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It is a challenge to build robust simultaneous localization and mapping (SLAM)
system in dynamical large-scale environments. Inspired by recent findings in the
entorhinal–hippocampal neuronal circuits, we propose a cognitive mapping model that
includes continuous attractor networks of head-direction cells and conjunctive grid cells
to integrate velocity information by conjunctive encodings of space and movement. Visual
inputs from the local view cells in the model provide feedback cues to correct drifting
errors of the attractors caused by the noisy velocity inputs. We demonstrate the mapping
performance of the proposed cognitive mapping model on an open-source dataset of
66 km car journey in a 3 km×1.6 km urban area. Experimental results show that the
proposed model is robust in building a coherent semi-metric topological map of the
entire urban area using a monocular camera, even though the image inputs contain
various changes caused by different light conditions and terrains. The results in this study
could inspire both neuroscience and robotic research to better understand the neural
computational mechanisms of spatial cognition and to build robust robotic navigation
systems in large-scale environments.

Keywords:medial entorhinal cortex, head-direction cells, conjunctive grid cells, cognitivemap, attractor dynamics,
path integration, monocular SLAM, bio-inspired robots

1. INTRODUCTION

One of the fundamental challenges to integrate robots into our daily life is to endow with the
ability of spatial cognition. Over the past two decades, many efforts have been exerted to develop
truly autonomous robot navigation systems that are able to simultaneously localize, map, and
navigate without human interventions in domestic home and workplace. This line of research has
been recognized as the problem of Simultaneous Localization and Mapping (SLAM) (Smith and
Cheeseman, 1986; Bailey and Durrant-Whyte, 2006; Durrant-Whyte and Bailey, 2006; Thrun and
Leonard, 2008) and constitutes a significant area of robotic research. The approaches to solving
SLAM problem fall into two classes. The classical approach is the probabilistic one that uses the
Extended Kalman Filters, the Particle Filters, etc., as the basis for robot SLAM (Thrun et al.,
2005). Numerous variants of filtering algorithms have been proposed to estimate the position
and the heading direction of the robot in large environments. However, most of these algorithms
require costly sensors, significant computational resources, and the assumption of static environ-
ment. Although filtering algorithms provide beautiful mathematical frameworks for SLAM, they
are in lack of robustness, since bad data association (i.e., the matching between perception and
internal representation) can often lead them into irreversible divergence, impairing their application
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to dynamic and large-scale environments. For a good review, one
can refer to Thrun and Leonard (2008); Dudek and Jenkin (2010).

The other approach of SLAM research is sparkled by the inspi-
rations from neuroscience and aims to build neural network
models that work in analogy to the neural circuits of spatial
cognition (Zeno et al., 2016). Animals show amazing navigation
ability (Klaassen et al., 2011; Tsoar et al., 2011), which has long
been hypothesized to result from internal map-like representation
in neural space, i.e., cognitive map of the environment (Tolman,
1948). The idea of cognitive map finds embodiment, thanks to the
discovery of place cells (PCs) in the hippocampus of mammalian
brains (O’Keefe and Dostrovsky, 1971; O’Keefe and Conway,
1978). A random set of place cells are recruited to encode posi-
tions in an environment and fire selectively in some restricted
portions of the environment. The firing locations of place cells are
randomly redistributed across environments and do not conserve
metric relation. Place cells are considered to form topological
maps of environments. Head direction cells (HD cells), first found
in the post-subiculum (Taube et al., 1990), fire when the animal’s
head points to a specific direction relative to an allocentric ref-
erence frame. Head directions cells exist in various brain regions
(Taube, 2007) and provide directional information like a compass.
The grid cells discovered in the dorsolateral band of the medial
entorhinal cortex (dMEC) fire in multiple locations that collec-
tively define triangular grids spanning the whole environment
explored by the animal (Hafting et al., 2005). The population
codes of grid cells can accurately encode animal’s spatial positions
in an environment (Mathis et al., 2012). The relative spatial phases
of nearby grid cells in dMEC are kept fixed across environments,
up to a coherent rotation and shift (Fyhn et al., 2007). Grid cells
are thought to be an important ingredient of the inner GPS in
mammalian brains (Knierim, 2015). Grid cells show a rich variety
of response properties. Pure positional grid cells, abundant in layer
II of MEC, do not show strong modulation by movements. Con-
junctive grid cells, residing mainly in layer III, V, and VI of MEC,
are selective also to running directions (Sargolini et al., 2006).
More recently, speed cells found in the MEC are characterized
by a context-invariant positive, linear response to running speed,
which is a key component of the dynamic representation of the
animal’s self location in MEC (Kropff et al., 2015).

Sitting between sensory cortex and hippocampus, MEC is a
converging area where grid cells, HD cells, and speed cells work
together to integrate movement and sensory information. Com-
putational models of grid cells reveal possible information pro-
cessing mechanisms of MEC in forming spatial representations
and provide building blocks for cognitive mapping systems (Zilli,
2012). The large majority of grid cells can be divided into three
classes: oscillatory interference (OI) models, continuous attractor
network models (CAN) (Fuhs and Touretzky, 2006; McNaughton
et al., 2006; Burak and Fiete, 2009; Knierim and Zhang, 2012;
Si et al., 2014), and self-organization (SO) models (Kropff and
Treves, 2008; Si and Treves, 2013; Stella et al., 2013; Stella and
Treves, 2015). OI models propose that the hexagonal grid pattern
arises from the interference between velocity modulated oscilla-
tors and a theta oscillator (Burgess et al., 2007;Welday et al., 2011).
The OI models are susceptible to drifting error and lack of robust-
ness (Remme et al., 2010) andmay not be robust enough for robot

navigation systems. The CAN models use structured connections
between cells to generate hexagonal grid firing patterns in the pop-
ulation level (Fuhs and Touretzky, 2006; McNaughton et al., 2006;
Burak and Fiete, 2009). The grid firing pattern is a stable network
state arising from the collective behavior of the neural population
and lies in a continuous manifold of steady states. If coupled
by velocity inputs, a continuous attractor network model of grid
cells is able to propagate its network state along the manifold,
perform accurate path integration, and, therefore produce single
cell hexagonal grid firing patterns in the environment (Burak and
Fiete, 2009). The conjunctive grid cells observed in layer III and
deeper layers ofMEC aremodeled by aCAN that encodes position
and velocity explicitly (Si et al., 2014). The conjunctive position-
by-velocity representation produces intrinsically moving patterns
that can be selected by velocity inputs. The movement of the
pattern is not dependent on the amplitude of the velocity signal or
on the firing properties of the cells and, therefore, is able to achieve
robust path integration even if the connections are contaminated
by noise. SO models of grid cells assume that grid cells receive
broadly tuned spatial inputs, e.g., feedforward inputs from visual
areas or the hippocampus. Single cell firing rate adaptation could
result in triangular firing patterns (Kropff and Treves, 2008). Since
the feedforward inputs function as error correcting signals, the
anchoring of grid maps in the environment is strongly influenced
by the inputs experienced by the animal (Si et al., 2012; Stensola
et al., 2015).

Although numerous computational models of grid cells have
been proposed to account for the mechanisms of integrating
movement and sensory information into spatial representations,
so far, only a few robot navigation systems utilize computational
mechanisms of spatial cognition. In the model of RatSLAM, pose
cells were developed to encode positions in large-scale environ-
ment for long-term robotic navigation tasks (Milford and Wyeth,
2008). Pose cell is a kind of abstract cell, which updates its activity
by displacing a copy of the activity packet, rather than performing
path integration according to the dynamics of the network. In
Jauffret et al. (2015), a modulo projection of the path integration
is used to generate the grid cell firing patterns. However, grid cells
aid neither localization nor mapping in the mobile robot system.
There is a sparse number of robot navigation systems, which use
grid cell networks to do path integration and represent the pose
of a robot (Sheynikhovich et al., 2009; Yuan et al., 2015; Mulas
et al., 2016). Sheynikhovich et al. (2009) built a biological plausible
model including visual, medial entorhinal cortex, hippocampus,
and striatum to perform navigation in a simulated environment.
Their model successfully reproduced many experimental results,
such as rescaling of firing fields of place cells and grid cells and
solved water maze task by reinforcement learning based on spatial
representations. Both (Yuan et al., 2015) and (Mulas et al., 2016)
used a model of pure positional grid cells in layer II of MEC
(Burak and Fiete, 2009) to track the position of a robot and used
visual inputs to anchor grids in the environment. They tested their
system in indoor environments of dozens of meters in side. The
robustness is yet to be verified in large-scale environments.

The theory of neural dynamics has been extensively adopted
to model brain functions, such as memory (Treves, 1990; Mi
et al., 2017), navigation (Gerstner and Abbott, 1997), and sensory
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integration (Zhang et al., 2016). The theory of neural dynamics
has become popular in robotics to enhance the cognitive abilities
of robots (Erlhagen and Bicho, 2006), such as obstacle avoidance
(Xiao et al., 2017), coordinated path tracking (Xiao and Zhang,
2016), motion tracking (Ding et al., 2017), and grasping (Knips
et al., 2017).

In this work, we follow the research line of neural dynamics
and developed a cognitive mapping model for mobile robots,
taking advantage of the coding strategies of the spatial mem-
ory circuits in mammalian brains. The key components of the
proposed model include HD cells, conjunctive grid cells, and
local view cells. Both HD cells and conjunctive grid cells are
modeled by continuous attractor networks that operate on the
same principles.More specifically, HD cells in themodel represent
arbitrary conjunctions of head directions and rotations of the
animals. Due to the asymmetric recurrent connections and the
network dynamics, intrinsically rotating patterns spontaneously
emerge in the network. Angular velocity inputs to the network
pick up patterns rotating with appropriate velocities and track
the head direction of the robot. Similarly, conjunctive grid cells
in the model encode conjunctions of positions and translations
in the two-dimensional environment. The inputs from HD cells
and speed cells activate a subset of the conjunctive grid cells that
produce triangular patterns moving intrinsically in the neural
tissue with velocity proportional to the running velocity of the
robot. Both HD cells and conjunctive grid cells get inputs from
local view cells, which are activated once the robot moves to a
familiar scene and which provide anchoring cues. The mapping
performance of the proposed model is demonstrated on a 66 km
long urban car journey. Our cognitive mapping model generates
a coherent map of the outdoor environment using single camera
image data. The experimental results show that ourmodel is stable
and robust in large-scale outdoor environment of variable light
conditions and terrains.

The major contributions in this paper are twofold. First, the
neural network framework presented in this paper is based
on recent experimental studies on the hippocampal–entorhinal

circuits and aims tomodel layer III anddeep layers of theMECand
the hippocampus. In the system, conjunctive HD-by-velocity cells
and conjunctive grid-by-velocity cells work hand in hand to inte-
grate movement and sensory information and build a large-scale
map. Second, the neural dynamics of the hippocampal–entorhinal
circuits is modeled. Provided with the inputs from local view
cells, the neural dynamics of the system functions as a general
mechanism for error correction and pattern completion.

This paper proceeds as follows. In Section 2, we describe the
HD cell model, the conjunctive grid cell model, and other core
components of the robot navigation model. The experimental
setup and the resulting neural activities, rate maps, and the semi-
metric topological map are presented in Section 3. Section 4
discusses the results and points to future directions, with a brief
conclusion in Section 5.

2. MATERIALS AND METHODS

In this study, we propose a cognitive mapping model that has
similar regions and cell types as in the entorhinal–hippocampal
circuits of mammalian brains. Localization is the key function
of the proposed model and is performed by the HD cells and
the conjunctive grid cells. The HD cells and the conjunctive grid
cells in the model correspond to layer III, V, and VI of the MEC
of mammalian brains. They integrate rotational or translational
velocity and formdirectional or positional codes, respectively. The
local view cells in themodel correspond to the retrosplenial cortex
or visual cortex and relay visual inputs to theMEC. Cognitivemap
in the system corresponds to the hippocampus.

2.1. Neural Network Architecture
The architecture of the proposed model is shown in Figure 1.
The HD cells in the model form a ring attractor in the neural
space. A bump of activity emerges in the network. The phase of
the bump represents the robot’s real angle of the head direction
in the physical environment up to a constant shift. Tuned angular
velocity inputs active a subset of the HD neurons, and the bump

FIGURE 1 | The neural network architecture of the model and the diagram of information flow. The HD-by-velocity cells, updated by angular velocity, represent head
directions. The grid-by-velocity cells receiving translational velocity, converted from linear speed and the head direction representations, provide positional
representation, which is in turn utilized to build a cognitive map. The acitivities of the HD-by-velocity cells and the grid-by-velocity cells are encoded by heat maps
with red for high activity and blue for no activity.
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rotates intrinsically with the same velocity as the angular velocity
of the robot.

The conjunctive grid cells in the model form a torus attractor
due to the periodic boundary conditions of the neural space. The
phase of the grid pattern encodes the position of the robot in the
physical environment up to modulo operation. The conjunctive
grid cells are activated by the head direction cells and the speed
cells, which are both available in the MEC of rodents. The grid
pattern in the network moves with a velocity proportional to the
movement of the animal in the physical environment. Thus, the
HD cells and the conjunctive grid cells work hand in hand and
form population codes of the head direction and the position of
the robot in the environment.

The conjunctive representations of space and movement allow
the networks to have stable states for all movement conditions.
This coding property endows the network robustness regardless
the movement conditions.

2.2. HD-by-Velocity Cell Model
The HD-by-velocity cells integrate angular velocity and represent
one-dimensional head direction. This is achieved by conjunctive
encoding of head direction and rotation.

2.2.1. Neural Representation of Head Direction and
Angular Velocity
Each unit in the network is labeled by its coordinate (θ, ν) on a
two-dimensional manifold. θ ∈ [0, 2π) is the internal representa-
tion of head directions in the environment. Not that θ has periodic
boundary condition. ν ∈ [−Lr, Lr] encodes angular velocity. Both
ν and θ are dimensionless quantities in the neural space. They
reflect the real angular velocity and the head direction of the
robot. We design the connection weights between units to sustain
a single bump of activity both in the direction dimension θ and in
the rotation dimension ν. The strength of the connection from a
presynaptic unit (θ′, ν′) to a postsynaptic unit (θ, ν) is written as

J(θ, ν|θ′, ν′) = J0 + J1cos
(
θ − θ′ − ν′) cos

(
λ(ν − ν′)

)
, (1)

where J0< 0 is a uniform inhibition, J1> 0 describes the inter-
action strength, and λ defines the spread of velocity tuning. The
connection weight from the unit at θ′ to the unit at θ in the
direction dimension is asymmetric, since the postsynaptic unit
that ismaximally activated by θ′ is not centered at θ′ but at θ′ + ν′.
The asymmetry causes the bump to move along the direction
dimension with a velocity determined by ν′.

2.2.2. Network Dynamics
We consider the activity of the network driven by velocity and
sensory inputs. The firing rate m(θ, ν) of the unit at coordinate
(θ, ν) is governed by the differential equation

τṁ(θ, ν) = −m(θ, ν) + f
(∫∫

DθDνJ(θ, ν|θ′, ν′)m(θ′, ν′)

+ Iν + Iview
)
, (2)

where Iν and Iview are the velocity tuned input and the calibration
current injected by local view cells, respectively, which we will

explain in detail below. τ is the time constant set to 10ms. f (x)
is a threshold-linear function: f (x)≡ [x]+ = x when x> 0 and 0
otherwise. The shorthand notations are used

∫
Dθ = 1

2π
∫ 2π
0 dθ,

and
∫
Dν = 1

2Lr

∫ Lr
−Lr

dν.

2.2.3. Angular Velocity Inputs
In order to integrate angular velocity, the activity bump in the HD
network should be placed at appropriate position in the velocity
dimension of the neural space. The desired bump location in the
ν dimension corresponding to a given external angular velocity V
is (Si et al., 2014)

u(V) = arctan(τV). (3)

Here, τ is the time constant defined in equation (2).
The velocity input to the HD-by-velocity units is simply mod-

eled by a tuning function of Gaussian shape

Iν(ν|V) = Ir
[
1 − ϵ+ ϵ exp

(
− (ν − u(V))2

2σ2r

)]
. (4)

Here, Ir is the amplitude of the rotational velocity input, ϵ
defines the strength of the velocity tuning, and σr is the sharpness
of the velocity tuning.

2.2.4. Estimation of the Head Direction
The center of the activity bump on the θ axis and the ν axis
encodes the head direction and angular velocity of the robot. We
define Fourier transformations to recover the head direction and
the angular velocity of the robot from the network state

ψ = ∠
(∫∫

m(θ, ν) exp(iθ)DθDν
)
, (5)

ϕ =
∠ (

∫∫
m(θ, ν) exp(iλν)DθDν)

λ
. (6)

Here, i is the imaginary unit, and function ∠(Z) takes the angle
of a complex number Z. ψ ∈ [0, 2π) is the estimated phase of the
bump in the direction axis of the neural space and corresponds to
the head direction of the robot in the physical space. ϕ∈ (−Lr, Lr)
is the estimated phase of the bump in the velocity axis of the neural
space and can bemapped to the angular velocity of the robot in the
physical space by inverting equation (3)

V =
tan(ϕ)
τ

. (7)

Note that Lr should be chosen large enough, so that the recov-
ered velocity V is able to represent all possible angular velocities
of the robot.

2.3. Grid-by-Velocity Cell Model
Now, we expand our HD-by-velocity cell model to do path inte-
gration in two-dimensional environments. To this end, grid-by-
velocity cells need represent two-dimensional spatial locations
and two-dimensional velocities. The units in the network are
wired with appropriate connection profiles, so that hexagonal grid
firing pattern is generated and translated in the spatial dimension
of the neural space.
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2.3.1. Neural Representation of Position and Velocity
Units in the grid-by-velocity network is labeled by coordinates
(θ⃗, ν⃗) in a four-dimensional neural space. θ⃗ = (θx, θy) represents
two-dimensional positions in the environment. ν⃗ = (νx, νy)
encodes the velocity components in the environment. We assume
θ⃗ has periodic boundary conditions, i.e., θx, θy ∈ [0, 2π). νx and
νy are chosen in [−Lt, Lt].

The connection weight from unit (θ⃗′, ν⃗′) to (θ⃗, ν⃗) is
described as

J(θ⃗, ν⃗|θ⃗′, ν⃗′) = J0 + Jkcos

k
√ ∑

j∈{x,y}

||θj − θ′j − ν′j||2


cos

λ√ ∑
j∈{x,y}

(νj − ν′j)2

, (8)

where the integer k= 2, is chosen so that the network accom-
modates two bumps both in θx axis and in θy axis. There is only
one bump in each of the velocity dimensions, however. ||d|| is the
distance on a circle: ||d||=mod(d+π, 2π)−π, and mod(x, y) ∈
[0, y) gives x modulo y.

2.3.2. Network Dynamics
Although grid-by-velocity units are organizedwith differentman-
ifold structure from theHD-by-velocity units, they share the same
intrinsic dynamics as in equation (2)

τṁ(θ⃗, ν⃗) = −m(θ⃗, ν⃗) + f
(∫∫

Dθ⃗Dν⃗J(θ⃗, ν⃗|θ⃗′, ν⃗′)m(θ⃗′, ν⃗′)

+ Iν + Iview
)
. (9)

Note that
∫
Dθ⃗ = 1

4π2

∫ 2π
0

∫ 2π
0 dθxdθy, and

∫
Dν⃗ =

1
4L2

t

∫ Lt
−Lt

∫ Lt
−Lt

dνxdνy.

2.3.3. Translational Velocity Inputs
In order to perform accurate path integration, the velocity of
the moving bumps in the neural space should always be kept
proportional to the velocity of the robot in the physical space. The
network requires tuned velocity input to pin the activity bumps at
appropriate positions on the velocity axes in the neural space, so
that the bumps move with the desired velocity.

The translational velocity V⃗ = (Vx,Vy) of the robot is obtained
by projecting the running speed to the axes of the reference frame
using the HD estimated from the HD-by-velocity units (equation
(5)). In the brain, running speed is encoded by the speed cells in
the MEC. Given the translational velocity of the robot, the desired
positions on the velocity axes in the neural space is given by u⃗(V⃗)
(Si et al., 2014)

u⃗(V⃗) =
1
karctan

(
2πτ V⃗
S

)
, (10)

where the function arctan operates on each dimension of V⃗. S is
a scaling factor between the external velocity of the robot in the

physical environment and the velocity of the bumps in the neural
space. S determines the spacing between the neighboring fields of
a grid firing pattern in the environment.

The velocity-tuned inputs to the grid-by-velocity units take a
Gaussian form for simplicity

Iν(ν⃗|V⃗) = It
[
1 − ϵ+ ϵ exp

(
−|ν⃗ − u⃗(V⃗)|2

2σ2
t

)]
, (11)

where |·| is the Euclidean norm of a vector. It is the amplitude of
the translational velocity input. ϵ is the strength of velocity tuning
as in equation (4), and σt the width of the translational velocity
tuning.

2.3.4. Estimation of the Bump Position and
Localization
The center of the bumps on the neural manifold encodes spatial
position and translational velocity. We use Fourier transforma-
tions to estimate the center of the bumps on the four-dimensional
neural manifold.

First, we project the firing activity to the projection axes defined
by the grid pattern in the spatial dimensions of the neural mani-
fold and obtain the phases of the grid pattern along the projection
axes

ψj =
∠

(∫∫
Dθ⃗Dν⃗m(θ⃗, ν⃗)exp

(
ik θ⃗T⃗ej

ℓj

))
k , (12)

where i is the imaginary unit, e⃗j the unit direction of the j-th
projection axis, namely e⃗1 = [0, 1]T, e⃗2 = [sinα,−cosα]T,
e⃗3 = [−sinα,−cosα]T (see Figure 2). α, determined by the grid
pattern in the torus, is the angle of the second grid axis. In our
case, α= arctan(2) due to the square shape of the torus. ℓj is the

FIGURE 2 | Estimation of bump position on the torus. The torus neural space
of (θx, θy) is unfolded and shown as the black box. The grid pattern is
projected by Fourier transforms along projection axes e⃗1 and e⃗2. The center of
a bump (red dot) in the torus is represented by the phase in each projection
axis. The position of the bump on the torus is recovered by mapping the
phases in the projection axes to the neural space according to the
trigonometric relation defined by α, which is the angle of the grid axis
perpendicular to e⃗2.
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respective wavelength of the grid pattern along the projection axis
j, i.e., ℓ1 = 1, ℓ2 = ℓ3 = sin α.

Second, we estimate the center of the bumps in the spatial
dimensions of the neural manifold according to the trigonometric
relation between the projection axes and the spatial axes. As
shown in Figure 2, the center of the bumps in the θy dimension is
simply

θ̂y = ψ1ℓ1. (13)

By mapping the scaled phase ψ1ℓ1 and ψ2ℓ2 to the θx direction,
the center of the bumps in the θx dimension is given by

θ̂x =
ψ2ℓ2
sinα

+
ψ1ℓ1
tanα

. (14)

The phases estimated in equation (12) are constrained by
the periodic boundary conditions. In order to estimate the true
position of the robot in the environment, the phases should be
unwrapped by considering the phases of two consecutive time
steps. After unwrapping, the cumulative phases are used in equa-
tions (13) and (14) to estimate the position of the robot

x̂(t) =
S

2π/k θ̂x(t), (15)

ŷ(t) =
S

2π/k θ̂y(t), (16)

where θ̂x(t) and θ̂y(t) are the cumulative phases after unwrapping
at time t. The scaling factor S

2π/k is the ratio between the velocity
of the robot in the physical environment and the velocity of bumps
in the network.

To estimate the center of the bumps in the velocity dimen-
sions, the same method as equation (6) is used in the following
form

ϕj =
∠

(∫∫
Dθ⃗Dν⃗m(θ⃗, ν⃗) exp(iλνj)

)
λ

, (17)

where j ∈ {x, y}. ϕj ∈ (−Lt, Lt) is the position of the bump on the
axes ν j.

According to themapping between the velocity of the bumps in
the neural space and the velocity of the robot, the velocity of the
robot in the environment is given by

Vj =
Stan(kϕj)

2πτ
. (18)

Note that Lt should be chosen large enough to cover the
maximal translation velocity experienced by the robot.

2.4. Estimating Angular and Translational
Velocity from Visual Inputs
The angular velocity and the translational speed of the robot are
estimated by matching two consecutive frames from the camera,
according to the method described in Milford and Wyeth (2008).
The estimated angular velocity is utilized by the HD-by-velocity
units to formHD representations (equation (4)). The translational
velocity is obtained by combining the HD estimation from the
HD-by-velocity network and the translational speed estimated
from the image sequence, and is fed to the grid-by-velocity net-
work to perform path integration (equation (11)).

2.5. Calibration from Local View Cells
Since movement estimation is subject to noise, both the head
direction cell network and the grid cell network need calibration
by visual inputs. Following Milford and Wyeth (2008), we extract
local view templates from images to encode the scenes observed
from the camera. If a view is sufficiently different from previously
observed views, a new view cell is added to the system, together
with the view template and the estimated bump positions ψ, θ̂x
and θ̂y. If the robot comes back to a previously visited location,
and a familiar view reappears, the corresponding local view cell
is activated and provides inputs to the networks. We model the
current injected from a view cell to the HD cell network as

Iview(θ) = Idexp
(

−||θ − ψ||2

2σ2
d

)
, (19)

where Id is the amplitude of the injected current to the HD cell
network, ψ is the associated phase with the view template, σd is
sharpness of the Gaussian tuning.

For the conjunctive grid cell network, the input from a view cell
is given by

Iview(θ⃗) = Ip

1
3

3∑
j=1

cos

k (θ⃗ − ˆ⃗
θ)

T
e⃗j

ℓj

 + C

, (20)

where Ip is the amplitude of the injected current, C is a constant
to adjust the baseline, ˆ⃗θ is the phase associated with the local view
template (see equations (13) and (14)), and other parameters are
the same as in equation (12). Note that the injected current from
a local view cell depends only on θ⃗, and is the same for different ν⃗.

2.6. Neural Network Parameters
The HD-by-velocity units are regularly arranged on a rectangular
grid in the two-dimensional manifold of direction and rotation,
with 51 units in the direction dimension and 25 units in the
rotation dimension. All together, there are 1,275 HD-by-velocity
units. Lr = 0.0095 is sufficient to represent the maximal angular
velocity of the vehicle.

The grid-by-velocity units are regularly arranged on a rectangu-
lar grid in the four-dimensional neuronalmanifold of position and
velocity. There are 15 units in each of the positional dimensions
and 7 units in each of the velocity dimensions, resulting in 11,025
grid-by-velocity units. To represent the maximal experienced
translational velocity of the robot, Lt is chosen to be 0.3.

Table 1 summarizes the parameters used in the model.

2.7. Map Representation
Amapof the environment can be formed by reading out the spatial
codes in the grid-by-velocity network. We could resort to place
cell models (Solstad et al., 2006; Si and Treves, 2009; Cheng and
Frank, 2011) to build cognitive maps. In this study, we simply
adopt the experience map representation (Milford and Wyeth,
2008), which is a topological map storing the spatial positions
and their transitions measured from visual odometry. A graph
relaxation algorithm (Duckett et al., 2002) is applied to optimize
the topological map when the robot comes back to a familiar
location and closes a loop (Milford and Wyeth, 2008).

Frontiers in Neurorobotics | www.frontiersin.org November 2017 | Volume 11 | Article 616

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Zeng and Si Cognitive Mapping Based on Conjunctive Representations

TABLE 1 | Values of the parameters used in the system.

Parameter J0 J1 λ Lr Ir ϵ σr Jk k Lt S It σt Id σd Ip C

Value −60 50 0.8 0.0095 50 0.8 0.012 50 2 0.3 30 60 0.1 60 2.19 200 0.5

FIGURE 3 | The software architecture of the cognitive mapping model. The
sensor/bagfile node provides camera images. Velocities are estimated by the
visual odometry node. The local view cell node analyzes whether the current
view is new or not. Path integration and decisions of creating links and nodes
are performed by the spatial memory network node. The topological map is
generated by the experience map node.

2.8. Implementation of the Cognitive
Mapping Model
The proposed cognitive mapping model is implemented in the
C++ language and is run in the Robot Operating System (ROS)
Indigo on Ubuntu 14.04 LTS (Trusty). We organize the software
architecture of our cognitive mapping model into five nodes
(Figure 3), similarly as that of the open RatSLAM system (Ball
et al., 2013), for the ease of reusing their visual processing algo-
rithm and comparing with their results.

The visual odometry node measures the angular velocity and
the translational speed according to the changes of visual scenes. It
receives frames from the ROS either from a camera or from stored
data in a bagfile.

The local view cell node determines whether the current scene
is new or is a familiar one. It provides calibration current to the
networks in the spatial memory network node.

The spatial memory network node includes the head-direction
cell network and the conjunctive grid cell network. This node
receives two types of ROS messages as inputs: odometry and
view templates. As shown in Section 2.2.3, 2.3.3, and 2.5, the
HD cell network and the conjunctive grid cell network integrate
velocity information and visual information to form neural codes
of the pose of the robot. The spatial memory network node also
makes decisions about the creation of nodes and links in the
experience map and sends ROS messages of graph operations to
the experience map node.

The experience map node reads out the neural codes of the
conjunctive grid units and represents the key locations of the
environment as the vertices in a topological graph. A vertex stores

both the position estimated from the conjunctive grid units and
the odometry relative to its previous vertex in the graph. On
loop closure, a topological map relaxation method is used to find
the minimum disagreement between the odometric transition
information and the absolute position in the topological map
space. When the position encoded in the conjunctive grid cell
network is far enough from the position of the previous vertex,
the spatial memory network node would inform the experience
map to create a new vertex and a new edge linking to the previous
vertex.

We write python scripts to visualize the live state of our robot
navigation system. The key components of the system are shown,
including the real time neural activity of the HD cells and the
conjunctive grid cells (Figures 4A,B), the image of the scene
and the local view templates (Figure 4C), as well as the current
experience map (Figure 4D).

2.9. St Lucia Suburb Dataset
The St Lucia Suburb dataset was first used in Milford and Wyeth
(2008). The dataset was gathered in the suburb area of St Lucia
in Brisbane, Australia by a vehicle. The vehicle was driven around
the road network, visiting every street at least once. The trajectory
is 66 km long, finished within about 100min at typical driving
speed up to 60 km/h. The trajectory spans an area of 3 km by
1.6 km in East–West andNorth–South direction, respectively. The
street viewswere recorded in 10 frames/s into a video of resolution
640× 480 pixels by a laptop’s built-in web-cam mounted on the
roof of the vehicle. The GPS information of the vehicle was not
collected, however.

St Lucia is a very challenging environment to map due to its
big variability and fairly large scale. There are 51 inner loops of
varying size and shape, andmore than 80 intersections in the road
network (Figure 5A). The roads vary from busy multilane streets
to small tracks, the terrains range from flat plains to steep hills,
and the light conditions change a lot as well (Figure 5B).

3. RESULTS

We tested our cognitive mapping model on the St Lucia dataset
(Ball et al., 2013). Our cognitive mapping model is run on a
personal computer with 3.4GHz six-core Intel i7 processor and
64 GB memory. The program is paralleled using OpenMP. Video
S1 in Supplementary Material shows the mapping process.

3.1. Neural Representation
Figures 6A,C show the activity of the HD-by-velocity units and
the conjunctive grid-by-velocity units in the beginning of the
experiment, when the robot is stationary. In the HD-by-velocity
network, a single bump of activity emerges. Since the angular
velocity is zero at this time, the bump is centered in the veloc-
ity dimension (red arrow in Figure 6A). The position of the
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A

C

D

B

FIGURE 4 | Screenshots of the cognitive mapping model. (A) The neural activity of the HD-by-velocity units is depicted as a heat map, with warm colors for high
activities and cool colors for acitivities diminishing to zero; (B) the activity of the conjunctive grid-by-velocity units is shown as heat maps, and each panel
corresponds to a subspace of the neural manifold with the same velocity label. The same color code as in (A) is used; (C) the video frame (top) is the visual input to
the robot. A visual feature map is constructed to represent the current scene (bottom). The best matched template is shown in the middle; (D) experience map
showing paths with nodes and links.

bump in the direction dimension (black arrow in Figure 6A)
encodes the direction of the robot in the environment. At this
moment, the activity of the grid-by-velocity units is also cen-
tered in the center of the velocity dimensions (red arrows in
Figure 6C) due to the zero translational velocity input. In spatial
dimensions, the same grid pattern sustains, with peak activity
decays gradually when the velocity labels of the units are away
from the center. The phase of the grid pattern (short black
arrows in Figure 6C) encodes the position of the robot in the
environment.

One example of the network states in the middle of the exper-
iment is displayed in Figures 6B,D. The activity bump of the
HD-by-velocity network is centered at (3.25, 0.0069) (Figure 6B),
which means that the current HD angle of the robot is encoded
as 186.21°, and meanwhile, the robot is rotating counterclock-
wise at 0.69 rad/s in the physical environment. At this moment,
the activity pattern of the grid-by-velocity network is centered
at νx =− 0.0889 and νy =− 0.0045 in the velocity dimensions,

corresponding to the movement of the robot in Vx =− 11.43 and
Vy =− 0.57m/s.

3.2. Pattern Completion with Visual
Feedback
The network states are calibrated by the cues provided by the local
view cells. The calibration is achieved by the pattern completion
mechanism of the attractor networks. Figure 7 and Video S2 in
Supplementary Materials show an example of pattern completion
process during loop closure. In Figures 7A,B, the robot traverses a
path for the first time, while the networks integrate velocity inputs,
forming localized bumps that encode the head direction and the
position of the robot. When the robot closes a loop and revisits
familiar places (Figures 7C,D), local view cells get activated and
provide strong cues to the networks. Weak bumps emerge at the
phases associated to the local view cells and quickly become the
dominating bumps in the network, retrieving phases similar to
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FIGURE 5 | The complex environment of St Lucia. (A) The map of St Lucia from a bird’s eye view. Black lines are the major road network in St Lucia urban area. The
area is approximately 3.0 km by 1.6 km in size; (B) example scenes experienced by the robot in St Lucia. Panel (A) reused from
http://www.itee.uq.edu.au/think//filething/get/246/MichaelFig3.png.
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FIGURE 6 | Population activities of the units in the cognitive mapping model. The activity of each unit is color-coded from red to blue for the maximal activity to zero
activity. (A) The population activity of the HD-by-velocity units in the beginning of the experiment. The horizontal axis is the direction axis θ, and the vertical axis is the
velocity axis ν. Positive (negative) ν represent counterclockwise (clockwise) rotation. A localized bump pattern emerges in the network. At his moment, the center of
the bump is at (0, 0), indicated by the black and red arrows in the direction and velocity dimension, respectively; (B) the activity of the HD-by-velocity network in the
middle of the experiment. The center of the bump is at (3.25, 0.0069); (C) the population activity of the grid-by-velocity units in the beginning of the experiment. The
four-dimensional neural activity is sliced in the νx and νy dimensions into 49 planes shown by each panel, with increasing νx from left to right and increasing νy from
bottom to top. Each panel depicts the activity of the units with the same velocity label, with horizontal axis for θx and vertical axis for θy. The center of the bumps is
marked by the short black arrows in the spatial dimensions and short red arrows in the velocity dimensions; (D) the activity of the grid-by-velocity network in the
middle of the experiment. The center of the bumps is at (3.85, 3.91, −0.0889, −0.0045) in the 4D neural space (θx, θy, νx, νy).

the phases when the robots first visited this place (Figures 7A vs.
7D). Once the robot moves to unfamiliar areas, local view cells
become inactive, and the bumps revert to their localized shapes
(Figures 7E,F).

3.3. Cognitive Map
The cognitive map created by the mapping system is shown in
Figure 8. The thick green line is composed of the vertices of the
topological graph. The positions of the vertices are determined by
the conjunctive grid cells and graph relaxation. The link between
two related vertices is shown by the fine blue line. Since the phys-
ical distance between two topological vertices is considered, the
experience map is actually a semi-metric topological map, which
can be compared visually with the ground truth map (Figure 5A)
by naked eyes. The cognitive map conserves the overall layout of

the road network of the environment. The cognitivemap correctly
represents all loop closures and intersections, although the orien-
tation and length of the path are slightly different from the ground
truth map. Overall, the map built by our method is consistent
with the true map of the environment, and of similar quality as
compared with that obtained in Ball et al. (2013).

3.4. Firing Rate Maps
To see the responses of single units, we show the activities of
example units on top of the cognitive map. Figure 9A depicts
the firing rate map of the HD-by-velocity unit with label (0, 0)
in the neural manifold. It fires strongly when the robot moves
in broad directions close to southwest. The unit responses to a
wide range of directions, since the width of the bump in the
HD-by-velocity network is quite big, covering about 70° in head
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FIGURE 7 | Calibration of the network states during loop closure by the help of visual feedback from the local view cells. There are three parts in each panel: the
activity of the HD-by-velocity network (top), the activity of the grid-by-velocity network (middle), and the corresponding experience map at the time (bottom). (A) The
robot drives along a path for the first time. The activity bump of the HD-by-velocity network is centered at (3.3763, 0.0023) and the bumps of the grid-by-velocity
network are at (1.1781, 5.7298, −0.1027, −0.0191); (B) before the robot revisits a familiar place, the center of the bump of the HD-by-velocity network moves to
(3.0973, 0.0021) and the center of the bumps of the grid-by-velocity network (bottom) is at (2.2176, 2.3562, −0.1272, −0.0158). (C) The robot revisits the same
place as in (A) and starts to close a loop. The local view cells inject currents to the HD-by-velocity network and the grid-by-velocity network, and create weaker
bumps at the same phases as the network states in (A); (D) after multiple continuous current injections, the networks retrieve similar phases as those when the robot
first visited the place; (E) once the robot enters a new area, the local view cells become inactive, and the network states stat to sharpen. (F) After loop closures, the
network states are modulated by the velocity inputs. The bumps revert to their localized shapes.
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FIGURE 8 | The semi-metric cognitive map of St Lucia formed in the cognitive mapping model. The green thick line comprises topological graph vertices, and the
blue thin line consists of links between connected vertices.

directions. The unit does not fire on many of the roads parallel
to the southwest direction, since on those roads the robot moves
northeast, i.e., opposite to the preferred firing direction of the
unit. This can be confirmed by the firing rate map of a unit with
opposite preferred head direction, shown in Figure 9B. This unit
has the label (π, 0.0024). This unit fires in broad directions close
to northeast, and its firing rate map does not overlap with that of
the unit in Figure 9A, meaning that it keeps silent when the unit
in Figure 9A fires. This unit prefers a counterclockwise rotational
velocity of 0.24 rad/s. Therefore, on bending paths, when the robot
turns counterclockwise at about northeast directions, its firing
rate always increases first and then decreases, which means that
the head direction and the angular velocity of the robot become
close to and away from the preferred conjunction of direction and
rotational velocity of this unit. Figure 9C shows the firing rate
map of the HD units with label 0 in the dimension θ. The firing
pattern in Figure 9C indicates these units encode quite large range
of directions centered at southwest. In local regions, these cells
conserve consistent preference for directions.

Due to the periodic boundary conditions of the grid pattern in
the conjunctive grid-by-velocity cell network, each grid unit fires
at multiple distinct locations in the environment. Figures 10A,B
give the firing rate maps of two example grid units in the network
with the same spatial label but different velocity labels. In each
of these firing fields, the firing rate always gradually increases
when the robot moves closer to the center of the firing field and
decreases bit by bit when the robot leaves the field center. The
firing fields of the two example grid units overlap a lot, since
they have the same spatial preference. The difference in firing
field comes from the fact that the grid unit in Figure 10B prefers
high translational velocity, however, the grid unit in Figure 10A
prefers low translational velocity. Therefore, the grid units in
Figure 10A fires in many locations close to the turns of the
road, where the robot has to slow down significantly. The total

activity of the grid units, which share the same spatial preference
as the units in Figures 10A,B is shown in Figure 10C. The firing
map is composed of many distributed firing fields, but they are
lack of global grid structure. This is similar to the fragmented
firing pattern observed in hairpin maze (Derdikman et al., 2009),
where the animal also runs on linear paths. Note that the distance
between the grid fields of the units in the network is much larger
than the typical spacing observed in animal experiments. This is
due to the fact that the velocity input to themodel is defined in the
visual space of the input images and is different from the actual
velocity of the robot.

4. DISCUSSION

We proposed a robust cognitive mapping model, which integrates
movement and sensory information and forms stable spatial
representations of the environment. We demonstrated that our
cognitive mapping model using only visual sensory information
could successfully build a coherent topological map of large-
scale outdoor environment from an open-source dataset of 66 km
urban car journey (see Video S1 in Supplementary Materials).

There are two major contributions in this study. First, the
network architecture of our cognitive mapping model is consis-
tent with the synaptic organization of the MEC. Our model is
built upon layer III and deep layers of the MEC. Layer III and
deep layers of the MEC may be the main site to perform key
computations for navigation, and the layer II of the MEC may
merely relays information to the hippocampus and functions as
the output of the MEC. Supporting experimental evidence shows
that there exist strong projections from deep layers to superficial
layers of the MEC. HD cells, conjunctive grid-by-head-direction
cells, and speed cells are abundant in layer III anddeep layers of the
MEC, and encode direction and speed information needed in path
integration. However, layer II of the MEC contains mainly pure
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A

B

C

FIGURE 9 | Firing rate maps of example HD-by-velocity units. In each panel, the firing rate is plotted at the locations in the experience map. Firing rate is color-coded
by the same jet colormap, i.e., red for high firing rate and blue for zero firing rate. (A) The firing rate map of the unit at (0, 0) in the (θ, ν) manifold; (B) The firing rate
map of the unit at (π, 0.0024), which has the opposite preference in head direction as the unit in (A); (C) The total activity of all the units with the same label θ = 0,
i.e., summing firing rates of all the units along the dimension ν at θ = 0.
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B

C

A

FIGURE 10 | Firing rate maps of example conjunctive grid-by-velocity units. In each panel, firing rate is plotted at the locations in the experience map. For all panels,
the same colormap is used to code firing rate, red for high firing rate and gradually changing to blue for firing rate decreasing to zero. (A) The firing rate map of the
unit at (π, π, 0, 0) in the (θx, θy, νx, νy) manifold; (B) the firing rate map of the unit at (π, π, 0.1, 0.1); (C) the map of the total activity of the units at (π, π) in the
(θx, θy) manifold, which sums the firing rates of the units along the dimensions νx and νy.
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positional grid cells. Second, our cognitive mapping model pro-
vides coherent robust mechanisms to perform path integration.
Both the HD cells and the conjunctive grid cells in the model
integratemotion and perception information using the same prin-
ciple. The performance of themodel is manifested by experiments
in large-scale natural environment. Compared with the pose cell
network in Ball et al. (2013), our model achieves similar mapping
results as those shown in Ball et al. (2013). Although our model
reuses some of the vision and map operation methods of Ball
et al. (2013), the core components of the HD cell network and
the conjunctive grid cell network in our system are fundamentally
different from the pose cell network. In our model, path inte-
gration is performed by the intrinsic attractor dynamics driven
by velocity inputs, rather than simply displacing the copy of the
activity package. In the proposed model, the convergence process
of local view calibration is also performed by the dynamics of the
attractors, instead of global inhibition.

The grid cells in our model does not express grid-like firing
pattern in large-scale environment (Figure 10). Meanwhile, the
HD cells in themodel fire at a broad range of directions (Figure 9).
This is due to the fact that local view cells anchor grids to local
cues and alters the firing patterns of the units. It has been shown
that in environmentswith abundant local cues, such like corridors,
grids cells show fragmented firing maps (Derdikman et al., 2009).
It is much harder for animals to form a globally consistent metric
map in large than in small environments. Indeed, as shown in
Carpenter et al. (2015), grid cells in rats acquire globally coher-
ent representations after repeated exploration, while initially grid
maps are only locally consistent.

Several potential limitations exist in the current study. First,
the number of units in the system is large and requires sub-
stantial amount of computational resources. Second, place cell
network is not included in our system. The function of place
cells is not to provide a metric map. Experiments showed that
in large-scale environments, place cell has multiple irregularly
spaced place fields (Rich et al., 2014; Liu et al., 2015). A metric
map is necessary if direct interpretation is preferred. For robotic
applications, it would suffice to have distributed neural represen-
tations if the robots are able to distinguish different locations of the
environment.

For future research, we plan to include a place cell network,
which integrates multiple grid cell modules with diversity of spac-
ings and orientations, and investigate its function in path planning
and reward-based learning. We will also investigate neurobiologi-
cally inspired algorithms to improve the computational efficiency
of the system for robot navigation.

5. CONCLUSION

In summary, conjunctive space-by-movement attractor network
models are proposed in this paper to achieve cognitive mapping
in a large-scale natural environment. Head direction cells and
conjunctive grid cells work on the same principle, and represent
positions, head directions, and velocity at the same time. Our
model facilitates to reach a better understanding of the neural
mechanisms of spatial cognition and to develop more accurate
models of the brain. Furthermore, it inspires innovative high per-
formance cognitive mapping systems, which are able to function
in dynamical natural environment with long-term autonomy.
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