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Abstract: This paper presents a novel sensor-to-segment calibration procedure for inertial sensor-based
knee joint kinematics analysis during cycling. This procedure was designed to be feasible in-field,
autonomously, and without any external operator or device. It combines a static standing up
posture and a pedaling task. The main goal of this study was to assess the accuracy of the new
sensor-to-segment calibration method (denoted as the ‘cycling’ method) by calculating errors in terms
of body-segment orientations and 3D knee joint angles using inertial measurement unit (IMU)-based
and optoelectronic-based motion capture. To do so, 14 participants were evaluated during pedaling
motion at a workload of 100 W, which enabled comparisons of the cycling method with conventional
calibration methods commonly employed in gait analysis. The accuracy of the cycling method was
comparable to that of other methods concerning the knee flexion/extension angle, and did not exceed
3.8◦. However, the cycling method presented the smallest errors for knee internal/external rotation
(6.65 ± 1.94◦) and abduction/adduction (5.92 ± 2.85◦). This study demonstrated that a calibration
method based on the completion of a pedaling task combined with a standing posture significantly
improved the accuracy of 3D knee joint angle measurement when applied to cycling analysis.

Keywords: inertial sensors; misalignment correction; accuracy; pedaling motion; sensor-to-segment
calibration; 3D knee joint angles

1. Introduction

The quantification of 3D kinematical parameters such as body segment orientations and joint angles
is important in the monitoring of cycling to provide relevant biomechanical parameters associated with
performance optimization and/or injury prevention [1,2]. For instance, some studies have observed that
increases in maximum knee flexion (from 25◦ to 35◦) could cause a reduction in cycling economy and
anaerobic mean power output [3], which are commonly known to affect performance. The importance
of the knee joint to performance can also be illustrated by an increasing contribution of knee moment
to performance as intensity increases [1]. Simultaneously, the knee is considered to be one of the most
common sites of injuries in cyclists, especially for overuse injuries [4]. Traumatic risk can be exacerbated
by multiple factors, such as non-sagittal knee deviations (e.g., knee abduction/adduction or internal
external rotations) [1,2,5], excessive knee flexion angles resulting from a low saddle height, or excessive
knee extension from a higher saddle height [6–8]. Therefore, knee joint kinematics is a subject of special
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attention in cycling biomechanics. Numerous experiments based on optoelectronic motion capture
have been conducted in the laboratory to analyze kinematical variables such as knee rotations during
cycling [9]. However, the assessment of kinematics in real conditions during training or competition is
a challenging task, especially since conventional optoelectronic motion capture systems suffer from
major drawbacks in this regard. Indeed, performing 3D motion capture outside of the laboratory
requires a large number of pedaling cycles and large capture volumes, which makes it challenging to
use conventional optical motion capture systems [10]. Therefore, this analysis was often limited due
to the restricted field of view associated with the number of cameras. Moreover, the acquisition to
reconstruction process associated with marker-based optical systems may be cumbersome and time
consuming, thereby reducing its effectiveness as a feedback tool and limiting its application in practice.
Finally, reliable 3D quantitative camera-based analysis can only be performed off-line in a restricted
area, and thus, cannot be used by coaches during training sessions for detecting and immediately
correcting technical mistakes.

To overcome these limitations, recent advances in the development of microelectromechanical
systems (MEMS) through wearable measurement systems, such as inertial measurement units (IMU),
seem to be a relevant solution for in situ cycling analysis as they allow a continuous data acquisition
process throughout a cycling exercise. As IMUs are small, lightweight, and do not interfere with the
execution of movements during measurements, they are now increasingly used for sports and clinical
biomechanics [11–13]. An inertial measurement unit embeds a 3D accelerometer and a 3D gyroscope,
which are eventually linked to a magnetometer. The accelerometer provides the linear accelerations of
the sensor, the gyroscope gives the angular rates, while the magnetometer measures the magnetic field,
making it a source of information concerning the orientation of the IMU as regards to the magnetic
north. Generally, combining these three types of information (accelerometer, gyroscope, magnetometer)
through sensor-fusion algorithms [14,15] is proving to be a powerful method to obtain the 3D orientation
of the IMU sensor in the absence of ferromagnetic disturbances in the close environment or under
homogeneous earth magnetic field conditions [16]. Concerning cycling, Cockroft [17] demonstrated
that IMUs may experience significant magnetic interferences of up to a 50% deviation in intensity
near the pedals and handlebars, causing significant errors in kinematic measurements. In such
a case, an alternative approach would involve combining the magnetometer and inertial sensors
and correcting the magnetic field disturbances by developing specific sensor fusion algorithms [15].
However, the estimates of the magnetic north from two IMUs may differ due to discrepancies in
the magnetometer data [18,19], which can be a major limitation of using a magnetometer despite ad
hoc corrective methods. Another approach completely omits the magnetometer data to assess IMU
orientation using only a 6-DOF measurement (3D linear accelerations and 3D angular rates), although
it generally requires dedicated methods for biomechanical relevance [20–23].

Beyond the common problem of the drift related to the integration of gyroscope data, one of
the major issues in joint kinematics assessment using IMU devices lies is the misalignment of sensor
axes with the anatomical body segment axis, which is not straightforward [12]. This topic is crucial
when attempting to provide functionally meaningful 3D joint kinematics based on inertial sensors.
Usually, this problem is solved by performing calibration procedures for the calculation of the relative
orientation between IMU frames and body segment frames. In other words, body segment orientation
can be assessed from the IMU orientation and relative orientation of the body segment frame with
respect to the sensor frame. This relationship is assumed to be time-invariant and, hence, can be
accomplished once the sensors are mounted on the segment using ad hoc calibration procedures.
Thus, several approaches have been developed to determine the sensor frame’s orientation with respect
to the body segment frame [12]. The simplest way to align the sensor frame with the segment is to
perform it manually [24], with the accuracy of this alignment being directly dependent on the ability
of the operator to fix the sensor. Thus, Picerno [25] used a calibration device to pinpoint anatomical
landmarks for identification of the segment axes. However, due to the requirement of an external
experienced operator with anatomic and palpation capacities, such an approach compromises its use
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for the purposes of an easy self-calibration in a daily training routine. Other calibration procedures
rely on functional methods that involve predefined movements and/or static postures of the user to
define some joint axes of rotation or the body segment axes that are known during the specific tasks.
Based on more arbitrary movements, alternative methods using kinematic models and constraints
allow the identification of the joint axis coordinates [23,26–28]. Whereas these latter methods consider
non-linear optimization algorithms, a recent computationally-efficient method has been proposed to
produce estimates of the axis of rotation through principal component analysis [29].

Using an IMU including a magnetometer, the simplest approach consists of holding a standardized
posture, such as an N-pose or T-pose, during which all body segment axes are calibrated with the
same posture [30]. In the case where the magnetometer data are corrupted, functional methods using a
combination of postures may be employed based on the accelerometer and gyroscope only. To date,
these calibration methods have been conducted either on purely static postures, purely dynamic
movements, or by combining both static and dynamic tasks. Calibration methods based on static
postures are based on an accelerometer, which is used to obtain the orientation of the gravity vector
when no acceleration of the IMU frame exists, that in turn is used as an estimator of the body segment
axis during specific static postures [14,31–33]. Calibration methods based on dynamic movements use
gyroscopic data that allow the calculation of the body segment axes when performing specific motions
to isolate the functional rotation axis [33–36]. In such a context, dynamic tasks assume that motion
occurs strictly in an anatomical plane, and thus, the rotation axis is defined as being directly orthogonal
to this plane [37]. The functional method proposed by Palermo [31] combined two postures: a standing
posture (similar to the N-pose) and a lying down posture. Other functional methods use dynamic
motions to estimate the body segment axes. For example, Favre et al. proposed a calibration for the
shank, based on a flexion/extension movement of the knee and a rotation of the shank in a frontal
plane [34], which enabled an assessment of the medio-lateral and anteroposterior axes, respectively.
Finally, two studies [32,37] proposed combining static and dynamic tasks to perform the calibration.
Both studies used the standing up posture to define the longitudinal axis of the body segment in the
sensor frame.

It has been demonstrated that the accuracy of body segment orientation, as well as joint angle
measurement, are impacted by the choice of calibration tasks [30,33,38]. Indeed, the validity of such
procedures is based on the estimation of the accuracy, which has not been thoroughly tested with
regard to lower limb motions, and, more specifically, in cycling. However, misalignment between the
segment frame and the sensor frame is crucial and it affects the accuracy of joint angle estimation.
Indeed, Brennan et al., [39] showed a direct relationship between perturbation of the body segment
orientation and joint angle measurement accuracy. Previous studies showed that accuracy of the body
segment orientation is dependent on the calibration procedures that can be achieved either in an
autonomous or assisted way, bearing in mind that the ability to perform self-calibration procedures
may be important for easy use in-field. Therefore, Robert-Lachaine et al. [30] evaluated calibration
procedures based on a single posture executed in a self-placement condition, as well as the condition of
passive placement by an operator. Intervention of an external operator has been revealed to significantly
increase the accuracy of the calibration process. While this issue has been examined in a sports context,
such as skiing [40], to the best of the authors knowledge, cycling has not been the subject of particular
interest with regard to the development of dedicated calibration methods. Indeed, despite promising
technological developments enabling lower limb motion tracking during pedaling motion based on
IMUs, no study has addressed the sensor-to-body misalignment [41–43]. However, cycling appears to
be propitious for setting up embedded calibration tasks using the implicit constraint at the foot-pedal
interface, which in turn may improve the accuracy of 3D knee joint angles during the pedaling motion.

With regard to the importance of the knee joint in cycling, the aim of this study was to propose
a novel calibration method for assessing knee joint kinematics during cycling using accelerometer
and gyroscope data, without requiring any external operator. A comparison of this new method to
conventional ones was proposed. To this end, the accuracy of the calibration process was evaluated
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in terms of body segment orientation and corresponding 3D joint angles during pedaling motion,
with respect to conventional ISB model based on bony landmarks [44,45].

2. Materials and Methods

2.1. Participants

Fourteen healthy recreational cyclists took part in the study. All participants, 10 males and
4 females (21 ± 3 years, 172.42 ± 8.92 cm, 66.86 ± 16.54 kg), signed an informed consent form in
agreement with the local ethical committee and conducted in accordance with the 1975 declaration
of Helsinki.

2.2. Experimental Set Up

2.2.1. Motion Capture Equipment

Kinematic data were simultaneously recorded using an inertial motion capture system and an
optoelectronic motion capture system. The inertial system (MTw, Xsens Technologies, Enschede,
The Netherlands) had small dimensions (34.5 × 57.8 × 14.5 mm); it was a low power and low weight
(27 g) device that consisted of 3D accelerometers and 3D gyroscopes. Accelerometer and gyroscope
data were sampled at the same frequency of 1800 Hz with a full-scale set at ±16 g and ±1200◦/s,
respectively. Analog inertial data were low-pass filtered (120 Hz for the accelerometers and 140 Hz for
the gyroscopes) and transmitted via a wireless Bluetooth connection with a sampling frequency of
75 Hz. The IMUs were firmly attached on the thigh and shank of the right leg with custom elastic
bands. The IMU on the thigh (TH) was placed in the middle of the body segment aligning the Y-IMU
axis to the long axis of the thigh, with the Z-IMU axis pointing laterally. The IMU on the shank (SH)
was placed over the bulge of the gastrocnemius on the lateral face, aligning the Y-IMU axis to the long
axis of the shank, with the Z-IMU axis pointing laterally. The estimation of the orientation of the IMU
sensors was computed by combining raw data from the gyroscopes and accelerometers through a
Madgwick filter as in [46].

The optoelectronic motion capture system was set-up with 12 VICON cameras (Oxford Metrics,
Inc., Oxford, UK) operating at 100 Hz. Participants were equipped with a full-body set of 43 markers
placed on anatomical landmarks to calculate the anatomical rotations following the International
Society of Biomechanics (ISB) recommendations [45]. To evaluate the real orientation of the inertial
sensors, three markers were fixed on each IMU to define a cluster. Orientations of the clusters were
computed based on optical motion capture system [15,31,41,47,48] (Figure 1). The 3D coordinates
were smoothed using a second-order Butterworth low-pass filter with a cut-off frequency of 10 Hz as
described in [49].

2.2.2. Definition of the Coordinate Systems

In biomechanics, joint angles are calculated by comparing the relative orientations between the
anatomical frames established for adjacent body segments that are proximal and distal to the joint of
interest. Using optical systems, the anatomical frames are defined based on the anatomical landmarks.
Owing to different conventions for defining anatomical frames based on IMU measurements, the
calculated anatomical frame was thus different from the one obtained by the optical system, for any body
segment. Anatomical joint angles (e.g., flexion/extension, abduction/adduction, and internal/external
rotation) can be determined from the body segment anatomical frames through a Cardan sequence of
rotation [50].

Body segment frames, IMU frames, and the knee joint frame are depicted in
Figure 2. The anatomical body segment coordinate systems for the thigh and the shank
ACSTH

BS =
[

AXTH
BS

AYTH
BS

AZTH
BS

]
and ACSSH

BS =
[

AXSH
BS

AYSH
BS

AZSH
BS

]
respectively, are obtained

using optoelectronic motion capture system and ISB model based on anatomical landmarks. Moreover,
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the IMU coordinate systems for the thigh and the shank are defined as CSTH
IMU =

[
XTH

IMU YTH
IMU ZTH

IMU

]
and CSSH

IMU =
[

XSH
IMU YSH

IMU ZSH
IMU

]
, respectively. Based on anatomical frames computed

from anatomical landmarks and optoelectronic motion capture, the knee joint coordinate system
CSJ =

[
XJ YJ ZJ

]
is defined following the recommendations of the ISB [44,45]. Thus,

flexion/extension corresponds to a rotation about the Z-axis of the thigh coordinate system ZJ = ZTH
BS ,

the internal/external rotation is defined as a rotation about the Y-axis of the thigh coordinate system
YJ = YSH

BS , and abduction/adduction is defined as a rotation about the floating axis. From the markers
rigidly attached to the IMU, clusters were defined for the thigh and the shank. The cluster coordinate
systems are defined as CSTH

CLU =
[

XTH
CLU YTH

CLU ZTH
CLU

]
and CSSH

CLU =
[

XSH
CLU YSH

CLU ZSH
CLU

]
,

respectively. Finally, CSMCS =
[

XMCS YMCS ZMCS
]

corresponds to the global coordinate system
of motion capture systems. The body segment frames estimated using the IMU are slightly different
from the anatomical body segment frame ACSTH

BS and ACSSH
BS that are commonly calculated from bony

landmarks or X-rays. Since anatomical frames cannot be directly expressed using IMU measurements,
technical body segment frames are commonly used as an estimate of anatomical frames, sometimes
called technical–anatomical frames [51]. Since such technical frames depend on the sensor-to-segment
calibration method, in the remainder of the paper, we use mCSTH

BS and mCSSH
BS to indicate the technical

body segment frames of the thigh and shank estimated from IMU measurements for a given calibration
method m. Details related to the identification of unit vectors used to define these technical frames are
considered in Section 2.3.2.Sensors 2019, 19, x FOR PEER REVIEW  5 of 23 
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IMU represent the IMU coordinate systems for the thigh and the shank. CSJ defines the knee

joint coordinates following the recommendation of the International Society of Biomechanics [45].

2.3. IMU-to-Body Alignment Methods

2.3.1. Calibration Tasks

Participants attended one measurement session divided into two types of calibration task.
Firstly, a conventional calibration procedure where each participant randomly performed five typical
calibration tasks was conducted. The tasks used in this first calibration procedure are widely used in
the literature on sensor-to-segment alignment [18,30,31,34]. Each participant randomly performed the
following calibration tasks, according to the instructions given by the operator at the beginning of
calibration step:

• Standing up posture (SU): Static standing upright posture with feet apart in line with the hip and
knee stretched. In this posture, the longitudinal axis of the thigh and shank are assumed to be
vertical. The lower limb posture is similar to the one used during the T-pose or N-pose [30].

• Lying down (LD): Static lying face down posture. Hence, the anteroposterior axis of the segments
is assumed to be aligned with the vertical axis. Hands are placed between the ground and chin.
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• Knee flexion/extension (KFE): Dynamic task with the participant performing four knee
flexions/extensions from about 10◦ to 90◦ of flexion, in a single leg up-right posture. Participants
were asked to avoid any thigh movement. This task allowed estimation of the knee flexion axis.

• Hip abduction/adduction (HAA): Dynamic task with the participant performing four hip
abductions/adductions in a single leg up-right posture. Participants were asked to avoid
hip external rotations with the foot pointing forward. This task allowed estimation of the
anteroposterior axis of the thigh.

During each repetition, the IMU and optoelectronic motion capture outputs were acquired over
five seconds during static tasks, and over four repetitions during dynamic tasks.

During a second calibration step, participants performed a pedaling task (P) for 2 min at a mean
cadence of 80 rpm. They performed each condition at a workload of 100 W, on a stationary SRM
Indoor trainer (Schoberer Rad Meßtechnik, Jülich, Germany). Power output was measured using
an SRM system (Schoberer Rad Meßtechnik, Science version, Germany) calibrated according to the
manufacturer’s recommendations. Data were recorded throughout the trials. All tasks are depicted in
Table 1. Each task allowed the identification of one or two body segment axis orientations in relation to
the IMU frames.

Table 1. Illustration of the calibration tasks used for the different calibration methods. Each calibration
task allows the identification of at least one unit vector for the thigh or shank body segment frames. SU:
Standing up posture; LD: Lying down; HAA: Hip abduction/adduction; KFE: Knee flexion/extension;
P: Pedaling.

Task. SU LD HAA KFE P

Illustration

Sensors 2019, 19, x FOR PEER REVIEW 7 of 23 

• Standing up posture (SU): Static standing upright posture with feet apart in line with the hip
and knee stretched. In this posture, the longitudinal axis of the thigh and shank are assumed
to be vertical. The lower limb posture is similar to the one used during the T-pose or N-pose
[30].

• Lying down (LD): Static lying face down posture. Hence, the anteroposterior axis of the
segments is assumed to be aligned with the vertical axis. Hands are placed between the ground
and chin.

• Knee flexion/extension (KFE): Dynamic task with the participant performing four knee
flexions/extensions from about 10° to 90°of flexion, in a single leg up-right posture. Participants
were asked to avoid any thigh movement. This task allowed estimation of the knee flexion axis.

• Hip abduction/adduction (HAA): Dynamic task with the participant performing four hip
abductions/adductions in a single leg up-right posture. Participants were asked to avoid hip
external rotations with the foot pointing forward. This task allowed estimation of the
anteroposterior axis of the thigh.

During each repetition, the IMU and optoelectronic motion capture outputs were acquired over 
five seconds during static tasks, and over four repetitions during dynamic tasks. 

During a second calibration step, participants performed a pedaling task (P) for 2 min at a mean 
cadence of 80 rpm. They performed each condition at a workload of 100 W, on a stationary SRM 
Indoor trainer (Schoberer Rad Meßtechnik, Jülich, Germany). Power output was measured using an 
SRM system (Schoberer Rad Meßtechnik, Science version, Germany) calibrated according to the 
manufacturer’s recommendations. Data were recorded throughout the trials. All tasks are depicted 
in Table 1. Each task allowed the identification of one or two body segment axis orientations in 
relation to the IMU frames. 

Table 1. Illustration of the calibration tasks used for the different calibration methods. Each calibration 
task allows the identification of at least one unit vector for the thigh or shank body segment frames. 
SU: Standing up posture; LD: Lying down; HAA: Hip abduction/adduction; KFE: Knee 
flexion/extension; P: Pedaling. 

Task. SU LD HAA KFE P

Illustration 

Unit 
vector 

identified 
for thigh 

𝒀  𝑿  𝑿 𝒁  

Unit 
vector 

identified 
for shank 

𝒀  𝑿 𝒁  𝒁  

2.3.2. Calibration Methods 

Based on the calibration tasks, calibration matrices were obtained by combining pairs of static 
or dynamic tasks. Four calibration methods are presented in this article and they correspond to the task 
combinations depicted in Table 2. Each method systematically required the SU task. The anatomical 
calibration method was defined as the reference method. Other methods employed in this study were 

Sensors 2019, 19, x FOR PEER REVIEW 7 of 23 

• Standing up posture (SU): Static standing upright posture with feet apart in line with the hip
and knee stretched. In this posture, the longitudinal axis of the thigh and shank are assumed
to be vertical. The lower limb posture is similar to the one used during the T-pose or N-pose
[30].

• Lying down (LD): Static lying face down posture. Hence, the anteroposterior axis of the
segments is assumed to be aligned with the vertical axis. Hands are placed between the ground
and chin.

• Knee flexion/extension (KFE): Dynamic task with the participant performing four knee
flexions/extensions from about 10° to 90°of flexion, in a single leg up-right posture. Participants
were asked to avoid any thigh movement. This task allowed estimation of the knee flexion axis.

• Hip abduction/adduction (HAA): Dynamic task with the participant performing four hip
abductions/adductions in a single leg up-right posture. Participants were asked to avoid hip
external rotations with the foot pointing forward. This task allowed estimation of the
anteroposterior axis of the thigh.

During each repetition, the IMU and optoelectronic motion capture outputs were acquired over 
five seconds during static tasks, and over four repetitions during dynamic tasks. 

During a second calibration step, participants performed a pedaling task (P) for 2 min at a mean 
cadence of 80 rpm. They performed each condition at a workload of 100 W, on a stationary SRM 
Indoor trainer (Schoberer Rad Meßtechnik, Jülich, Germany). Power output was measured using an 
SRM system (Schoberer Rad Meßtechnik, Science version, Germany) calibrated according to the 
manufacturer’s recommendations. Data were recorded throughout the trials. All tasks are depicted 
in Table 1. Each task allowed the identification of one or two body segment axis orientations in 
relation to the IMU frames. 

Table 1. Illustration of the calibration tasks used for the different calibration methods. Each calibration 
task allows the identification of at least one unit vector for the thigh or shank body segment frames. 
SU: Standing up posture; LD: Lying down; HAA: Hip abduction/adduction; KFE: Knee 
flexion/extension; P: Pedaling. 

Task. SU LD HAA KFE P

Illustration 

Unit 
vector 

identified 
for thigh 

𝒀  𝑿  𝑿 𝒁  

Unit 
vector 

identified 
for shank 

𝒀  𝑿 𝒁  𝒁  

2.3.2. Calibration Methods 

Based on the calibration tasks, calibration matrices were obtained by combining pairs of static 
or dynamic tasks. Four calibration methods are presented in this article and they correspond to the task 
combinations depicted in Table 2. Each method systematically required the SU task. The anatomical 
calibration method was defined as the reference method. Other methods employed in this study were 

Sensors 2019, 19, x FOR PEER REVIEW 7 of 23 

• Standing up posture (SU): Static standing upright posture with feet apart in line with the hip
and knee stretched. In this posture, the longitudinal axis of the thigh and shank are assumed
to be vertical. The lower limb posture is similar to the one used during the T-pose or N-pose
[30].

• Lying down (LD): Static lying face down posture. Hence, the anteroposterior axis of the
segments is assumed to be aligned with the vertical axis. Hands are placed between the ground
and chin.

• Knee flexion/extension (KFE): Dynamic task with the participant performing four knee
flexions/extensions from about 10° to 90°of flexion, in a single leg up-right posture. Participants
were asked to avoid any thigh movement. This task allowed estimation of the knee flexion axis.

• Hip abduction/adduction (HAA): Dynamic task with the participant performing four hip
abductions/adductions in a single leg up-right posture. Participants were asked to avoid hip
external rotations with the foot pointing forward. This task allowed estimation of the
anteroposterior axis of the thigh.

During each repetition, the IMU and optoelectronic motion capture outputs were acquired over 
five seconds during static tasks, and over four repetitions during dynamic tasks. 

During a second calibration step, participants performed a pedaling task (P) for 2 min at a mean 
cadence of 80 rpm. They performed each condition at a workload of 100 W, on a stationary SRM 
Indoor trainer (Schoberer Rad Meßtechnik, Jülich, Germany). Power output was measured using an 
SRM system (Schoberer Rad Meßtechnik, Science version, Germany) calibrated according to the 
manufacturer’s recommendations. Data were recorded throughout the trials. All tasks are depicted 
in Table 1. Each task allowed the identification of one or two body segment axis orientations in 
relation to the IMU frames. 

Table 1. Illustration of the calibration tasks used for the different calibration methods. Each calibration 
task allows the identification of at least one unit vector for the thigh or shank body segment frames. 
SU: Standing up posture; LD: Lying down; HAA: Hip abduction/adduction; KFE: Knee 
flexion/extension; P: Pedaling. 

Task. SU LD HAA KFE P

Illustration 

Unit 
vector 

identified 
for thigh 

𝒀  𝑿  𝑿 𝒁  

Unit 
vector 

identified 
for shank 

𝒀  𝑿 𝒁  𝒁  

2.3.2. Calibration Methods 

Based on the calibration tasks, calibration matrices were obtained by combining pairs of static 
or dynamic tasks. Four calibration methods are presented in this article and they correspond to the task 
combinations depicted in Table 2. Each method systematically required the SU task. The anatomical 
calibration method was defined as the reference method. Other methods employed in this study were 

Sensors 2019, 19, x FOR PEER REVIEW 7 of 23 

• Standing up posture (SU): Static standing upright posture with feet apart in line with the hip
and knee stretched. In this posture, the longitudinal axis of the thigh and shank are assumed
to be vertical. The lower limb posture is similar to the one used during the T-pose or N-pose
[30].

• Lying down (LD): Static lying face down posture. Hence, the anteroposterior axis of the
segments is assumed to be aligned with the vertical axis. Hands are placed between the ground
and chin.

• Knee flexion/extension (KFE): Dynamic task with the participant performing four knee
flexions/extensions from about 10° to 90°of flexion, in a single leg up-right posture. Participants
were asked to avoid any thigh movement. This task allowed estimation of the knee flexion axis.

• Hip abduction/adduction (HAA): Dynamic task with the participant performing four hip
abductions/adductions in a single leg up-right posture. Participants were asked to avoid hip
external rotations with the foot pointing forward. This task allowed estimation of the
anteroposterior axis of the thigh.

During each repetition, the IMU and optoelectronic motion capture outputs were acquired over 
five seconds during static tasks, and over four repetitions during dynamic tasks. 

During a second calibration step, participants performed a pedaling task (P) for 2 min at a mean 
cadence of 80 rpm. They performed each condition at a workload of 100 W, on a stationary SRM 
Indoor trainer (Schoberer Rad Meßtechnik, Jülich, Germany). Power output was measured using an 
SRM system (Schoberer Rad Meßtechnik, Science version, Germany) calibrated according to the 
manufacturer’s recommendations. Data were recorded throughout the trials. All tasks are depicted 
in Table 1. Each task allowed the identification of one or two body segment axis orientations in 
relation to the IMU frames. 

Table 1. Illustration of the calibration tasks used for the different calibration methods. Each calibration 
task allows the identification of at least one unit vector for the thigh or shank body segment frames. 
SU: Standing up posture; LD: Lying down; HAA: Hip abduction/adduction; KFE: Knee 
flexion/extension; P: Pedaling. 

Task. SU LD HAA KFE P

Illustration 

Unit 
vector 

identified 
for thigh 

𝒀  𝑿  𝑿 𝒁  

Unit 
vector 

identified 
for shank 

𝒀  𝑿 𝒁  𝒁  

2.3.2. Calibration Methods 

Based on the calibration tasks, calibration matrices were obtained by combining pairs of static 
or dynamic tasks. Four calibration methods are presented in this article and they correspond to the task 
combinations depicted in Table 2. Each method systematically required the SU task. The anatomical 
calibration method was defined as the reference method. Other methods employed in this study were 

Sensors 2019, 19, x FOR PEER REVIEW 7 of 23 

• Standing up posture (SU): Static standing upright posture with feet apart in line with the hip
and knee stretched. In this posture, the longitudinal axis of the thigh and shank are assumed
to be vertical. The lower limb posture is similar to the one used during the T-pose or N-pose
[30].

• Lying down (LD): Static lying face down posture. Hence, the anteroposterior axis of the
segments is assumed to be aligned with the vertical axis. Hands are placed between the ground
and chin.

• Knee flexion/extension (KFE): Dynamic task with the participant performing four knee
flexions/extensions from about 10° to 90°of flexion, in a single leg up-right posture. Participants
were asked to avoid any thigh movement. This task allowed estimation of the knee flexion axis.

• Hip abduction/adduction (HAA): Dynamic task with the participant performing four hip
abductions/adductions in a single leg up-right posture. Participants were asked to avoid hip
external rotations with the foot pointing forward. This task allowed estimation of the
anteroposterior axis of the thigh.

During each repetition, the IMU and optoelectronic motion capture outputs were acquired over 
five seconds during static tasks, and over four repetitions during dynamic tasks. 

During a second calibration step, participants performed a pedaling task (P) for 2 min at a mean 
cadence of 80 rpm. They performed each condition at a workload of 100 W, on a stationary SRM 
Indoor trainer (Schoberer Rad Meßtechnik, Jülich, Germany). Power output was measured using an 
SRM system (Schoberer Rad Meßtechnik, Science version, Germany) calibrated according to the 
manufacturer’s recommendations. Data were recorded throughout the trials. All tasks are depicted 
in Table 1. Each task allowed the identification of one or two body segment axis orientations in 
relation to the IMU frames. 

Table 1. Illustration of the calibration tasks used for the different calibration methods. Each calibration 
task allows the identification of at least one unit vector for the thigh or shank body segment frames. 
SU: Standing up posture; LD: Lying down; HAA: Hip abduction/adduction; KFE: Knee 
flexion/extension; P: Pedaling. 

Task. SU LD HAA KFE P

Illustration 

Unit 
vector 

identified 
for thigh 

𝒀  𝑿  𝑿 𝒁  

Unit 
vector 

identified 
for shank 

𝒀  𝑿 𝒁  𝒁  

2.3.2. Calibration Methods 

Based on the calibration tasks, calibration matrices were obtained by combining pairs of static 
or dynamic tasks. Four calibration methods are presented in this article and they correspond to the task 
combinations depicted in Table 2. Each method systematically required the SU task. The anatomical 
calibration method was defined as the reference method. Other methods employed in this study were 

Unit vector identified for thigh SUYTH
BS

LDXTH
BS

HAAXTH
BS

PZTH
BS

Unit vector identified for shank SUYSH
BS

LDXSH
BS

KFEZSH
BS

PZSH
BS

2.3.2. Calibration Methods

Based on the calibration tasks, calibration matrices were obtained by combining pairs of static or
dynamic tasks. Four calibration methods are presented in this article and they correspond to the task
combinations depicted in Table 2. Each method systematically required the SU task. The anatomical
calibration method was defined as the reference method. Other methods employed in this study
were called functional methods in contrast to the anatomical method. Given each calibration method,
the calculation of the base vectors of the body segment frames is detailed in the following paragraphs.

Static calibration procedure (S)—This calibration method combined the SU posture with LD tasks.
The idea of the procedure is to obtain the orientation the local technical body-segment coordinate

frame with respect to the local IMU frame. In other words, a rotation matrix containing the three unit
vectors of each segment, expressed in the IMU coordinate system, was obtained. The methodology
relies on the following steps, where the components of each body segment axis (technical frame) had
to be computed based on accelerometer signals during static SU and LD postures. As an example,
concerning the static calibration procedure for the thigh, the Figure 3 depicts the axis of the technical
body-segment frame for which components have to be estimated with respect to the IMU frame for a
given task (SU or LD).
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Table 2. Definition of the calibration methods—expressed as rotation matrices—by means of task
combinations. For example, for the cycling method, the unit vector SU−CYXTH

BS−IMU is obtained from
the SU task and cycling task, and it defines the X-axis of the body segment frame for the thigh; the
unit vector SU−CYZTH

BS−IMU defines the Z-axis of the body segment frame for the thigh; the unit vector
SUYTH

BS−IMU is obtained from the standing up posture and it defines the Y-axis of the body segment frame
for the thigh. Finally, the calibration matrix CRTH/SH

BS−IMU is obtained by grouping the three unit vectors.

Method First Task Second Task Thigh Frame Shank Frame

Reference ARTH/SH
BS−IMU SU P

AXTH
BS−IMU

AYTH
BS−IMU

AZTH
BS−IMU

AXSH
BS−IMU

AYSH
BS−IMU

AZSH
BS−IMU

Static SRTH/SH
BS−IMU SU LD

SU−LDXTH
BS−IMU

SUYTH
BS−IMU

SU−LDZTH
BS−IMU

SU−LDXSH
BS−IMU

SUYSH
BS−IMU

SU−LDZSH
BS−IMU

Mixed MRTH/SH
BS−IMU SU HAA/KFE

SU−HAAXTH
BS−IMU

SUYTH
BS−IMU

SU−HAAZTH
BS−IMU

SU−KFEXSH
BS−IMU

SUYSH
BS−IMU

SU−KFEZSH
BS−IMU

Cycling CRTH/SH
BS−IMU SU P

SU−PXTH
BS−IMU

SUYTH
BS−IMU

SU−PZTH
BS−IMU

SU−PXSH
BS−IMU

SUYSH
BS−IMU

SU−PZSH
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Figure 3. Illustration of the static calibration procedure for the thigh including all considered coordinate
systems. The red vectors represent the gravity vector and the axis of the technical body-segment frame
which components have to be estimated with respect to the IMU frame for a given task. More specifically,
components of SUYTH

BS−IMU are estimated from SU task (A) whereas components of LDYTH
BS−IMU estimated

from LD task (B). The same procedure can be developed for the shank.

The Y-axis of technical frames could be found by measuring the direction of gravity during the SU
posture. Indeed, for such a posture, the accelerometer of the IMU sensors for the thigh and the shank
only measure the gravity vector g that corresponds to the components of g with respect to the IMU
frame for the thigh CSTH

IMU, and the shank CSSH
IMU. In order to obtain the components of the Y-axis with

respect to the IMU frame, the idea was thus to align the Y-axis with an identifiable vector for which the
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components could be measured using the IMU signals. It was therefore hypothesized that the Y-axis
of the technical frame was aligned with the vertical (with respect to the global reference frame) gravity
vector g. Thus, computation of the component of the Y-axis of the technical frames with respect to the
IMU frames (YTH

BS−IMU and YSH
BS−IMU) was obtained from the accelerometer measurement as

SUYTH
BS−IMU =SU YSH

BS−IMU =
−g∣∣∣g∣∣∣ (1)

The same way, during the LD posture, the accelerometers of the thigh and the shank measured the
gravity vector g, which enabled us to obtain the components of g in the thigh body segment coordinate
system SCSTH

BS , and in the shank body segment coordinate system SCSSH
BS .

Moreover, for the LD posture, the X-axis of the thigh and shank were aligned with the vertical
gravity vector g

LDXTH
BS−IMU =LD XSH

BS−IMU =
g∣∣∣g∣∣∣ (2)

Therefore, the components of ZTH
BS−IMU and ZSH

BS−IMU expressed in the IMU frame of the thigh and
shank are obtained as

SU−LDZTH
BS−IMU =

LDXTH
BS−IMU ×

SU YTH
BS−IMU∣∣∣LDXTH

BS−IMU ×
SU YTH

BS−IMU

∣∣∣ (3)

SU−LDZSH
BS−IMU =

LDXSH
BS−IMU ×

SU YSH
BS−IMU∣∣∣LDXSH

BS−IMU ×
SU YSH

BS−IMU

∣∣∣ (4)

In order to obtain the orthogonal frames, XTH
BS−IMU and XSH

BS−IMU are finally obtained as

SU−LDXTH
BS−IMU = SUYTH

BS−IMU ×
SU−LD ZTH

BS−IMU (5)

SU−LDXSH
BS−IMU = SUYSH

BS−IMU ×
SU−LD ZSH

BS−IMU (6)

Finally, the rotation matrix between CSTH
IMU and SCSTH

BS , as well as the rotation matrix between
CSSH

IMU and SCSSH
BS , are respectively obtained by grouping the unit vectors as

SRTH
BS−IMU =

[
SU−LDXTH

BS−IMU
SUYTH

BS−IMU
SU−LDZTH

BS−IMU

]
(7)

SRSH
BS−IMU =

[
SU−LDXSH

BS−IMU
SUYSH

BS−IMU
SU−LDZSH

BS−IMU

]
. (8)

SRTH
BS−IMU and SRSH

BS−IMU correspond to the calibration matrices between the IMU frame and
technical body segment frame, respectively, for the thigh and for the shank, obtained by the
static method.

Mixed calibration procedure (M)—In this procedure, orientations of the body segment frames
were obtained by combining the SU static task, the dynamic KFE task, and the dynamic HAA task.
Thus, components of SUYSH

BS−IMU in the IMU coordinate system of the shank were obtained following
the SU task, and were computed as shown in Equation (1). In the same way, components of SUYTH

BS−IMU
were obtained in the IMU coordinate system of the thigh according to Equation (1).

Based on the angular velocities measured by the gyroscopes during the KFE task, the mean
rotation vector was calculated in the shank IMU frame as described in [52]. Indeed, in this process, the
direction of the joint axis of rotation KFEZSH

BS−IMU was assumed to coincide with the direction of the
mean angular velocity vector expressed in the IMU coordinate system and was determined from the
orientation of the angular rate during flexion (ωFLEX) or during extension (ωEXT). The instantaneous
direction of angular rate vector N was thus calculated as the unit vector

N =
ωFLEX

|ωFLEX|
during flexion or N =

−ωEXT

|ωEXT |
during extension (9)
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The mean N vector was then obtained by averaging over the duration of the movement. Note that
the average estimation may not be a unit vector, which should be normalized to be the final KFEZSH

BS−IMU
estimate. In order to obtain a more reliable rotation axis, it is necessary to limit the angular rate ranges
when estimating the rotation axis [33,35,38]. To eliminate noise from the direction of angular rate
estimates, only angular rate components exceeding a threshold set at a value of 20% of the maximal
angular rate during each functional task were considered.

Moreover, XSH
BS−IMU axis is computed from the cross product

SU−KFEXSH
BS−IMU =

SUYSH
BS−IMU ×

KFE ZSH
BS−IMU∣∣∣SUYSH

BS−IMU ×
KFE ZSH

BS−IMU

∣∣∣ (10)

In order to obtain an orthogonal frame, ZSH
BS−IMU is computed again as

SU−KFEZSH
BS−IMU = SU−KFEXSH

BS−IMU ×
SU YSH

BS−IMU (11)

Finally, the rotation matrix MRSH
BS−IMU between CSSH

IMU and MCSSH
BS is obtained by grouping the

three unit vectors

MRSH
BS−IMU =

[
SU−KFEXSH

BS−IMU
SUYSH

BS−IMU
SU−KFEZSH

BS−IMU

]
(12)

Based on the angular velocities measured by the gyroscopes during the HAA task, the mean
rotation vector was calculated in the thigh IMU frame as in [52]. Indeed, in this process, the direction of
the joint axis of rotation HAAXTH

BS−IMU was assumed to coincide with the direction of the mean angular
velocity vector expressed in the IMU coordinate system and was determined from the orientation of
the angular rate during abduction (ωABD) or during adduction (ωADD). The instantaneous direction of
angular rate vector N was thus calculated as the unit vector

N =
ωABD
|ωABD|

during abduction or N =
−ωADD
|ωADD|

during adduction (13)

The mean N vector was then obtained by averaging over the duration of the movement. Note
that the average estimation may not be a unit vector, which should be normalized to be the final
HAAXTH

BS−IMU estimate. To eliminate noise from the direction of angular rate estimates, only angular
rate components exceeding a threshold set at a value of 20% of the maximal angular rate during each
functional task were considered.

Moreover, ZTH
BS−IMU axis is computed from the cross product

SU−HAAZTH
BS−IMU =

HAAXTH
BS−IMU ×

SU YTH
BS−IMU∣∣∣HAAXTH

BS−IMU ×
SU YTH

BS−IMU

∣∣∣ (14)

In order to obtain an orthogonal frame XTH
BS−IMU is computed again in the IMU frame as

SU−HAAXTH
BS−IMU =SU YTH

BS−IMU ×
SU−HAA ZTH

BS−IMU. (15)

Finally, the rotation matrix MRTH
BS−IMU between CSTH

IMU and MCSTH
BS is obtained by grouping the

three unit vectors

MRTH
BS−IMU =

[
SU−HAAXTH

BS−IMU
SUYTH

BS−IMU
SU−KFEZTH

BS−IMU

]
(16)

Cycling calibration procedure (C)—In this procedure, orientations of the body segment frames
were obtained by coupling of the SU and P tasks. As for methods previously developed, components
of SUYTH

BS−IMU and SUYSH
BS−IMU in the IMU coordinate system of the thigh and shank were obtained
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following the SU posture, and computed as shown in Equation (1). Similar to the mixed method and
based on the angular velocities measured by the gyroscopes during the pedaling motion, the mean
rotation vector was calculated in the IMU frame of the thigh and shank. Assuming that the pedaling
motion occurs primarily in the sagittal plane, the mean rotation vector of the shank and thigh IMU is
orthogonal to this plane, and it is aligned to ZTH

BS and ZSH
BS . Hence, PZTH

BS−IMU and PZSH
BS−IMU expressed

in the local IMU coordinate system can be determined from the orientation of the angular rate vector
using the same computation for KFEZSH

BS−IMU. Moreover, XTH
BS−IMU and XSH

BS−IMU are computed from the
cross product

SU−PXTH
BS−IMU =

SUYTH
BS−IMU ×

P ZTH
BS−IMU∣∣∣SUYTH

BS−IMU ×
P ZTH

BS−IMU

∣∣∣ (17)

SU−PXSH
BS−IMU =

SUYSH
BS−IMU ×

P ZSH
BS−IMU∣∣∣SUYSH

BS−IMU ×
P ZSH

BS−IMU

∣∣∣ (18)

As for previous methods, ZTH
BS−IMU and ZSH

BS−IMU were computed using the cross product with
respect to the orthogonality of the frames. Finally, the rotation matrix CRTH

BS−IMU between CSTH
IMU and

CCSTH
BS , as well as the rotation matrix CRSH

BS−IMU between CSSH
IMU and CCSSH

BS , were respectively obtained
by grouping the unit vectors as

CRTH
BS−IMU =

[
SU−PXTH

BS−IMU
SUYTH

BS−IMU
SU−PZTH

BS−IMU

]
(19)

CRSH
BS−IMU =

[
SU−PXSH

BS−IMU
SUYSH

BS−IMU
SU−PZSH

BS−IMU

]
(20)

Reference anatomical calibration procedure (A)—This method combined both the SU and P
tasks. Starting on the one hand from ACSTH

BS and ACSSH
BS (defining anatomical frames obtained from

optoelectronic motion capture system and bony landmarks-based ISB model) and on the other hand
from CSTH

CLU and CSSH
CLU (defining cluster frames of the thigh obtained from optoelectronic motion

capture system) during the SU task, the longitudinal Y-axis of anatomical frames for the thigh and the
shank in relation to the cluster frames are obtained as

AYTH
BS−CLU = RTH

CLU−MCS ∗
AYTH

BS−MCS (21)

AYSH
BS−CLU = RSH

CLU−MCS ∗
AYSH

BS−MCS (22)

where RTH
CLU−MCS and RSH

CLU−MCS represents the orientation of the cluster frames in relation to the global
coordinate system of the motion capture system, for the thigh and the shank respectively. Moreover,
in order to obtain the medio-lateral axis AZTH

BS and AZSH
BS−CLU, the functional method known as the

“Symmetrical Axis of Rotation Assessment” SARA [53], was used during the pedaling task.
The floating axes AXTH

BS and AXSH
BS were obtained as

AXTH
BS−CLU =

AYTH
BS−CLU ×

A ZTH
BS−CLU∣∣∣AYTH

BS−CLU ×
A ZTH

BS−CLU

∣∣∣ (23)

AXSH
BS−CLU =

AYSH
BS−CLU ×

A ZSH
BS−CLU∣∣∣AYSH

BS−CLU ×
A ZSH

BS−CLU

∣∣∣ (24)

Furthermore, AZTH
BS−CLU and AZSH

BS−CLU was computed as

AZTH
BS−CLU = AXTH

BS−CLU ×
A YTH

BS−CLU (25)

AZSH
BS−CLU = AXSH

BS−CLU ×
A YSH

BS−CLU (26)
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Finally, rotation matrices between anatomical frames and cluster frames were obtained as

ARTH
BS−CLU =

[
AXTH

BS−CLU
AYTH

BS−CLU
AZTH

BS−CLU

]
(27)

ARSH
BS−CLU =

[
AXSH

BS−CLU
AYSH

BS−CLU
AZSH

BS−CLU

]
(28)

Due to the imperfect placement of the markers on the sensor, the cluster frame is not perfectly
aligned with that of the IMU chip. To correct this misalignment, we used the alignment method used
by [16] which uses angular velocities to align local coordinate systems (IMU-based and optical-based).
As underlined by [54], the alignment error from the methods based on angular velocities was
significantly lower than for the other conventional methods. For each subject, the misalignment was
quantified around the axes of the cluster and was less than 1◦ around the X-axis, 26◦ around the Y-axis
and 2◦ around the Z-axis. The literature (e.g., [16,54,55]) showed that the method proposed by de Vries
enables an alignment with an error lower than 1◦.

All calibration matrices and corresponding combinations of tasks are summarized in Table 2.

2.4. Joint Angles Computation

The joint coordinate system (CSJ) was used to describe the knee joint angles [45] calculated as the
difference of body segment frames orientation during the cycling task. Thus, knee joint angles were
expressed with respect to each method. The anatomical calibration method allowed computation of
the orientation of the anatomical body frame attached to the thigh ARTH

BS−MCS and shank ARSH
BS−MCS.

The static, mixed, and cycling methods are functional calibration methods that enable assessment of
the orientation of three technical frames, each one being associated to the corresponding method for
the thigh and shank. The static method was used to estimate the calibration matrices of the technical
body segment frames SRTH

BS−MCS and SRSH
BS−MCS. Similarly, the mixed and cycling methods were used

to estimate MRTH
BS−MCS, MRSH

BS−MCS, and CRTH
BS−MCS, CRSH

BS−MCS, respectively. For each method, the knee
orientation was expressed through the following rotation matrix

mRJ =
mRBSTH−BSSH =

(
SRTH

BS−MCS

)T
.SRSH

BS−MCS (29)

where m denotes the method employed. Finally, using a ZYX rotation sequence as described in [45],
the Euler angles were obtained for each subject based on the reference method as (Aθx, Aθy, Aθz), and
for the method as (mθx, mθy, mθz) during the cycling task.

2.5. Data Analysis

The estimation of the orientation of the IMU sensors was computed by combining raw data from
the gyroscopes and accelerometers through a Madgwick filter [46]. More specifically, the filter gain β

was adjusted at a value of 0.055 rad/s according to a trial-and-error procedure. Precautions were taken
as regards to the initial orientation state and the duration of each trial. We indeed took care to coincide
the beginning of each trial with the initial orientation state, which is a factor in favor of a lower drift.
Finally, short duration tasks (lower than 30 s) were considered in the present study, in order to limit
this phenomenon (for all subjects, joint angle error was computed with root mean square error only
during the nine first seconds in order to obtain a minimum of ten pedaling cycles).

The anatomical frames based on the IMU system and the frames based on the optical system are
most likely different due to the different protocols used in determining the transformation matrices
between the sensor or cluster frames and the camera-based body-segment frame. This could lead to
differences in the joint angle values [30,39]. The objectives of the data analysis were: first, to evaluate
the accuracy of each calibration method by comparing the alignment of the body segment frames
obtained by the inertial system and the frames obtained by a reference optical system; and second,
to assess the differences in knee joint angular displacements between the IMU-based calculations
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and the anatomical method. Data analysis was carried out using the MATLAB software (Mathworks,
Natick, MA, USA).

2.5.1. Alignment Error between the IMU and the Body Segment Frames

The accuracy of the calibration methods was computed as the alignment error obtained from
computing of the rotation matrix between the orientation of the anatomical frame and the technical
frame orientation of the functional method of interest.

The rotation matrix of the alignment error mEIMU−BS was calculated following Equation (30).

mEs
IMU−BS =

(
ARs

BS−IMU

)T
. mRs

BS−IMU (30)

where m corresponds to the method (e.g., C) and s corresponds to the considered body segment (e.g.,
SH). Furthermore, the amplitude of the error that corresponded to the accuracy of the alignment
method was calculated using Equation (31) as in [33].

mθs
IMU−BS = cos−1

Tr
(
mEs

IMU−BS

)
− 1

2

 (31)

where mθs
IMU−BS refers to the angle of method m and segment s. For a given calibration method,

the mean error and standard deviation were calculated over the individual errors mθs
IMU−BS.

Moreover, angles between the X, Y, and Z axes from the IMU frame and body segment frame were
calculated as the smallest angles between the base vectors. Indeed, mθs

IMU−BS only gives an overall
error of orientation. However, the alignment error could be affected by a given method only around a
specific body segment axis [33]. To this aim, accuracy is expressed as Euler angles from the rotation
matrix mEs

IMU−BS, with the Euler sequence ‘YZX’. The alignment errors around each anatomical axis
mθs

x, mθs
y, mθs

z were computed as

mθs
x = tan−1

−mYs
BS_IMU·

AZs
BS_IMU

mYs
BS_IMU·

AYs
BS_IMU

 (32)

mθs
z = sin−1

(
mYs

BS_IMU·
AXs

BS_IMU

)
(33)

mθs
y = tan−1

−mZs
BS_IMU·

AXs
BS_IMU

mXs
BS_IMU·

AXs
BS_IMU

 (34)

For each method m (Static (S), Mixed (M) and Cycling (C)), the technical frame was obtained using
the same SU task leading to the same mY axis

SYs
BS_IMU = MYs

BS_IMU = CYs
BS_IMU = SUYs

BS_IMU (35)

The alignment errors mθs
X et mθs

Z (around X-axis and Z-axis respectively) were constant across
methods since they depend only on mY and AX, AY, AZ that are identical for all methods. Alignment
errors around X-axis and Z-axis of the anatomical frames mθs

x and mθs
z were finally computed as

Sθs
X =M θs

X =C θs
X = tan−1

−SUYs
BS_IMU·

AZs
BS_IMU

SUYs
BS_IMU·

AYs
BS_IMU

 (36)

Sθs
Z =M θs

Z =C θs
Z = sin−1

(
SUYs

BS_IMU·
AXs

BS_IMU

)
(37)
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2.5.2. 3D Knee Joint Angle Accuracy

Knee joint angles estimated from the functional methods were compared to the reference angles
computed from the anatomical frames based on the optoelectronic motion capture system. Differences
were quantified by calculation of the root mean squared error (RMSE) between the waveforms.
Thus, the error was computed for each angle between the reference angle (Aθx, Aθy, Aθz) and joint
angle obtained by the functional methods (mθx, mθy, mθz), with the computation of the root mean
square error.

2.6. Statistical Analysis

Descriptive statistics, including mean and standard deviation, were determined for each outcome
measure mθIMU−BS, mθs

X, mθs
Y, mθs

Z and RMSE of the 3D knee angles. These statistics were calculated
for each participant as an average of all repetitions before being averaged across all the participants.
For each method and variable, the normal distribution was tested using the Shapiro–Wilk test of
normality. Assumption of homogeneity of variance was evaluated with the Levene’s test. A Welch
ANOVA was used to compare the means of different methods. The Welch’s test was performed for
heterogeneity of variance. When a significant method effect was found, pairwise comparisons were
performed using multiple comparisons with the Bonferroni correction. The level of significance was
set to 0.05 for all statistical tests. The statistical analysis was performed using the R language.

3. Results

3.1. Accuracy of the Segment Orientation

Figure 4 depicts a typical result for one participant concerning technical frames orientation for
thigh and shank with respect to corresponding anatomical frames. The mean and standard deviation
of errors represented as differences between the anatomical frame and technical frames are shown
in Table 3. Differences between methods are reported only for the total angle and around the Y-axis.
By construction of the calibration matrices, the alignment errors around the X-axis and Z-axis were
constant across methods. Indeed, functional calibration matrices shared the same longitudinal axes
obtained from the SU task. Differences between methods resulted from a rotation around this Y-axis.
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Table 3. Mean differences in body segment orientations using the anatomical and technical frames.
Differences were expressed as the smallest rotation angles for thigh and shank. Differences were also
expressed as Euler angles around the anteroposterior X-axis, longitudinal Y-axis, and medio-lateral
Z-axis for the thigh and shank. ** denotes a significant difference, with p < 0.01.

Orientation Error for Each Method (Deg) p-Values

Segment Angle Static Mixed Cycling S vs. M S vs. C M vs. C

Thigh

TOTAL 20.0 ± 6.6 22.2 ± 7.9 10.9 ± 1.6 0.78 0.003 0.001
around X −2.6 ± 2.2 −2.6 ± 2.2 −2.6 ± 2.2 n/a n/a n/a
around Y −16.2 ± 8.9 −19.1 ± 9.3 −1.7 ± 2.3 0.74 < 0.001 < 0.001
around Z −8.9 ± 2.1 −8.9 ± 2.1 −8.9 ± 2.1 n/a n/a n/a

Shank

TOTAL 17.4 ± 8.4 13.4 ± 3.5 11.8 ± 2.8 0.110 0.069 0.449
around X −4.6 ± 2.2 −4.6 ± 2.2 −4.6 ± 2.2 n/a n/a n/a
around Y −14.4 ± 9.8 −10.0 ± 4.3 −8.1 ± 2.5 0.152 0.548 0.089
around Z −5.9 ± 2.4 −5.9 ± 2.4 −5.9 ± 2.4 n/a n/a n/a

No differences were quantified for the static versus mixed methods with respect to the global
orientation, neither for the thigh (p = 0.78) nor for the shank (p = 0.11). The cycling method did not
reveal any significant differences in the global orientation concerning the shank, neither compared to
the static approach (p = 0.07) nor compared to the mixed method (p = 0.45). However, significant lower
errors were obtained concerning the thigh for the cycling method (10.9 ± 1.6◦) in comparison to both
the static method (20.0 ± 6.6◦, p = 0.003) and the mixed method (17.4 ± 8.4◦, p = 0.001).

No differences were quantified along the Y-axis for the static versus mixed methods, neither for
the thigh (p = 0.74) nor for the shank (p = 0.11). The cycling method did not reveal any significant
differences along the Y-axis concerning the shank, neither compared to the static approach (p = 0.09) nor
compared to the mixed method (p = 0.55). However, significant lower errors were obtained concerning
the thigh for the cycling method (−1.7 ± 2.3◦) in comparison with both the static method (−16.2 ± 8.9◦,
p < 0.001) and the mixed method (−19.1 ± 9.3◦, p < 0.001).

3.2. Effects of the Calibration Methods on 3D Knee Joint Angles

Figure 5 depicts mean 3D knee joint angles across the population for all methods. Regarding the
influence of calibration methods on the differences in the 3D knee angle values (Table 4), no effect
was noticed on the flexion/extension angles in terms of the RMSE. Concerning abduction/adduction,
the multiple comparisons showed that the error was significantly lower only for the cycling method in
comparison to the static method (11.2± 6.6◦ versus 5.9± 2.9◦, p < 0.05). Concerning the internal/external
rotation, the cycling method exhibited a significantly lower error (6.7 ± 1.9◦) in comparison to both the
static (15.4 ± 5.4◦, p < 0.01) and mixed methods (18.8 ± 8.0◦, p < 0.01).

Table 4. Knee joint root mean squared (RMS) errors using each calibration method in comparison to
the values obtained from the reference optoelectronic system and the ISB convention

RMS Error in the Knee Angle for Each Method (deg) p-Values

DOF Static Mixed Cycling S vs. M S vs. C M vs. C

Flexion/Extension 4.79 ± 3.03 3.65 ± 2.23 3.74 ± 2.99 0.38 0.82 1
Abduction/Adduction 11.18 ± 6.62 7.51 ± 4.13 5.92 ± 2.85 0.062 0.035 0.346

Internal/External Rotation 15.37 ± 5.38 18.80 ± 8.05 6.65 ± 1.94 0.357 <0.001 <0.001
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4. Discussion

This study was aimed at developing a novel calibration procedure for the IMU-based kinematic
analysis of cycling. In particular, given the major contribution of the knee joint to cycling performance,
the proposed methodology was set up for the purpose of obtaining the 3D knee joint angles in ambulatory
conditions. The present analysis was restricted to 6 DOF inertial measurements, since bicycle design
may induce a non-homogeneous magnetic field [17]. In the frame of this study, the calibration task
had to be autonomously feasible, without any external operator or any device. Assessment of the
body segment frame based on the IMU, excluding a magnetometer, requires at least two calibration
tasks that enable each to identify one body segment axis. It has been hypothesized that a calibration
procedure that combined a standing up posture and a pedaling motion could improve the accuracy of
the 3D knee joint angles during cycling. To this end, we compared two combinations of conventional
functional tasks used in the IMU-based gait analysis to the new calibration method based on pedaling
motion by evaluating the accuracy of the body segment axes orientation and the 3D knee joint angle
values with respect to ISB model based on bony landmarks.

4.1. Differences Between Calibration Methods—Comparisons with the Literature

In comparison to the static and mixed methods, the cycling method did not reveal any difference in
terms of global orientation concerning the shank, but it showed a significantly lower error for the thigh.
Comparison of the accuracy of calibration methods with previous works from the literature was not
easy given the limited studies focusing on body segment frames orientation concerning the lower limbs.
The accuracy of the body segment axes orientation by means of IMU technology has been previously
evaluated concerning the upper limbs [33], concerning the lower limbs [38], and concerning both the
upper and lower limbs [30]. With regards to the lower limbs orientation, it has been demonstrated that
the magnitude of error could vary within a range of 4–11◦ [33,38]. Recently, Robert-Lachaine et al. [30]
reported a longitudinal error close to 5◦, either for the upper leg or for the lower leg, around the
longitudinal axis, based on a single static N-pose or T-pose using IMU measurements that included a
magnetometer. Present results reported errors around the longitudinal axis lower than 2◦ for the thigh
and lower than 10◦ for the shank with regards to the cycling method, which was consistent with most
previous studies that focused on gait analysis [39]. However, errors around the Y-axis concerning the
static method were close to 15◦ for both the thigh and shank. These errors are out of the range of errors
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between 5◦ and 15◦ previously reported in [30]. Concerning the mixed method, our results reported
an error of 19.1◦ for the thigh and 10.0◦ for the shank, with regards to the Y-axis. These results were
larger than those reported in [33] (range of error between 4.0◦ and 17.0◦). Although this latter study
focused on the upper limb, it was one of the few that investigated the errors of the body-to-segment
misalignment in terms of base vector orientation during dynamic calibration tasks.

Furthermore, as some perturbations of the body segment orientation may affect joint angle
accuracy [39], the effects of each calibration process on the knee joint angle accuracy were tested
during a pedaling motion. Concerning the flexion/extension angle, the present results reported RMS
errors in a range between 3.74 ± 2.99◦ (cycling method) and 4.79 ± 3.03◦ (static method), which was
in agreement with most studies in the literature that reported errors within a range of 5–10◦ during
gait [56,57]. Present results were demonstrated to be lower than those previously reported in cycling,
with a mean error of 6.41◦ [41]. Concerning the abduction/adduction and internal/external rotations,
the errors were revealed to be larger (ranging from 5.92◦ to 11.18 and from 6.65◦ to 18.80◦, respectively).
Errors for abduction/adduction in the present study were close to the errors reported in [34] (4.0–6.3◦)
during gait analysis. However, the errors concerning internal/external rotation were larger than the
errors obtained in [34], except for the cycling calibration method that induced significantly lower
errors for the internal/external rotation (6.65 ± 1.94◦) in comparison to the static (15.37 ± 5.38◦) and
mixed (18.80 ± 8.05◦) methods. Moreover, the cycling method significantly reduced the error of the
abduction/adduction angle in comparison to the static method (5.92 ± 2.85◦ and 11.18 ± 6.62◦).

While the cycling method clearly reduced the errors for the thigh, the offset errors around the
Y−axis of the shank were not significantly different between methods. Even if the cycling method
presented the lowest errors, differences between the methods were not significant. Indeed, errors
for the shank were similar to the errors obtained for the thigh based on the static method (−16.2◦ for
the thigh versus −14.4◦ for shank). Similar errors were previously reported for the thigh and shank
within a range of errors between 5◦ and 12◦, using single-pose calibrations [30]. Concerning the mixed
method, a lower error was obtained for the shank (−10.0◦) compared to the thigh (−19◦).

4.2. Variability of Calibration Tasks

Differences between methods may derive their origins from various parameters such as the type
of tasks performed (and their combination), the body posture adopted during these tasks, the self vs.
passive placement for each task, or the ability to isolate some degrees of freedom at the joint.

Since the analysis of the orientation error of the body segment frames revealed a difference
between methods only for the thigh, the potential differences concerning the knee angles might
essentially be attributed to the estimated orientation of the thigh. Errors related to the thigh could
a priori be explained by the manner in which the tasks are combined with each other. Indeed, each
method uses a standing up posture that enables identification of the longitudinal body segment axis.
This identification is based on a priori knowledge of the vertical body segment orientation of the
lower limbs during such a posture. Indeed, during the SU task, each participant maintained a slightly
different posture from one subject to another, which may have induced a specific inclination of the
anatomical axes of each body segment with respect to the vertical axis [31]. Thus, for each subject,
an individual offset between the anatomical and technical frames is induced, which is preserved
for each calibration method. Therefore, differences in the methods may mainly be ascribed to the
estimation of the remaining body segment axes.

Previous studies demonstrated that the participant’s self-placement (as opposed to passive
placement) could decrease the accuracy of the calibration method [30], which may explain why larger
errors were reported in our study. More specifically, the LD task used in the present static method,
which is similar to the task proposed in [31], may induce a difficulty in correctly performing such a
posture. As previously highlighted in [30], this could partly explain differences between the results
in [30] and our static method. In such a method, the anteroposterior axis of the thigh was estimated
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by the LD task. Thus, despite verbal instructions to maintain the foot in a vertical position, an
inter-individual variability may have impacted the estimation of X-axis.

Functional methods used in this paper may also be affected by the execution of the calibration
tasks either with regard to the ability to isolate pure rotation axis or with regard to its autonomous
achievement [58,59]. For the mixed method, the thigh anteroposterior X-axis is estimated by the hip
abduction/adduction. Imprecision in identifying the anteroposterior axis of the thigh could result from
the difficulty to the subject in isolating this axis in a pure abduction movement. Indeed, the inability
to perform a perfect mono-axial movement has been highlighted in [60]. Such a difficulty may be
magnified for hip abduction/adduction, which requires a thigh lateral elevation in a unipodal posture.
As mentioned in [24], achieving calibration dynamic movement ‘purely’ may be difficult for the subjects.
Based only on the instruction given to the subject, hip abduction/adduction was often composed of
small unexpected internal/external hip rotation. Even if the motion occurred mainly in the frontal
plane, thigh lateral elevation could be a combination of different rotations involving the ipsi- and
contralateral femoro-acetabular joint [61]. In such a context, Favre et al. [34] were the first to propose
the HAA as a calibration task. Fradet et al. [38] evaluated the accuracy of the X-axis orientation of the
thigh and reported an error larger than 25◦ using the HAA task in comparison to the SARA reference
method [53]. In order to reduce the errors arising from the estimation of the X-axis of the thigh by a
dedicated task, another solution lies in the estimation of the Z-axis using a specific calibration task that
involves the knee joint in a functional task.

Thus, although knee motion is dominated by the rotation around the flexion/extension axis,
movements about the secondary axes also occur, which led some authors to use passive knee
flexion–extension calibration movements in a range that minimizes the screw-home effect [34,62,63].
Generally, such a task requires the intervention of an external operator, which is not appropriate in an
attempt towards self-calibration. Another solution to eliminate the negative influence of movements
about the secondary axes (e.g., internal/external rotations) is to consider kinematic models and
constraints [23,26–28]. It is reasonable to believe that the pedaling movement makes it possible to
properly execute a sagittal knee movement at a given frequency and workload, and it enables limiting
of the flexion–extension range of motion of the knee without the help of any operator. In that sense,
the pedaling motion occurs mostly in the sagittal plane and it is performed in a closed kinematic
chain. For this task, the knee joint can thus be reasonably assumed to be a pure hinge joint about
the flexion–extension rotation axis, as fewer deviations can be observed in the frontal and horizontal
planes and do not exceed 13.1◦ [9]. Therefore, the new calibration procedure proposed in this article
estimated the medio-lateral axis of the thigh from a cycling task. Although the estimation of knee
axis based on mean angular rate may engender some inaccuracy in dynamic calibration methods
(standard deviation of angular rate vector orientation close to 19◦ for cycling methods), it should be
noted that cycling method improved the accuracy of knee joint angles. Indeed, the cycling method
significantly reduced the error around the longitudinal axis of the thigh, while no differences were
reported for the knee flexion/extension angle, whatever the calibration method. Such a behavior
has been previously highlighted when applied to gait analysis, showing that the flexion–extension
angle seems to be robust to thigh frame disturbance [39]. Our results showed that errors around the
longitudinal Y-axis of thigh were mainly propagated on the internal/external rotation, but to a lesser
extent on the abduction/adduction angle with regards to the pedaling motion. Similar conclusions were
previously observed in the gait analysis [39] and they showed that a small error around the Y-axis may
induce larger errors in the internal/external rotation, with moderate errors in the abduction/adduction.

4.3. Limitations and Perspectives

A limitation of this study lies in the fact that the analysis focused mainly on the accuracy of the
body segment orientation and knee joint angles, whereas repeatability was not assessed. Therefore,
further investigations should focus on the inter-individual reliability as an important issue regarding
IMU-based motion capture that is performed autonomously.
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As exercise intensity is known to affect the pedaling pattern [7,9], it is conceivable that the pedaling
intensity may impact the estimation of the body segment axes orientation. Previous works have
already demonstrated that functional methods such as knee flexion/extension are sensitive to the load
applied to the joint [34,59,64]. Thus, a functional calibration task based on the cycling exercise, enabling
movement in a sagittal plane at a controlled workload and imposed cadence, may engender fewer
errors in body segment orientations with regards to functional tasks involving a distal segment that is
free to move without any external resistance.

Furthermore, it should be kept in mind that soft tissue artefacts (STA) are a potential source of
error common to the optoelectronic-based or IMU-based motion capture system. However, it may
have a dissimilar effect on the body segment orientation or knee joint angle assessment. Concerning
the optoelectronic motion capture applied to cycling, a previous study [65] used static calibrations
in the cycling context at the hip flexion/extension extrema (pedal up and pedal down positions).
They demonstrated that the error of the thigh orientation decreased from more than 5◦ for these two
pedal positions, and they suggested the STA as an influencing factor. Concerning the IMU-based
motion capture, it can be hypothesized that the STA may be a predominant source of error for dynamic
calibration tasks, which may decrease the accuracy of the mixed method. However, to our knowledge,
except [66], no study has investigated the effects of the STA on dynamic calibration tasks based on
both the optoelectronic and IMU systems, which may be an interesting prospect to explore. Therefore,
it may be questioned whether lower errors reported for the pedaling task are due to a lower STA when
performing movements in the sagittal plane. Another limitation lies in the effect of errors in markers
placement on calculated joint angles since a small error in the marker placement may induce noticeable
errors in knee joint kinematics, particularly in the frontal and transverse planes [67,68].

Finally, it is important to bear in mind that a systematic bias (potentially inducing an offset)
is expected when comparing IMU based joint angles and opto-electronic bony landmarks-based
joint angles because of the different technologies and constructions used for the segment coordinate
system [24,31,69,70]. To overcome this limitation, the combination of segment coordinate systems
based on palpable landmarks and pointing devices with IMUs is an interesting alternative [25], but does
not meet the criterion of autonomy required in our study.

Main perspectives on this work relate to long-duration measurements and in-field applicability of
our method. As regards to the first point, improvements regarding the complementary filter choice
and adjustments may be of interest to better control drift of sensor orientation, which is crucial for
in situ analysis and more particularly for prolonged exercise in cycling. As regard to a use of the
present method out of the lab, another point of interest relates to the initial orientation of the IMU
during outdoor cycling. For the purpose of a validation process which was the main aim of this
paper, an initial orientation was set as close as possible to the reference orientation obtained from
optoelectonical system, as commonly reported in the literature [15,48]. However, an initial orientation
estimation based only on IMU data would require a specific fusion algorithm (e.g., extended Kalman
filter) [14]. Nevertheless, in view of our results, and as an attempt to assess the in-field applicability of
our method, errors relative to the typical ranges of motion in cycling (80◦ for flexion/extension, 20◦ for
abduction/adduction, and 23◦ for internal/external rotation) were 4.6% for flexion/extension, 29.5%
for abduction/adduction and 28.9% for internal/external rotation, which seems promising for future
application related to screening and performance enhancement in cycling.

5. Conclusions

This study contributes a new functional calibration method devoted to cycling activity, which can
easily be used in-field and in an autonomous manner. Using this method, three-dimensional rotations
across the knee can be estimated using a pair of shank- and thigh-mounted IMUs. The accuracy of
this method was compared to conventional calibration methods. Our results demonstrated that a
calibration method based on the completion of a pedaling task combined with a standing posture
significantly improved the accuracy of 3D knee joint angles when applied to cycling analysis.
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