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Abstract
Many approaches for variable selection with multiply imputed data in the development

of a prognostic model have been proposed. However, no method prevails as uniformly

best. We conducted a simulation study with a binary outcome and a logistic regression

model to compare two classes of variable selection methods in the presence of MI

data: (I) Model selection on bootstrap data, using backward elimination based on AIC

or lasso, and fit the final model based on the most frequently (e.g. ≥ 50%) selected

variables over all MI and bootstrap data sets; (II) Model selection on original MI data,

using lasso. The final model is obtained by (i) averaging estimates of variables that

were selected in any MI data set or (ii) in 50% of the MI data; (iii) performing lasso on

the stacked MI data, and (iv) as in (iii) but using individual weights as determined by

the fraction of missingness. In all lasso models, we used both the optimal penalty and

the 1-se rule. We considered recalibrating models to correct for overshrinkage due to

the suboptimal penalty by refitting the linear predictor or all individual variables. We

applied the methods on a real dataset of 951 adult patients with tuberculous meningitis

to predict mortality within nine months. Overall, applying lasso selection with the 1-

se penalty shows the best performance, both in approach I and II. Stacking MI data

is an attractive approach because it does not require choosing a selection threshold

when combining results from separate MI data sets
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1 INTRODUCTION

When creating a prediction model, the aim is to build a clinically useful model with satisfying predictive performance. Variables

that are difficult or costly to measure, unreliable, or unavailable at the prediction time are less likely to increase the usability of a

prediction model, although their causal relation to the outcome may be strong. In addition, parsimony is a desirable property in

predictive modeling. A complex model is often more difficult to understand and communicate. Additionally, it may be overfitted

to the data at hand.

Subject matter knowledge and expert opinion should be the most important rationale for selecting a variable in a predic-

tion model (Harrell, 2015). However, this information is not always available, and expert opinion might also introduce bias
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(Steyerberg, 2009). An alternative option is to perform some form of automated variable selection. For fully observed data, such

methods have been extensively studied. The most straightforward, and therefore the most popular variable selection method is

backward stepwise selection based on P-value or AIC. The critical shortcomings of this method include instability in selected

variables and inflated parameter estimates (Harrell, 2015). Several alternative approaches have been proposed that show more

robust performance. Austin and Tu (2004) suggested performing backward elimination on bootstrap samples from the original

data. A final model is fitted based on variables with an inclusion frequency over all bootstrap samples above some threshold.

In their case study, a threshold of 60% showed the best performance, yet their choice of the considered inclusion frequencies

was somewhat arbitrary. Another attractive method is the least absolute shrinkage and selection operator (lasso) selection tech-

nique. It combines variable selection and shrinkage via a penalized likelihood technique (Hastie, Tibshirani, & Friedman, 2009).

Shrinkage can improve predictive performance, at the cost of some bias in the parameter estimates. Using a simulation study,

Van Houwelingen and Sauerbrei (2013) compared the performance of lasso with standard backward elimination followed by

some form of shrinkage. The two methods yielded similar performance, with a more parsimonious model obtained by the back-

ward elimination method. The authors considered three fairly strict significant levels of 𝛼 = 0.157, 0.05, and 0.01 for backward

elimination models, while they only used the optimal penalty in the lasso model. A more parsimonious model is obtained by

choosing a stronger penalty, for instance, based on the 1-se rule (Hastie et al., 2009) or the tolerance rule (Kuhn & Johnson,

2013). However, a stronger penalty may overshrink parameter estimates.

In practice, missing data is commonly encountered, and often handled by multiple imputation (MI). The general idea of

the technique is to impute a set of plausible values for missing data based on the distribution of the observed ones. When

correctly implemented, MI produces unbiased estimates under missing at random (MAR) mechanisms (Little & Rubin, 2002;

White, Royston, & Wood, 2011; van Buuren, 2012). As a rule of thumb, 5-10 imputations were recommended to yield reli-

able estimates (Little & Rubin, 2002). Other authors suggested one imputation per percent of missing data (White et al.,

2011).

Variable selection in the presence of multiply imputed data needs adaptation. With stepwise backward elimination, the gold

standard approach entails fitting the model under consideration to each MI dataset, and combine results via Rubin's rule (Little

& Rubin, 2002) to obtain Wald tests for all variables. The least significant variable is removed from the model before moving

on to the next step. It is the only method that preserves the type I error; however, it may require intensive computation (Wood,

A. M., White, I. R., & Royston, 2008). Numerous approaches have been proposed that are less computationally demanding

and can be applied with both backward elimination and shrinkage selection methods. The most straightforward approach is to

perform variable selection on each imputed dataset separately and combine results afterwards. The set of selected variables is

likely to vary by MI dataset. One option is to fit the final model based on the most frequently selected variables (Wood et al.,

2008). The second approach is to combine variable selection with bootstrapping (Heymans, van Buuren, Knol, van Mechelen,

& de Vet, 2007; Long & Johnson, 2014). The variable inclusion frequency is calculated over all bootstrap and MI datasets.

This method takes into account the uncertainty caused both by missing data and by sampling variability. The third approach

is to stack all MI datasets and perform variable selection on that single dataset (Wood et al., 2008). Unlike the previous two

approaches, the stacked approach does not lead to different sets of selected variables. When computing P-values in the backward

elimination procedure, Wood et al. (2008) additionally proposed a weighting scheme to account for the fraction of missingness

per variable, and the repeated occurrence of individuals. Using elastic net as a penalized likelihood variable selection method,

Wan, Datta, Conklin, and Kong (2015) adopted the same idea but their proposed weighting scheme is per observation rather

than per variable. Chen and Wang (2013) proposed an alternative that applies to lasso selection called MI-lasso. It is a type of

grouped lasso, in which a variable is either not selected at all, or selected in each MI dataset. Contrary to the stacked approach,

it may give different coefficient estimates per MI dataset.

A review of current strategies for variable selection in the presence of missing data was given in Zhao and Long (2017). Despite

significant contributions, it is unclear that approach performs best and in which circumstances one approach is preferable to the

others.

The purpose of this article is to describe and compare strategies for incorporating variable selection with MI data in predictive

modeling. We mainly focus on two classes of approaches: (i) lasso or backward elimination in combination with bootstrap

sampling; and (ii) lasso selection on the original MI data. The paper is organized as follows. In Section 2, we describe the model

selection methods and the performance criteria. In Section 3, we compare the methods using a simulation study with a logistic

regression model to predict a binary outcome. In Section 4, we demonstrate the performance of the methods on a real dataset of

951 adult patients with tuberculous meningitis (TBM) to predict mortality within nine months. We discuss our findings in the

final section.
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2 MODEL SELECTION STRATEGIES

We consider a logistic regression model given by:

logit P(𝑌𝑖 = 1|𝑋1𝑖,… , 𝑋𝑝𝑖) = 𝛽0 +𝑿𝑻
𝒊
𝜷,

where 𝒀 = (𝑌1, 𝑌2,… , 𝑌𝑛)𝑇 denotes the binary outcome vector of 𝑛 subjects, 𝑿𝒊 = (𝑋1𝑖, 𝑋2𝑖,… , 𝑋𝑝𝑖)𝑇 is a set of 𝑝 predictors

for subject 𝑖, 𝜷 = (𝛽1, 𝛽2,… , 𝛽𝑝)𝑇 is the vector of 𝑝 regression coefficients.

2.1 Lasso models
Lasso coefficient estimates are the solution to the 𝐿1 optimization problem:

𝜷𝒍𝒂𝒔𝒔𝒐 = argmin

[
−

{
1
𝑛

𝑛∑
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+ 𝜆‖𝜷‖1
]
,

where ‖𝜷‖1 = ∑𝑝

𝑗=1 |𝛽𝑗| denotes the 𝐿1 norm, and 𝜆 ≥ 0 is the regularization parameter that controls the amount of shrinkage.

Large enough 𝜆 will set some coefficients exactly equal to zero, thus lasso performs variable selection. We use a single 10-fold

cross validation for the selection of 𝜆 based on the deviance, as implemented in the cv.glmnet function in the R package
glmnet (Friedman, Hastie, & Tibshirani, 2010). We consider both the optimal 𝜆 and a suboptimal 𝜆 based on the 1-se rule. The

former gives the model with the smallest cross-validated deviance. The latter gives the most regularized model such that the

cross-validated deviance remains within one standard error from the minimum (Hastie et al., 2009). By choosing this suboptimal

penalty, we may sacrifice some predictive performance to obtain a more parsimonious model. Due to the stronger penalty, the

coefficient estimates are shrunk more towards zero. To correct for the overshrinkage, we consider recalibrating the parameter

estimates by refitting the model via unpenalized maximum likelihood, based on the selected predictors or the linear predictor

(score) from the lasso procedure. This recalibration is performed on the same dataset that is used to derive the model. Hence,

it is different from the classical recalibration methods in validation settings, which are ideally implemented on independent

observations. For lasso models with the optimal penalty, we do not perform any type of recalibration as the amount of shrinkage

is considered to be optimal.

In more detail, suppose we have a logistic regression model

logit(𝑌 ) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯ + 𝛽𝑘𝑋𝑘 (1)

with 𝑘 predictors obtained by performing lasso selection on a fully observed data set, where 𝜷̂ is the vector of parameter estimates.

The recalibration by score is implemented by fitting a regression model with the score 𝑍 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯ + 𝛽𝑘𝑋𝑘 as

the only covariate, i.e. logit(𝑌 ) = 𝛾0 + 𝛾1𝑍. The recalibrated coefficients become 𝛽𝑐𝑎𝑙 = 𝛾1 ∗ 𝛽𝑖. Hence, the recalibrated model

by score retains the relative effects of the lasso regression coefficients in (1). In the more flexible recalibration, we refit a new

model based on the 𝑘 selected variables: logit(𝑌 ) = 𝛽1𝑛𝑒𝑤𝑋1 + 𝛽2𝑛𝑒𝑤𝑋2 +… + 𝛽𝑘𝑛𝑒𝑤𝑋𝑘. The extension to MI data is explained

below.

2.2 General model selection approaches
We describe the two classes of model selection approaches that we consider in more detail. A summary of all methods is given

in Table 1.

i. “Model selection on bootstrap data”: From each of the 𝑚 MI data sets, we repeatedly draw a sample with replacement 𝐵

times. On each bootstrap sample, we perform lasso selection (method BLaF) or backward elimination with AIC as selection

criterion (method BBeF). The penalty in the lasso model is identified per bootstrap sample. The proportion of times each

variable appears in the 𝑚𝐵 models is calculated for each method, and a variable is selected if this proportion exceeds 𝑥%.

We choose 𝑥 = 50. To obtain the final model, we refit the selected predictors to each of the 𝑚 imputed datasets and combine

results by averaging coefficient estimates. These approaches are similar to the ones that have been used in Heymans et al.

(2007) and Long and Johnson (2014).

ii. “Lasso on original data”: We perform lasso on the original 𝑚 MI data with two different approaches: separate and stacked.

In the first one, we apply lasso on each imputed dataset separately and combine estimates by averaging lasso coefficients of
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T A B L E 1 Summary of considered model selection methods

Method Description
FULL Full model with all covariates included

TrueC Model with all true covariates only (i.e. covariates with nonzero coefficients)

Model selection on bootstrap data

BBeF Bootstrap resampling. Backward elimination (with AIC as the stopping rule) on bootstrap data and fit

the final model based on variables with inclusion frequency ≥ 50%
BLaFa Bootstrap resampling. Lasso selection on bootstrap data and fit the final model based on variables with

inclusion frequency ≥ 50%
Lasso on original data

SepAva,b Lasso selection on each original MI dataset separately, and average coefficient estimates

SepAvFa,b Lasso selection on each original MI dataset separately, and average coefficient estimates of the variables

with inclusion frequency ≥ 50%
Stacka,b Lasso selection on the stacked data

StackWa,b Lasso selection on the stacked data, with a weighting scheme for each observation

aWe add letter “o” after the method abbreviation for model obtained by the optimal 𝜆
bWe additionally consider recalibration by score and by selected variables

predictors that appear in (a) any of the 𝑚 models (method SepAv), or b) in at least 𝑥% of the models (method SepAvF). We

choose 𝑥 = 50. SepAv is similar to method S1 in Wood et al. (2008), while SepAvF is similar to the method investigated

by Lachenbruch (2010) and method S2 in Wood et al. (2008), except that they used backward elimination instead of lasso.

For lasso models with the 1-se penalty, we recalibrate by fitting the score or the selected variables on each MI dataset and

averaging the coefficient estimates over all 𝑚 models.

In the stacked approach, we apply lasso on the single stacked data (method Stack). We also investigate the value of adding

a weighting scheme for each observation to account for the amount of missingness (method StackW). We employ the same

weighting scheme as implemented in method MI-WENet by Wan et al. (2015). Specifically, each individual 𝑖 is multiplied by a

weight 𝑤𝑖, which is defined as:

𝑤𝑖 =
1
𝑚

(
Number of non-missing variables of subject 𝑖

𝑝

)
,

where 𝑚 is the number of imputations, and 𝑝 is the number of covariates. Hence, subjects with more missing values receive a

smaller weight. In the stacked methods, the cross validation procedure for the selection of 𝜆 is implemented by individual, i.e. in

each fold, a subject is either included 𝑚 times or excluded altogether. By doing so, we account for the variability in the selection

of 𝜆 incurred by the imputation. For each method that uses the 1-se penalty, the recalibrated models are obtained by fitting the

score or the selected variables on the stacked MI data.

We compare the described methods above with the full model (method FULL) and the model with all true covariates (method

TrueC). These two models are obtained by fitting all considered predictors or all true predictors respectively to the stacked MI

data.

3 SIMULATION STUDY

3.1 Simulation design
We consider two data generating mechanisms, differing in the number of covariates 𝑝, and the correlation structure of the

covariates.

3.1.1 Data generating mechanism one: 15 variables (8 noise) with specific correlation structure
We adapt the simulation design from Van Houwelingen and Sauerbrei (2013). Fifteen variables are generated from a multivariate

normal distribution with mean 0 and unit variance. We postulate a low overall correlation structure with the corresponding

correlation matrix visualized in Supporting Information Figure S1. Specifically, all correlations are 0 except for 𝜌1,10 = 𝜌2,6 =
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T A B L E 2 Simulation scenarios

Data generating mechanism one Data generating mechanism two
Number of covariates (𝑝) 15 25

Proportion of missing values per variable (𝑚𝑖𝑠𝑠) 0.1, 0.2, 0.3, 0.4, 0.5 0.1, 0.2, 0.3, 0.4, 0.5

The corresponding:

- Percentage (%) of missing values in the dataa 4, 8, 12, 16, 20 4, 8, 12, 16, 20

- Percentage (%) of complete casesa 65, 44, 30, 20, 12 65, 47, 34, 24, 16

Sample size n (Events per variable EPVa) 200 (5), 400 (10), 600 (15) 200 (3), 400 (7), 600 (10)

Number of imputed datasets (𝑚) 10, 20, 30 10, 20, 30

Number of true/noise covariates 7/8 7/18

aAverage value

𝜌7,14 = 𝜌9,13 = 0.5, 𝜌4,8 = −0.7, 𝜌7,8 = 0.3, 𝜌11,12 = 0.7. We dichotomize variables 𝑋2, 𝑋4, 𝑋5, 𝑋9, 𝑋10, 𝑋11, 𝑋12 at 0 to create

binary variables. We set 7 covariates, 𝑋4 to 𝑋10, to be true predictors with the following regression coefficients: 𝛽4 = −0.5, 𝛽5 =
𝛽6 = 𝛽7 = 0.5, 𝛽8 = 𝛽9 = 1, 𝛽10 = 1.5. The other eight covariates are noise variables with 𝛽𝑗 = 0. The binary outcome 𝑌𝑖 for

subject 𝑖 is generated according to: logit P(𝑌𝑖 = 1|𝑋1𝑖,… , 𝑋15𝑖) = −0.25 +𝑿𝑻
𝒊
𝜷. The empirical prevalence of the outcome

is about 60%. The outcome vector 𝑌 is fully observed, and 𝑋 has missing values. Missing data is generated for variables

𝑋2, 𝑋5, 𝑋7, 𝑋8, 𝑋12, and 𝑋14 as specified below.

3.1.2 Data generating mechanism two: 25 variables (18 noise) with first-order autoregressive
(AR(1)) correlation
We generate 25 variables (𝑋1 to 𝑋25) from a multivariate normal distribution with mean 0 and unit variance, and an AR(1)

correlation with 𝜌 = 0.5 (the ordering is by variable number) as displayed in the Supporting Information Figure S2. The coef-

ficients and variable types of the first 15 covariates are the same as in the previous data generating mechanism. The extra ten

covariates (𝑋16 to 𝑋25) are continuous variables with coefficients of zero. The prevalence of the outcome is again about 60%.

Missing data is additionally generated for variables 𝑋16, 𝑋17, 𝑋19, and 𝑋23 as specified below.

Denote 𝑅𝑗𝑖 as the missing indicator for variable 𝑋𝑗 of subject 𝑖; 𝑅𝑗𝑖 = 1 if 𝑋𝑗𝑖 is missing and 𝑅𝑗𝑖 = 0 otherwise. We only

consider scenarios in which the data is MAR (Little & Rubin, 2002). Let 𝐽 denote the set of covariates that contain missing

values. The missing data indicator 𝑅𝑗𝑖 for covariate 𝑗 ∈ 𝐽 of subject 𝑖 is generated following the logistic regression model:

logit P(𝑅𝑗𝑖 = 1|{𝑋𝑘𝑖}𝑘∉𝐽 , 𝑌𝑖) = 𝛼0 + 0.5
∑
𝑘∉𝐽

𝑋𝑘𝑖 + 0.5𝑌𝑖,

where 𝛼0 for each simulation run is estimated by numerically solving the equation:

1
𝑛

𝑛∑
𝑖=1

𝑃 (𝑅𝑗𝑖 = 1) = 𝑚𝑖𝑠𝑠 (2)

Here 𝑚𝑖𝑠𝑠 is chosen. As the missingness only depends on the observed data, the left hand side of equation (2) is the same for

all variables with incomplete data. Thus, on average, the proportion of missing values for any variable 𝑋𝑗, 𝑗 ∈ 𝐽 equals to 𝑚𝑖𝑠𝑠,

and the total proportion of missing values in the data equals to: (The number of variables with missing data*𝑚𝑖𝑠𝑠)∕𝑝.

We impute missing data using multivariable imputation by chained equations (mice) (van Buuren, 2012) as implemented

in the R package mice (van Buuren & Groothuis-Oudshoorn, 2011). Predictive mean matching is used to impute missing

continuous variables, and logistic regression is used to impute missing binary variables. The imputation model comprises all

predictor variables as well as the binary outcome.

We investigate the performance of the methods described in Section 2 for different values of the proportion of missing values

(𝑚𝑖𝑠𝑠), the sample size, and the number of imputations. Table 2 gives a summary of all the scenarios that we consider in this

study. We define the number of events per variable (EPV) as the number of events divided by the number of parameters that is

estimated. The number of events is the smaller value when comparing the number of subjects who have the outcome versus the

number of subjects who do not (Austin & Steyerberg, 2017). As we fix the probability of events in each data generating scheme,

higher EPV corresponds to larger sample size. In a logistic regression model fitted via maximum likelihood, it is recommended

that at least 10 EPVs are needed to obtain accurate regression coefficients (Peduzzi, Concato, Kemper, Holford, & Feinstein,
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1996). The EPV, the percentage of missing values in the data, and the percentage of complete cases are empirically estimated.

For each scenario, 500 datasets are generated.

3.1.3 Performance criteria
We assess the predictive performance of the models using Brier score and area under the receiver operating characteristic (ROC)

curve (AUC) (Steyerberg et al., 2010). The former measure quantifies how close predictions are to the observed outcome. It

combines calibration and discrimination, whereas the latter measure only quantifies the discrimination ability of the model. The

evaluation is performed via external validation. A validation dataset is generated from the same data generating mechanism with

a sample size of 5000 fully observed observations. We also compare selection performance via the number of selected true and

the number of selected noise variables. Better performance is observed with higher value of AUC, larger number of selected

true predictors, lower value of Brier score and smaller number of selected noise predictors.

3.2 Results
3.2.1 Data generating mechanism one
3.2.1.1 Predictive performance
The mean AUC and Brier score over the 500 generated datasets are presented in Figure 1 for the two most extreme cases of

missing values (4% and 20%) with 10 imputed datasets. The results for all scenarios with 10 imputed data together with the ±1
empirical standard deviations are summarised in the Supporting Information Figure S3. Of note, recalibrating a model by score

does not change its AUC value because the ordering of the predictions is preserved.

Among model selection on bootstrap data methods, method BLaF with the 1-se penalty always results in a model with higher

AUC and lower Brier score. The difference between the three models (BBeF, BLaF with the two penalties) diminishes with

increasing EPV. In the model selection on original data approach, models obtained by the optimal penalty outperform those

obtained by the 1-se penalty without recalibration, except for the AUC value with five EPV and 20% missing. The differences

between the two penalty selection strategies are more pronounced in scenarios with 4% missing than with 20% missing data.

Hence, the difference in performance seems to increase with a larger amount of information in the data. In data with a low

to moderate amount of missing values, recalibrating by selected variables improves model performance. In the scenario with

the largest amount of information (4% of missing values and EPV 15), it even yields models with comparable AUC and Brier

score to those obtained with the optimal penalty. On the other hand, when the information in the data is low (EPV5 or 10, and

20% missing), recalibrating the models by score gives the better Brier score, and with EPV 5 performance is comparable to the

optimal penalty. The most noticeable discrepancy between the two recalibrated models is observed in method SepAv. In fact,

after recalibrating by score, the Brier score in SepAv appears to be even lower than when the optimal penalty is chosen in the

scenario with 20% missing and five EPV, although the difference is very small (0.158 vs. 0.159).

The Stack and StackW methods yield very similar predictive performance overall. BLaF with the 1-se penalty provides

comparable performance with SepAvF, Stack, and StackW if we recalibrate by the selected variables. The number of imputations

has little impact on model performance (see Supporting Information Figure S4). Hence, ten imputed datasets seems adequate in

our setting.

Regarding dispersion (see Supporting Information Figure S3), all methods give smaller empirical standard deviation with

increasing EPV. The amount of dispersion is similar among methods across all scenarios. The only exception is in data with five

EPV and 20% missingness, when method BLaF with the optimal penalty and the recalibration-by-selected-variables version of

SepAv show a larger dispersion in their predictive performance results. The widths of the confidence intervals are small in all

scenarios, ranging from 0.001 to 0.004 for AUC, and 0.001 to 0.003 for Brier score.

3.2.1.2 Selection performance
The number of selected true and noise variables are depicted in Figure 2, again for the two most extreme cases of missing values

with 10 imputed data sets. As expected, lasso models with the optimal penalty include more variables than those with the 1-se

penalty. It includes most of the true variables, but also a fair amount of noise variables. BLaF with the optimal penalty is the

worst method in terms of selection specificity. This method selects nearly all noise variables on average in data with 15 events

per variable. If parsimony is the primary concern, this suggests that choosing the optimal penalty is not recommended as it

results in a model with very low selection specificity. After BLaF with the optimal penalty, SepAv selects the highest number

of both noise and true variables. This is not surprising, as it includes all variables that are selected based on at least one of the
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F I G U R E 1 First data generating mechanism (Section 3.1.a): Mean Brier score (top figure) and AUC (bottom figure) over 500 generated

datasets for the two most extreme cases of missing values (4 and 20%) with 10 imputed datasets

imputed datasets. It also selects more noise variables as the number of imputations increases from 10 to 30 (see Supplementary

information Figure S5).

Of note, BBeF gives the most parsimonious model in all considered scenarios and selects very few noise variables. However,

in data with low EPV, this method on average includes less than half of the number of the true predictors.

Interestingly, models with the optimal penalty include more noise variables as the EPV increases. On the other hand, with

increasing EPV, model selection approaches with the 1-se penalty tend to include nearly the same amount of noise variables in

data with 4% missing values, and even fewer in data with 20% missing. The increase in EPV clearly improves the 1-se penalty

models with respect to the number of selected true predictors. On average, less than one true variable is missed if EPV is 15. As

the missingness increases from 4 to 20%, all methods select more noise variables. The difference is more pronounced in method

SepAv and models with the optimal penalty except for method BLaF as it already selects almost all eight noise variables.



350 THAO AND GESKUS

F I G U R E 2 First data generating mechanism (Section 3.1.a): Number of selected variables for the two most extreme cases of missing values

(4% and 20%) with 10 imputed datasets

3.2.2 Data generating mechanism two
The predictive and selection performance for the two most extreme cases of missing values with 10 imputed datasets are pre-

sented in Figure 3 and Figure S6 in the Supplementary file. With 4% missing, conclusions are very similar to those from the

first data generating mechanism. In data with 20% missing, lasso on the original data and recalibrating by score shows the best

performance with respect to Brier score in all three EPV scenarios (Figure 3). We observe interesting results in EPV3. Without

recalibration, selection models with the 1-se penalty perform better than the alternatives with the optimal penalty and the BLaF

models. Recalibrating by selected variables shows detrimental effect on Brier score and AUC in this data scenario. The disper-

sion of the predicted performance is presented in the Supporting Information Figure S7. Again, the patterns are very similar to

those in the first data generating mechanism. In all methods, the widths of the confidence intervals range from 0.001 to 0.008

for AUC and from 0.001 to 0.005 for Brier score. Just like in the other data generating mechanism, models with the optimal

penalty select a substantially larger number of noise variables than models with the 1-se penalty in all scenarios.

3.2.3 Conclusions from the simulation studies
Using the optimal penalty results in models with better predictive performance compared to the 1-se rule penalty without cor-

rection for over-shrinkage, unless the amount of information becomes very low. This gain in predictive performance comes with

a larger number of selected noise variables. Imposing a stronger penalty, like the 1-se, is preferable if parsimony is important.

Moreover, if we correct for overshrinkage in the 1-se method, model performance may improve without losing parsimony. In

case the EPV is 15, performance approximates that of the optimal penalty if we refit the model based on the selected variables.

On the other side of the spectrum, if the amount of information is very low, refitting based on the score can improve the Brier

score to values lower than those from the optimal penalty (Note that recalibrating the score has no effect on the AUC). Method
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F I G U R E 3 Second data generating mechanism (section 3.1.b): Mean Brier score (top figure) and AUC (bottom figure) over 500 generated

datasets for the two most extreme cases of missing values (4% and 20%) with 10 imputed datasets. The performance measures of BBeF in data with

EPV of three are not available due to convergence problems in many generated datasets

BLaF, and the recalibration-by-selected-variables version of SepAvF, Stack, and StackW show similar predictive performance

in most of the data scenarios. The recalibration-by-selected-variables version of SepAv achieves similar predictive performance

only when the level of missingness is low to moderate. BBeF is the most parsimonious model with comparable predictive per-

formance only in data with high EPV and low percentage of missingness. Note however that we only considered the AIC as the

stopping rule for variable selection. Performing backward elimination based on larger P-values will create a less parsimonious

model with better predictive performance.
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4 REAL DATA APPLICATION

4.1 Data description
We combine data from three clinical trials in patients with a clinical diagnosis of TBM conducted between 2001 and 2015

by the Oxford University Clinical Research Unit Vietnam (Thwaites et al., 2004, 2011; Heemskerk et al., 2016). A total of 951

HIV-uninfected patients were included; all were older than 14 years at entry. Our goal is to predict mortality within nine months.

Results based on an internally validated Cox proportional hazards regression model can be found elsewhere (Thao et al., 2018).

To be consistent with the statistical model used in the simulation study, we use a logistic regression model with nine-month

mortality as outcome. Within those nine months of follow-up, 219/951 patients died, while 44/951 were lost to follow-up. As

the number of patients lost to follow-up is less than 5%, excluding them from the analysis will not have a major impact on the

results (White et al., 2011).

We applied each of the MI variable selection procedures in Table 1 to the following set of predictors, chosen based on clinical

literature and expert opinion: age, weight, sex, treated with dexamethasone, Medical Research Council (MRC) Grade, illness

duration at entry, previous tuberculosis (TB), presence of focal neurological signs, body temperature, occurrence of seizures,

plasma sodium level, cerebrospinal fluid (CSF) lymphocyte count, CSF protein level, CSF glucose level, ratio of CSF to blood

glucose, miliary tuberculosis present on chest radiograph, and cohort. The latter covariate was added in order to account for

the changes in treatment, patient management and health care conditions during the time span of the included studies. The first

five predictors and cohort are fully observed. The percentage of missing values in the other predictors ranges from 0.1% in

temperature to 12.9% in the ratio of CSF to blood glucose. The total percentage of missing values in the data is 2.7%, and the

percentage of complete cases is 67.4%. The number of events per variable is 11.7. Ten imputed datasets were generated using

the mice package.

We implemented internal validation using the enhanced bootstrap resampling procedure to obtain bias-corrected values for

the performance measures, using 100 bootstrap samples (page 114 Harrell (2015); Musoro, Zwinderman, Puhan, ter Riet, and

Geskus (2014)). Specifically, denote the 10 imputed datasets used in the model building process as 𝐼𝑚𝑝𝑖, 𝑖 = 1,… , 10. We

bias-corrected predictive performance measures by subtracting the estimated optimism from the apparent performance, i.e.

the performance of the model on the training data. The optimism is calculated as follows: We draw 100 bootstrap samples

with replacement from the original dataset with missing data. For each bootstrap sample, we repeat the imputation (denoted as

𝐼𝑚𝑝∗
𝑖
, 𝑖 = 1,… , 10) and variable selection steps as described above. The obtained final model is validated on the 10 bootstrap

imputed datasets (𝐼𝑚𝑝∗
𝑖
, 𝑖 = 1,… , 10) to quantify the apparent performance, and on the 10 original imputed datasets (𝐼𝑚𝑝𝑖, 𝑖 =

1,… , 10) to quantify the test performance. The difference between the apparent and test performance is averaged across bootstrap

samples and imputed datasets to get an estimate of the overall optimism.

4.2 Results
Figure 4 presents the bias-corrected predictive model performance. The results for the variable inclusion frequency by the

model selection on bootstrap data methods are presented in the Supporting Information Table S1. In line with the results from

the simulations, BBeF yields the most parsimonious model, with only five variables included: Age, MRC Grade, presence of

focal neurological signs, CSF lymphocyte count, and cohort. Models obtained by lasso with the 1-se rule, i.e. BLaF, SepAv,

SepAvF, Stack, and StackW, select the same eight predictors (Table 3). After recalibration by selected variables, they give

similar bias-corrected predictive performance measures (AUC ranges from 0.775 to 0.776, Brier score = 0.155) and slightly

outperform BBeF (AUC = 0.767, Brier score = 0.157 ) and the full model (AUC = 0.773, Brier score = 0.156 ). The additional

three predictors, namely the use of dexamethasone treatment, weight and the history of TB, are easy to measure and do not

incur any extra costs in practice. Choosing the optimal penalty, on the other hand, gains minor improvement in the predictive

performance at the cost of two to seven extra variables. Two of them, ratio of CSF to blood glucose or CSF protein, require

significant extra effort to measure (Table 3).

5 DISCUSSION

We described and compared different popular variable selection methods in the presence of multiply imputed data when the aim

is to build a prediction model. We assumed the missing data mechanism to be MAR. Results from the simulated data and the

real data application were largely similar with respect to the relative predictive performance and number of selected variables.
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F I G U R E 4 TBM data: Corrected AUC and Brier score via internal validation

Overall, no method prevails as uniformly best over all scenarios that we considered in the simulation study. Performance depends

on the amount of information in the data. Imposing a stronger penalty than the optimal one provides more parsimonious models

that may have only slightly inferior and sometimes even better model performance after recalibration. Stacking all MI data is an

attractive method. Although using lasso on bootstrap data or on original MI data separately provides just as good performance, it

is sensitive to the chosen variable inclusion threshold. Performing backward elimination on bootstrap data with AIC as stopping

rule gives the most parsimonious model. We discuss characteristics of each considered method in more detail.

Variable selection on bootstrap data has been widely used in model development. In our simulation, the predictive performance

of this approach depends on the selection method and the amount of information in the data. Backward elimination provides a

more parsimonious model with inferior predictive performance than lasso. However, performance of backward elimination is

likely to depend on the choice for the stopping rule. In our study, we only considered the popular AIC as stopping criterion,

which roughly corresponds to a P-value of 0.157. More liberal choices of the significance level, e.g. 0.5 or 0.1, will certainly

result in a less parsimonious model with better predictive performance (Steyerberg et al., 2000). In data with a low amount of

information, backward elimination may fail to converge (Grogan & Elashoff, 2017). This failure is a consequence of a complete

or quasi-complete separation pattern in the data (Albert & Anderson, 1984). Of note, lasso does not have the same problem

due to its regularization properties. On the other hand, in data with a larger number of events per variable and a lower amount

of missing values, the performance of backward elimination improves relatively to the other considered methods. Thus, it is a

reasonable choice provided that the amount of information is sufficient. Using lasso with the optimal penalty includes almost all

considered variables in the final model, leading to poor predictive performance. The reason is that many variables are selected at

the 50% threshold, and we need to refit the model with all these selected variables via standard maximum likelihood. A stricter

threshold value for the variable inclusion frequency (e.g. 80% or 90%) may result in a more parsimonious model with potentially
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T A B L E 3 Variable selection in the TBM dataset

Method
Variables BBeF BLaF SepAv SepAvF Stack StackW BLaFo SepAvo SepAvFo Stacko StackWo FULL
Age x x x x x x x x x x x x

MRC grade x x x x x x x x x x x x

CSF lymphocyte count x x x x x x x x x x x x

Presence of focal neurological signs x x x x x x x x x x x x

Cohort x x x x x x x x x x x x

Received dexamethasone treatment x x x x x x x x x x x

Previous TB x x x x x x x x x x x

Weight x x x x x x x x x x x

Ratio of CSF to blood glucose x x x x x x

Illness duration at entry x x x x x x

CSF protein x x x x x

Occurrence of seizures x x x

Plasma sodium x x x

Miliary tuberculosis present on

chest radiograph

x x

Sex x x

CSF glucose x

Body temperature x

better performance. With the 1-se penalty, lasso provides a model with good performance and a reasonable balance between the

number of selected true and noise variables.

The approach to build models on bootstrap samples has a couple of drawbacks. First, results are sensitive to the chosen cut-off

value of the variable inclusion frequency. In our TBM data, there was a clear separation between strong and weak predictors

for two of the three considered methods (Table S1), which rendered the 50% threshold value sensible. However, in other data

settings, this value will not be optimal. Choosing the cut-off value therefore could be considered as a post hoc decision, i.e. after

obtaining the inclusion frequency for all variables. Second, the internal validation for these methods requires double bootstrap

to repeat the entire modeling process (i.e. first bootstrap in the model validation step, second bootstrap in the variable selection

step). This procedure could be computationally prohibitive (page 71, Harrell (2015)).

“Lasso on original MI data” methods are fairly straightforward to use and require less computation. Lasso selection with the

optimal penalty tends to include many noise variables, which makes it less suitable as a variable selection method. Choosing a

larger penalty results in a more parsimonious model with fewer noise variables. However, parameters will be shrunk too much

that may hamper predictive performance. If we refit the model with the selected variables via unpenalized maximum likelihood,

we can improve performance, especially in data with a reasonable number of events per variable (EPV of 10 or more). In data

with a low level of information, this refitting may lead to inflated parameter estimates, and potentially a loss in predictive ability.

As an alternative, we can recalibrate the model by score, which takes into account the relative predictive strengths of predictors

while updating their coefficients. We observed that this type of recalibration improves performance in data with a low level of

information.

We can perform lasso selection on each MI dataset separately and combine estimates afterwards. If we simply average all

coefficient estimates, we select all variables that appear in at least one imputed dataset. Hence, the number of selected noise

variables tends to be large, and increases with the number of imputations. However, we found that in data with a very low

level of information, this method tended to give the best predictive performance in terms of the Brier score if coefficients are

recalibrated by score. By averaging variables that are selected in at least half of the MI datasets, we attempt to reduce the number

of selected noise variables. However, a disadvantage of this method is that it additionally requires choosing a threshold value

for the inclusion frequency.

Stacking all MI datasets before analysis provides an interesting alternative that returns a single set of selected predictors and

corresponding coefficient estimates. Therefore, the stacked method avoids making any arbitrary decision about the selection

threshold (Vergouwe, Royston, Moons, & Altman, 2010). Wan et al. (2015) suggested that it is better to weight individuals by

the amount of missing values. In their simulation study, it improved mean squared error compared to stacking without using
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weights. In our simulations, using such weights tends to result in a slightly more parsimonious model in general. Yet it does

not appear to lead to a uniformly better model performance. In fact, after recalibrating the model by selected variables, the two

methods give very similar performance in the simulation study as well as in the real data application.

Our study has a few limitations. First, only a couple of methods were considered as we aimed at providing a comparison of

pragmatic approaches that are frequently used by most data analysts. Second, we only considered two simulation settings for

the proportion of noise variables and three values for the number of events per variables. However, we think that comparable

settings are often encountered in medical research. Third, the TBM data has a relatively low amount of missingness. Yet, the

data still confirms the relative difference in predictive performance that was found in the simulation study.

In conclusion, we gave an overview of a couple of strategies for variable selection with multiply imputed data in the devel-

opment of a prognostic model. By means of a simulation study, we provided insights into their strengths and weaknesses. None

of the methods that we considered is new, but to our knowledge, this paper is one of the few studies on how to combine results

from multiply imputed datasets in a penalized likelihood framework. Also, we do not know of any other study that systematically

compares different recalibration methods if a stronger penalty than the optimal one is chosen. With the increasing use of MI to

handle missing data, and a growing number of prognostic models being developed, further research in this direction is urgently

needed.
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