR, plays a crucial role in exogenous
metabolism for rabbit, rat, mouse, and human [2–5]. Some
studies indicate that PXR also plays an important role in
endobiotic metabolism for rabbit, rat, mouse, and human
[12–22]. Activated PXR binds to response elements in the
promoters and upregulates the transcription of Phases I
and II drug-metabolizing enzymes, for example, glutathione
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Figure 1: Disordered disposition predicted by PONDR-Fit.

S-transferases (GSTs) and cytochrome P450 (CYP)s, and
transporters, for example, multidrug resistance protein 1
(MDR1) [12, 13]. It provides amechanism for the blood vessels
to protect itself and the underlying tissue under exogenous
and endobiotic insults [14].

The human pregnane X receptor, PXR (NR1I2, also
known as PAR or SXR), is a key transcription factor gene
expression and regulation of CYP3A. It is combined by
DNA binding domain (DBD) and ligand binding domain
(LBD) [19–21]. It is composed of three 𝛼-helices and five
𝛽-folds formed around globular ligand binding cavity [22].
PXR can be activated by variant ligands, including drug
[12], endogenous compounds [12, 23], and environmental
contaminants [24]. PXR has a similar protective effect in the
vessel and in liver, which can stop the liquid, the solute, and
the cells in the vessel wall. Therefore, the PXR activation
can protect the blood vessels from damage of hazardous
substances. In this study, we aim to investigate the potent lead
compounds as PXR receptor agonist against cardiovascular
disease.

Recently, in silico researches have been broadly used
in the drug design [25–29]. Many compounds extracted
from traditional Chinese medicine (TCM) had been deter-
mined as potential lead compounds for many different
diseases, such as stroke [30–32], tumors [33–36], inflam-
mation [37], metabolic syndrome [38–40], viral infection
[41, 42], and some disorders [43–45]. As structural disor-
dered amino acids in the binding domain of protein may
affect the ligand binding with target protein and induce
side effect [46, 47], the disordered amino acids of PXR
protein were predicted before virtual screening. For TCM
compounds filtered by virtual screening, the interactions of
the docking poses in the docking simulation may be mod-
ified under dynamic conditions. We employed the molec-
ular dynamics (MD) simulations to validate the stability

of each docking pose. In addition, the biological activi-
ties of potential TCM candidates were predicted by three
distinct models.

2. Materials and Methods

2.1. Data Collection. The X-ray crystallography structure of
the human pregnane X receptor (PXR) was downloaded
from RCSB Protein Data Bank with PDB ID 3R8D [48].
The disordered amino acids of PXR protein were pre-
dicted using PONDR-Fit [49] protocol with the sequence
of PXR protein from Swiss-Prot (UniProtKB: O75469). The
PXR protein has protonated the final structure of protein
with Chemistry at HARvard Macromolecular Mechanics
(CHARMM) force field [50] and removed crystal water
using Prepare Protein module in Discovery Studio 2.5
(DS 2.5). The binding domain was defined by the volume
of the cocrystallized anti-HIV drug, PNU-142721. TCM
compounds from TCM Database@Taiwan [51] have proto-
nated the final structure and have been filtered by Lipinski
et al.’s Rule of Five [52] using Prepare Ligand module
in DS 2.5.

2.2. Docking Simulation. The prepared TCM compounds
have been docked in the binding domain of PXR protein
using LigandFit protocol [53] in DS 2.5 which docks ligands
into the binding domain using a shape filter and Monte-
Carlo ligand conformation generation and then optionally
minimized with CHARMM force field [50] and rejected the
similar poses by the clustering of saved docking pose. The
consensus scores were calculated using the properties of -
PLP1, -PLP2, -PMF, -PMF04, dock score, Jain, LigScore1
Dreiding, LigScore2 Dreiding, ligand internal energy, Ludi 1,
Ludi 2, and Ludi 3.
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Figure 2: Comparative plots of observed versus predicted activity for (a) SVM, (b) MLR, and (c) BNT models.

2.3. Biological Activity Prediction. Three distinct prediction
models, multiple linear regression (MLR), support vector
machine (SVM), and Bayes network toolbox (BNT) models,
were employed to predict the biological activity for the
TCM compounds using the pEC

50
(log(1/EC

50
)) value of

25 compounds out of 33 PXR agonists [54]. The suitable
molecular descriptors for constructing the predictionmodels

were selected using genetic function approximation module
[55] in DS 2.5, and the protocol estimates the fitness of
individual model using square correlation coefficient (𝑅2).
The prediction models have also been validated by cross
validation test. In addition, MLR and BNT models were
performed using MATLAB, and SVMmodel was performed
using LibSVM developed by Chang and Lin [56].
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Figure 3: Chemical scaffold of control and the top three candidates: (a) bis(4-hydroxybenzyl) ether mono-beta-D-glucopyranoside (BEMG),
(b) ixerisoside, (c) tangshenoside II, and (d) PNU-142721.

2.4. Molecular Dynamics (MD) Simulation. For each docking
pose in the dock simulation, the protein-ligand complex
has been simulated under dynamic conditions with classical
molecular dynamics theory using Gromacs 4.5.5 [57]. The
topology and parameters for PXR protein with CHARMM27
force field and each ligandwere provided using pdb2gmxpro-
tocol in Gromacs and SwissParam program [58], respectively.
A cubic box is performed with the box edge approximate
1.2 nm from the molecules periphery and solvated using
TIP3P water model neutralized by 0.145MNaCl model using
Gromacs. Then the steepest descent [59] was employed to
remove bad van der Waals contacts with a maximum of
5,000 steps. In equilibration section, the position-restrained
molecular dynamics simulation was employed using linear
constraint algorithm, NVT equilibration, Berendsen weak
thermal coupling method, and particle mesh Ewald method.

A total of 40 ns production simulation with time step in
unit of 2 fs was performed using particle mesh Ewald (PME)
option andNPT ensembles. A series of protocols in Gromacs,
such as g rms, g gyrate, g msd, g sas, g energy, g rmsf, and
do dssp, was employed to analyze the MD trajectories.

3. Results and Discussion

3.1. Disordered Protein Prediction. The disordered dispo-
sition for the sequence of PXR protein from Swiss-Prot
(UniProtKB: O75469) predicted by PONDR-Fit was illus-
trated in Figure 1. As the residues in the binding domain do
not lie in the disordered region, the binding domain of PXR
protein has a stable structure in protein folding.

3.2. Biological Activity Prediction. GFA (genetic functional
analysis) protocol in DS 2.5 was employed with 204 descrip-
tors to determine the ten optimum molecular descriptors
for constructing prediction models with 25 compounds of
training set. The selected descriptors were ES Sum dNH,
ES Sum ssNH, ES Sum sssN, ES Count aaCH, ES Count
ssNH, Num RingBonds, Molecular PolarSASA, IAC Total,
Jurs DPSA 3, and Jurs PPSA 1. According to these selected
descriptors, the functional formula of MLR model was
constructed as follows:

pEC
50
= − 1.24629 − 0.44990 × ES Sum dNH
+ 1.29360 × ES Sum ssNH
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Figure 4: Docking pose of PXR complex with (a) BEMG, (b) ixerisoside, (c) tangshenoside II, and (d) PNU-142721.

+ 0.65592 × ES Sum sssN

− 0.28544 × ES Count aaCH
− 2.05864 × ES Count ssNH

+ 0.16557 ×Num RingBonds

+ 0.01283 ×Molecular PolarSASA

− 0.11968 × IAC Total + 0.05874 × Jurs DPSA 3

+ 0.00872 × Jurs PPSA 1.
(1)

The SVM and BNT models were also constructed with
the identical training set and descriptors. The correlation of
predicted and observed activities shown in Figure 2 illustrates
the correlation trend and 95% prediction bands for each
prediction model. The square correlation coefficients (𝑅2) of
training set for SVM, MLR, and BNT models are 0.9738,
0.9706, and 0.6086, respectively.These prediction models are
acceptable for predicting activity of PXR protein.

3.3. Docking Simulation. According to the experimental
results (Table 1), the consensus score, dock score, H-bond
forming residues, H-bond quantity, and the predicted
activities by SVM, MLR, and BNT models are used to
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Figure 5: Docking pose of PXR complexwith (a) BEMG, (b) ixerisoside, (c) tangshenoside II, and (d) PNU-142721 drawn by LigPlot program.

rank the top 20 TCM compounds. For the top three
TCM compounds, bis(4-hydroxybenzyl) ether mono-𝛽-D-
glucopyranoside (BEMG), ixerisoside, and tangshenoside
II, BEMG was extracted from Gastrodia elata [60], which
have been indicated the effect of reducing blood pressure,
increasing the heart, cerebral blood flow, and reducing
cerebral vascular resistance [61, 62]. Ixerisoside was extracted
from Cichorium intybus [63], which can improve diabetes
[64] and clear toxins in the liver [65]. Tangshenoside II

was extracted from root of Codonopsis tangshen [66], which
has excitatory effects for nervous system, and can enhance
the body resistance; expansion of peripheral vascular and
blood pressure, and inhibit the pressor effect of epinephrine,
regulate gastrointestinal motility, anti-ulcer, inhibition of
gastric acid secretion, reducing the activity of pepsin, raise
leukocyte level declined after chemotherapy and radiation.
The chemical scaffold top TCM compounds and PNU-142721
are illustrated in Figure 3. According to the docking poses
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Figure 6: Analysis of MD trajectories generated by Gromacs: (a) root-mean-square deviations (RMSDs), (b) radii of gyration, (c) mean
square deviation (MSD), and (d) total solvent accessible surface area (SASA).
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Figure 7: Total energy of PXR complex with (a) BEMG, (b) ixerisoside, (c) tangshenoside II, and (d) PNU-142721.

in Figures 4 and 5, the top three candidate compounds and
control have hydrogen bonds (H-bonds) with the common
amino acid Gln285 exist.The top three candidate compounds
have H-bonds with Ser247. In addition, BEMG still produces
hydrogen bonds with His327 and His407 and generates
𝜋 bond with His407 and Trp299. Tangshenoside II will
produce additional hydrogen bond with Met243, as well
as PNU-142721 will produce 𝜋 bond with Phe288. Figure 5
illustrates the hydrophobic contacts between each compound
and residues in the binding domain. The top three can-
didate compounds and control have hydrophobic contacts
with common residues Phe288 and Trp299, and all TCM

compounds have hydrophobic contacts with residue Phe281.
The docking results indicate that the top three TCM candi-
date compounds have higher binding affinities than control.
In addition, they have H-bonds with key residues Ser247 and
Gln285 and hydrophobic contacts with key residues Trp299
and Phe288.

3.4. Molecular Dynamics Simulation. MD simulation was
employed to validate the stability of interactions between
PXR protein and each compound. Root-mean-square devi-
ation (RMSD) illustrated the atomic fluctuations during
MD simulation in Figure 6(a). Protein RMSD displays the
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Figure 8: Root mean square fluctuation (RMSF) for residues in PXR complex with (a) BEMG, (b) ixerisoside, (c) tangshenoside II, and (d)
PNU-142721 over 35–40 ns MD simulation.
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Figure 9: Changes of secondary structure in the PXR complex with (a) BEMG, (b) ixerisoside, (c) tangshenoside II, and (d) PNU-142721
during MD simulation.
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Figure 10: RMSD matrix and clustering diagram of MD conformations over 30–40 ns for PXR complex with (a) BEMG, (b) ixerisoside, (c)
tangshenoside II, and (d) PNU-142721. Clusters were calculated using a cutoff of 0.1 nm.
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Figure 11: Snapshots of docking pose in docking and MD simulation for PXR complex with (a)–(c) BEMG, (d)–(f) ixerisoside, (g)–(i)
tangshenoside II, and (j)–(l) PNU-142721.

changes in the protein structure of PXR induced by the
TCM candidates and control, which are tended to stabilize
after MD simulation. For the ligand RMSD in Figure 6(a),
the value of BMEG tends to stabilize after 2 ns of MD simula-
tion at approximately 0.21 nm. For the other TCM candidates
and control, the ligand RMSD also tends to stabilize after
20 ns of MD simulation. The variation of radii of gyration

for protein and each ligand in Figure 6(b) indicates that
each compound may not lead to significant variation to PXR
protein under dynamics condition. The slope of the MSD
showed in Figure 6(c) indicates that ixerisoside induces larger
diffusion changes than others, which has an increase the slope
after 20 ns. The variation of solvent accessible surface area
(SASA) of PXR protein and each ligand in the complexes
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Figure 12: Distance variation of H-bonds for PXR complex with (a) BEMG, (b) ixerisoside, (c) tangshenoside II, and (d) PNU-142721 during
MD simulation.
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Figure 13: Variation of ligand torsion angles for each PXR complex during 40 ns of MD simulation.

over 40 ns of MD simulation is illustrated in Figure 6(d).
It shows that there is no significant change in both protein
SASA and ligand SASA. The averages of ligand SASA of
BEMG, ixerisoside, tangshenoside II, and PNU-142721 are
1.85482 nm/NS2, 0.937577 nm/NS2, 0.499383 nm/NS2, and
2.896435 nm/NS2, respectively. For the variation of total
energy of each protein complex displayed in Figure 7, there
is also no significant change under dynamic conditions.
Figure 8 displays the root mean square fluctuation (RMSF) of
each residue in each PXR protein complex. The key residues
in docking simulation, which are Ser247, Gln285, Phe288,
Trp299, and His407, have less flexibility under dynamic con-
ditions. Figure 9 displays the change of secondary structure of
PXR protein in each complex. There is no significant change
in the secondary structure of PXR protein for each protein
complex.

The representative structures of PXR protein complexes
after MD simulation were identified by the RMSD values
and graphical depiction of the clusters analysis with a
RMSD cutoff of 0.1 nm during 30–40 ns of MD simulation
(Figure 10).Thedocking poses in docking simulation and two
representative structures after MD simulation for each PXR
protein complex are illustrated in Figure 11. For BEMG, it
maintains the H-bonds with Gln285 and Ser247. Ixerisoside
forms the H-bond with Ser208 instead of the H-bonds in
docking simulation. Tangshenoside II also has stable H-
bondswithGln285, Trp299, andMet323 afterMDsimulation,
as PNU-142721 maintains H-bonds with His407. To discuss
the stabilities of H-bonds under dynamics condition, the
H-bond occupancy for key residues of PXR protein and
variation of each H-bond over 40 ns of MD simulation are
displayed in Table 2 and Figure 12, respectively. BEMG has
the stable H-bonds with Ser247, Gln285, and His407 after
30 ns of MD simulation. Ixerisoside has stable H-bonds

with Ser208 and forms an H-bond with Arg203 instead of
Gln285 and Trp299. Tangshenoside II has stable H-bonds
with Gln285 and Trp299 and loses the H-bond with Ser247
after 2 ns of MD simulation. For control, PNU-142721, has
stable H-bonds withHis407. Figure 13 illustrates the variation
of torsion angles in each ligand over 40 ns of MD simulation.
The variation of each torsion angle supports the result of
distance variation of H-bonds in Figure 12.

4. Conclusion

This study aims to investigate the potent TCM candidates
for PXR protein. The top three TCM compounds, BEMG,
ixerisoside, and tangshenoside II, have displayed higher
potent binding affinities than the positive control, PNU-
142721, in the docking simulation. According to the docking
results, the top three candidate compounds and control has
hydrophobic contacts with common residues Phe288 and
Trp299, and all TCM compounds have hydrophobic contacts
with residue Phe281. The docking results indicate that the
top three TCM candidate compounds have higher binding
affinities than control. In addition, they have H-bonds with
key residues Ser247 and Gln285 and hydrophobic contacts
with key residues Trp299 and Phe288. The MD simulations
are performed to optimize the result of docking simulation
and validate the stability of H-bonds between each ligand
and PXR protein under dynamic conditions. For the MD
simulation, the top three TCM compounds maintain most of
interactions with PXR protein, which keep the ligand binding
stable in the binding domain. In addition, they have potential
bioactivities predicted by the three distinct models. Hence,
we propose BEMG and tangshenoside II as potential lead
compounds for further study in drug development process
with the PXR protein.
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Table 1: Docking results and predicted pEC50 for top TCM compounds and PNU-142721.

Name CS∗ Dock score H-bond forming
residues H-bond quantity Predicted activity∗

SVM∗ MLR∗ BNT∗

Bis(4-hydroxybenzyl) ether
mono-beta-D-glucopyranoside 11.00 100.59 Ser247, Gln285,

His327, His407 6 5.17 2.92 5.29

Ixerisoside 10.00 103.44 Ser247, Gln285 2 6.34 4.22 5.23

Tangshenoside II 8.00 105.556 Ser247, Gln285,
Met243 6 6.51 3.77 4.89

Ruine 8.00 104.085 Ser247, His407 4 5.24 2.73 5.22

Crotalaburnine 9.00 100.181 Ser247, Gln285 3 5.62 1.70 4.50
Dihydroferulic acid
[3-(4-hydroxy-3-methoxyphenyl)
propionic acid]

9.00 98.854 Gln285, His327,
Met425 4 6.11 2.89 4.44

Corchoionoside C 8.00 99.075 Ser247, Met425 2 6.36 3.10 4.64

Beta-D-glucosyl-columbianetin 8.00 98.283 Gln285 1 6.05 3.96 5.24

Ethyl rosmarinate 8.00 97.721 Hisa327, His407 2 5.91 2.94 4.63

Persicarin 7.00 102.239 Ser247, Gln285 2 7.24 9.68 5.83
6beta,7beta,16beta,17-Tetrahydroxy-
ent-kauranoic
acid

7.00 100.892 Ser247, Gln285,
His407 5 6.43 4.22 4.96

Androsin 7.00 99.939 Gln285, His327,
His407 5 6.35 3.47 4.62

Baihuaqianhuoside 7.00 98.004 Ser247, Gln285,
Met243 3 6.08 2.77 4.51

Eleutheroside B 7.00 97.823 Gln285 3 6.58 3.94 4.93

Androsin 6.00 102.747 Gln285, His327,
His407 4 6.28 3.22 4.55

4-Hydroxy-3-methoxy-
acetophenone-4-O-beta-D-
glucopyranoside

6.00 99.008 Gln285, His407 3 6.35 3.47 4.62

Nortrachelogenin 6.00 98.94 Gln285, Met425 2 5.14 1.75 4.64
3-Methoxy-4-beta-D-
glucopyranosyloxypropiophenone 5.00 98.645 Ser247, Gln285,

His327 4 6.08 2.77 4.51

Azelaic acid 3.00 102.435 Ser247, His327,
His407 4 7.16 5.44 3.63

Sulfoorientalol D 3.00 100.402 Gln285, His407 3 6.59 3.90 4.42

PNU-142721∗ 0 46.172 Ser247, Gln285,
His407 1 5.72 0.54 4.10

PNU-142721: control.
CS: consensus score.
SVM: support vector machine.
MLR: multiple linear regression.
BNT: Bayesian network.
Predicted activity: −log (activity, where activity = % transactivation of PXR receptor × 10𝜇mol/L).
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Table 2: H-bond occupancy for key residues of PXR protein complex with the top three candidates and PNU-142721 over 40 ns molecular
dynamics simulation.

Ligand H-bond Ligand atom Amino acid Distance (nm) Occupancy (%)
Max. Min. Average

BEMG

1 O25 Ser247:HG1 0.62 0.18 0.36 12.85%
2 O26 Ser247:HG1 0.90 0.19 0.49 7.60%
3 O17 Ser247:HG1 0.91 0.18 0.48 4.40%
4 O27 Ser247:HG1 0.86 0.19 0.47 4.00%
5 O17 Gln285:HE22 1.08 0.17 0.32 59.90%
6 O27 Gln285:HE22 0.89 0.18 0.36 31.45%
7 H41 Gln285:OE1 1.00 0.16 0.54 9.75%
8 H49 Gln285:NE2 1.07 0.24 0.55 1.95%
9 O28 His407:HE2 0.89 0.18 0.42 18.95%
10 O19 His407:HE2 0.88 0.20 0.56 4.20%
11 O25 His407:HE2 0.61 0.21 0.40 5.75%
12 H52 His407:ND1 0.78 0.20 0.47 1.80%

Ixerisoside

1 H57 Ser208:O 0.57 0.15 0.21 95.70%
2 O19 Arg203:HH22 1.55 0.16 0.58 7.15%
3 H57 Ser208:OG 0.90 0.17 0.50 6.85%
4 O19 Arg203:HH12 1.66 0.16 0.77 2.45%
5 O29 Gln285:HE22 0.99 0.18 0.52 6.45%
6 H55 Gln285:OE1 0.99 0.18 0.60 3.45%
7 O22 Gln285:HE22 0.91 0.21 0.65 0.50%
8 H55 Trp299:NE1 0.98 0.21 0.55 5.50%
9 H56 Trp299:NE1 0.69 0.23 0.45 1.55%

Tangshenoside II

1 H46 Gln285:OE1 0.61 0.15 0.25 84.20%
2 O8 Gln285:HE22 0.50 0.17 0.26 78.75%
3 O23 Gln285:HE22 0.51 0.17 0.26 76.70%
4 O9 Gln285:HE22 0.57 0.20 0.38 13.40%
5 O7 Gln285:HE22 0.75 0.23 0.47 1.00%
6 O7 Ser247:HG1 0.67 0.19 0.46 1.10%
7 O26 Ser247:HG1 0.85 0.19 0.59 0.30%
8 H43 Trp299:NE1 0.71 0.19 0.28 71.05%
9 H45 Trp299:NE1 0.69 0.22 0.44 6.50%
10 O26 His407:HE2 0.70 0.17 0.42 38.05%

PNU-142721

1 N9 Gln285:HE22 1.03 0.17 0.50 2.40%
2 H28 His407:ND1 0.82 0.19 0.30 54.55%
3 H28 His407:O 1.05 0.20 0.31 44.55%
4 H28 His407:NE2 0.65 0.24 0.37 5.60%

H-bond occupancy cutoff: 0.3 nm.
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