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Machine learning assisted 
optimization of blending 
process of polyphenylene sulfide 
with elastomer using high speed 
twin screw extruder
Shingo Takada1,2, Toru Suzuki2, Yoshihiro Takebayashi3*, Takumi Ono3 & Satoshi Yoda3

Random forest regression was applied to optimize the melt-blending process of polyphenylene 
sulfide (PPS) with poly(ethylene-glycidyl methacrylate-methyl acrylate) (E-GMA-MA) elastomer 
to improve the Charpy impact strength. A training dataset was constructed using four elastomers 
with different GMA and MA contents by varying the elastomer content up to 20 wt% and the screw 
rotation speed of the extruder up to 5000 rpm at a fixed barrel temperature of 300 °C. Besides the 
controlled parameters, the following measured parameters were incorporated into the descriptors for 
the regression: motor torque, polymer pressure, and polymer temperatures monitored by infrared-
ray thermometers installed at four positions (T1 to T4) as well as the melt viscosity and elastomer 
particle diameter of the product. The regression without prior knowledge revealed that the polymer 
temperature T1 just after the first kneading block is an important parameter next to the elastomer 
content. High impact strength required high elastomer content and T1 below 320 °C. The polymer 
temperature T1 was much higher than the barrel temperature and increased with the screw speed 
due to the heat of shear. The overheating caused thermal degradation, leading to a decrease in the 
melt viscosity and an increase in the particle diameter at high screw speed. We thus reduced the barrel 
temperature to keep T1 around 310 °C. This increased the impact strength from 58.6 kJ m−2 as the 
maximum in the training dataset to 65.3 and 69.0 kJ m−2 at elastomer contents of 20 and 30 wt%, 
respectively.

Polyphenylene sulfide (PPS) is a super-engineering thermoplastic with excellent thermal stability, chemical 
resistance, flame retardance, electrical insulation, and mold precision1–3. PPS has thus received much attention 
as an alternative material to metals for automobile and electric parts. However, its brittleness, i.e., poor impact 
strength, has limited further applications.

Polymer blending is an effective and economical approach to develop new materials with improved 
properties4,5. Blending PPS with elastomer (viscoelastic polymer) can increase the impact strength via energy 
dissipation by the rubber component2,3,6–11. According to recent researches, properties of the PPS/elastomer 
blend depend not only on the chemical structure and blend ratio of the elastomer, but also on the microscopic 
morphology of the product6–11. This is because the two polymers are immiscible and form a droplet-matrix struc-
ture where elastomer particles are dispersed in PPS continuous phase. The more finely the elastomer particles 
are dispersed with small sizes and short distances, the higher the impact strength is expected to be12,13. It is also 
reported that reactive blending with elastomer having functional groups, such as glycidyl and isocyanate ones, 
can stabilize the PPS/elastomer interface with good adhesion by the chemical bond formation6–11.

Polymer blending is typically done in a melt-mixing process using a twin-screw extruder14. The raw polymers 
are mixed and melted in heated barrels, and then extruded through a cylinder by the rotating screws. The melt-
mixing process has many operating parameters, e.g., the polymer composition, feed rate, temperature profile 
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in the cylinder, screw configuration, and its rotation speed. These process parameters affect the properties of 
the product via the morphology of the polymer blend and the degrees of chemical reactions including thermal 
degradation. These effects are often interrelated and exhibit nonlinear responses to the target property. It is thus 
quite time-consuming and costly to optimize the melt-mixing process only by trial and error.

Machine learning, a branch of artificial intelligence (AI), is a promising statistical tool to optimize input 
parameters in such complicated multivariable systems15. Machine learning helps us to find out key parameters, 
the so-called descriptors, governing the target property and to predict the property as a function of the descrip-
tors. In the field of chemistry, machine learning has been actively employed in ‘materials informatics’ to build 
design models relating the material properties with the chemical and physical structures from existing datasets 
or computer simulation results16–23. There have been few applications, however, in ‘process informatics’ to clarify 
how to produce the materials with desired properties24–27, especially in the field of polymer industry28–30.

Here we used a random forest regression to maximize the impact strength of PPS/elastomer blend. Random 
forest is a machine learning algorithm based on a decision tree, i.e., a flowchart-like diagram, and can evaluate 
the importance of each descriptor31. Into the descriptors, we incorporated not only the controllable parameters 
such as the elastomer type, elastomer content, and screw rotation speed, but also the measured ones including 
the temperature profile, elastomer particle diameter, and melt viscosity of the product. The regression success-
fully offered us a strategy for systematic optimization of the parameters.

To build a training dataset for the machine learning, we introduced a new high-speed twin-screw extruder 
equipped with infrared-ray thermometers. This extruder can provide high screw rotation speed up to 6600 rpm, 
about six times higher than conventional machines. The high shear is effective for the fine dispersion of elastomer 
particles32–40. We should note, however, that large heat of shear may increase the temperature of polymer, lead-
ing to a thermal degradation and deteriorated product properties35–38. To avoid the overheating, it is necessary 
to directly monitor the polymer temperature as well as the barrel temperature. Here we installed four infrared 
thermometers along the cylinder to monitor the polymer temperature profile in situ. Infrared thermometer 
has the following advantages over thermocouple: quick response, non-intrusive probing without disturbing 
the polymer flow, and small influence from the surrounding41–43. The combination of high-speed extruder and 
infrared thermometer was found to be a powerful tool in the collection of training data for machine learning. 
The wide-range control of operating parameter allowed an accurate prediction without extrapolation, while the 
monitoring of state variables as many as possible enabled a proper selection of the descriptors closely related to 
the target property.

Methods
Raw materials.  PPS supplied from DIC Corporation (MA-520) was blended with poly(ethylene-glycidyl 
methacrylate-methyl acrylate) (E-GMA-MA) elastomer. Chemical structures of the polymers are shown in 
Fig. 1a. We used four types of elastomers purchased from Sumitomo Chemical (BF-7L, E, 7M, and 2C) with dif-
ferent GMA and MA contents. Specifications of the polymer samples are listed in Table 1.

Melt blending with twin‑screw extruder.  The PPS and elastomer were mixed at various ratios from 
98/2 to 80/20 wt%. The mixture was fed into a high-speed twin-screw extruder (Technovel, MFU-15TW-90MG-
NH(-6600)-SST) at a constant feed rate of 50 g min−1. The extruder had a screw length L of 1350 mm and a screw 
diameter D of 15 mm, yielding the L/D ratio of 90. The screw rotation speed was varied from 150 to 5000 rpm. 
The extruder consisted of 15 barrels, as illustrated in Fig. 1b, numbered from C1 on the feeder side to C15 on 
the die side. Four kneading blocks were located at the barrels C4, C7, C10, and C12. Each kneading block was 
composed of four pieces of five-disc element with a staggering angle of 45°. The barrels C2 to C15 were covered 
by electric heaters. Temperatures of all the barrels were controlled to 300 °C during the preparation of training 
dataset. Polymer temperature was measured at four positions with infrared thermometers (Futaba Corporation, 

Figure 1.   (a) Chemical structures of polyphenylene sulfide (PPS) and poly(ethylene-glycidyl methacrylate-
methyl acrylate) (E-GMA-MA) elastomer. (b) Schematic diagram of the twin-screw extruder. C1 to C15: barrels, 
T1 to T4: infrared thermometers to monitor the polymer temperatures. (c) Typical SEM images of the polymer 
blend etched by xylene to dissolve elastomer particles.
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EPSSZL) T1 to T4 inserted into the barrels C5, C8, C11, and C12, respectively. In addition to the polymer tem-
perature, the polymer pressure and the motor torque current were monitored under each experimental condi-
tion and were used as the descriptors for machine learning. The polymer pressure was measured at the die head. 
The die was a dual strand die with hole diameter of 2.5 mm. The product was cooled by air and was pelletized.

Characterizations of the polymer blend.  Charpy notched impact strength of the polymer blend was 
measured at 23 °C with a digital impact tester (Toyo Seiki) according to ISO 179-1. The test piece (80 mm length, 
10 mm width, and 4.0 mm thickness) was prepared with an injection molding machine (Sodic, LP20EH3) at a 
cylinder temperature of 300 °C and a mold temperature of 130 °C. The test piece was notched by 2 mm accord-
ing to ISO 2818.

Morphology of the polymer blend was observed with a scanning electron microscope (SEM) (Hitachi High-
Technologies, S-4800). Prior to the SEM observation, a test piece molded according to ISO 3167-A was cooled in 
liquid nitrogen and was cryo-fractured by bending. The fracture surface was etched by xylene at 50 °C for 1.0 h 
in an ultrasonic bath to selectively dissolve the elastomer particles dispersed in the PPS matrix. The sample was 
then dried at 130 °C for 2.0 h and was coated with Pt–Pd using an ion sputter coater (Hitachi High-Technologies, 
E-1010) for the SEM observation. Typical SEM image is shown in Fig. 1c. Area of each void in the SEM image 
was measured using ImageJ software44 (version 1.53) to calculate the corresponding elastomer particle diameter. 
The elastomer particle diameter was averaged over more than 300 voids to determine the mean value.

Melt viscosity of the polymer blend was measured with a constant-force-type capillary rheometer (Shimadzu, 
CFT-500D). The sample was preheated at 300 °C for 6.0 min and then was extruded through a capillary (1 mm 
diameter and 10 mm length) at a pressure of 4.9 MPa. It is to be noted that the melt viscosity of polymer is a 
function of the shear rate, and thus should be compared at a constant shear rate for quantitative discussion. The 
melt viscosity change measured here at a constant pressure is an apparent one. We can estimate, however, the 
real viscosity change from the apparent one and can expect that the real viscosity change is qualitatively similar 
to the apparent one enough to discuss the increase or decrease in the molecular weight. The detail of the estima-
tion is provided in Supporting Information.

Machine learning.  Machine learning was performed using python software45 (version 3.7) with scikit-learn 
library46 (version 0.23.1). Random forest regression of the Charpy impact strength was carried out to evaluate 
the importance of the parameters listed in Table 2. No prior knowledge was employed for the regression. In 
addition, nonlinear support vector machine was used to regress the polymer temperature T1 as a function of 
the elastomer content and the screw rotation speed. The regression was done after standardization of the two 
descriptors using a radial basis function kernel with the following hyperparameters: the penalty parameter C = 
1000 and the kernel coefficient γ = 0.05.

Results and discussions
Charpy impact strength.  Figure 2 describes how the impact strength of the polymer blend varied with 
the elastomer type, elastomer content, and screw rotation speed. Among the 130 experimental conditions, the 
Charpy impact strength ranged widely from 1.1 to 58.6 kJ  m−2. In most conditions, the impact strength was 
lower than 20 kJ m−2. It should be noted, however, that the ‘failed’ results also played an essential role in the fol-
lowing machine learning. Changes in the other measured parameters are summarized in Supplementary Infor-
mation S1.

Figure 3 shows the results of the random forest regression of the Charpy impact strength. Correlation coef-
ficient of the regression R2 was as high as 0.988 and the root-mean-squared error (RMSE) was 2.0 kJ m−2. Impor-
tance of the parameters in the regression is shown in Fig. 3b. The elastomer content had the highest importance 
over 50%. The next most important parameter was the polymer temperature T1 just after the first kneading block. 
The importance of T1 was as high as 17%. This result means that polymer temperature in the cylinder can be a 
key parameter in melt-blending process, although it has been rarely measured in most extruders reported so far. 
For the rest parameters, the importance was lower than 10%. Thus, the impact strength is determined mainly by 
the two key parameters: the elastomer content and the polymer temperature T1, as is confirmed later. In contrast, 
the elastomer type, i.e., the GMA and MA contents in elastomer, was much less important than the two key 

Table 1.   Specifications of the polymer samples used.Tg : glass transition temperature, Tm : melting temperature.

(a) PPS

Product name Tg (°C) Tm(°C)

MA-520 95 285

(b) E-GMA-MA elastomers

Product name GMA content (wt%) MA content (wt%) Tg (°C) Tm (°C)

BF-7L 3 27 − 33 60

BF-E 12 0 − 26 103

BF-7M 6 27 − 33 52

BF-2C 6 0 − 26 105
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Table 2.   List of the parameters and their ranges of variation.

Parameters Range

Controlled parameters

Elastomer content in polymer blend (wt%) 2, 5, 10, 15, 20 (= a)

GMA content in elastomer (wt%) 3, 6, 12 (= b)

MA content in elastomer (wt%) 0, 27 (= c)

GMA content in polymer blend (wt%) a ×  b/100

MA content in polymer blend (wt%) a ×  c/100

Screw rotation speed (rpm) 150, 300, 600, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000

Measured parameters—process

Motor torque current (A) 67.0–98.7

Polymer pressure (MPa) 0.1–5.7

Polymer temperature T1 (°C) 305–417

Polymer temperature T2 (°C) 307–393

Polymer temperature T3 (°C) 303–369

Polymer temperature T4 (°C) 305–389

Measured parameters—product

Elastomer particle diameter (nm) 52–544

Melt viscosity (Pa s) 50–9880

Charpy impact strength (kJ m−2) 1.1–58.6

Figure 2.   Charpy impact strength of the polymer blend as a function of the elastomer type, elastomer content, 
and screw rotation speed.

Figure 3.   Random forest regression of the Charpy impact strength. (a) Calculated values plotted against the 
measured one. (b) Importance of the parameters in the regression.
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parameters. In fact, the impact strength exhibited qualitatively similar behavior among the four elastomers tested. 
In the latter sections, therefore, our discussion is focused on the result for elastomer BF-7L as a representative one.

In Fig. 4, the Charpy impact strength is plotted against the two key parameters. Figure 4a indicates that high 
elastomer content was a necessary condition to obtain high impact strength, although it was not a sufficient 
condition. The maximum impact strength increased monotonically with the elastomer content. We can thus 
expect further high impact strength at elastomer content above 20 wt%. Against the polymer temperature T1, 
as shown in Fig. 4b, the impact strength had a sharp maximum around 320 °C. When T1 was within 320 ± 10 °C 
and the elastomer content was higher than 15 wt%, the impact strength was never lower than 20 kJ m−2. With 
increasing T1 above 330 °C, however, the impact strength decreased markedly to less than 5 kJ m−2. The tem-
perature dependence is interpreted in terms of the polymer degradation in the next section. The decrease in the 
impact strength was observed also at low T1. This is due to the low screw rotation speed. As described in the 
next section, the polymer temperature T1 was strongly correlated with the screw rotation speed, when the barrel 
temperature was fixed at 300 °C. The lower the screw rotation speed, the lower the polymer temperature T1. At 
the low screw rotation speed, the shearing was insufficient for fine dispersion of elastomer particles, leading to 
the low impact strength at low T1.

Polymer temperature.  The polymer temperature T1 is plotted in Fig.  5 as a function of the elastomer 
content and the screw rotation speed. T1 exhibited a monotonic increase with increasing screw rotation speed 
due to the heat of high shear35–38. The temperature increase was more evident at lower elastomer content. The 
polymer temperature T1 reached 417 °C at the maximum, far above the barrel temperature (300 °C). Interest-
ingly, the maximum temperature of T1 was higher than those of T2 to T4 (369 to 393 °C). The result suggests 
that the overheating is caused not only by the shear heat but also by the exothermic reactions, such as the bond 
formation at the glycidyl group of GMA and the oxidation by air3 occurring more intensely on the feeder side 
due to the higher concentration of oxygen.

Since the experimental data of T1 is discrete, we interpolated it by a nonlinear support vector regression, as 
described by the curved surface in Fig. 5. The regressed result can serve as a ‘soft sensor’ to predict the polymer 
temperature in the cylinder from the elastomer content, screw rotation speed, and barrel temperature41. Correla-
tion coefficient R2 of the regression was as high as 0.986 and the RMSE was smaller than 3 °C. In the following 
optimization, the regression eased us to estimate the barrel temperature to adjust the polymer temperature T1 
around a desired value.

Melt viscosity and particle diameter.  To understand the influence of overheating on the product, the 
melt viscosity is plotted in Fig. 6 against the screw rotation speed and the polymer temperature T1. With increas-
ing screw rotation speed or T1, the melt viscosity increased markedly from the value of pure PPS (130 Pa s) to 
more than 250 Pa s at 1000 rpm or 320 °C when the elastomer content was higher than 10 wt%. The increase 
in the melt viscosity shows an increase in the molecular weight of polymer blend due to the bond formation 
between PPS and glycidyl group of the elastomer9–11. At higher screw rotation speed or T1, however, the melt 
viscosity turned to decrease down to 60 Pa s. The evident decrease in the melt viscosity indicates a degradation of 
polymer probably due to a thermal decomposition by the overheating as well as a mechanochemical one by the 
high shear. The degradation is a main reason why the impact strength decreased at high screw rotation speed or 
T1. In our subsequent work, the polymer degradation is investigated in more detail by near infrared and Raman 
spectroscopies.

In Fig. 7, we further plot the elastomer particle diameter against the screw rotation speed and T1. The elas-
tomer diameter decreased initially with increasing screw rotation speed up to 2000 rpm at all the elastomer 
contents due to the enhanced shearing. The fine dispersion of elastomer particle would improve the impact 
strength. At higher screw rotation speed, however, the particle diameter turned to increase probably because 

Figure 4.   Charpy impact strength plotted against (a) the elastomer content and (b) the polymer temperature 
T1.
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of the polymer degradation. The large particle diameter is another reason for the decreased impact strength at 
high screw rotation speed or T1.

Optimization.  To avoid the polymer degradation by the overheating, we reduced the barrel temperature by 
10 to 25 °C so that the polymer temperature T1 was within 310 ± 5 °C at each screw rotation speed from 300 to 
2000 rpm, as shown in Supporting Information. The results are compared in Fig. 8 with those of the training 
dataset where the barrel temperature was fixed at 300 °C. By the temperature reduction at the elastomer content 
of 20 wt%, the impact strength increased from 58.6 kJ m−2 to 65.3 kJ m−2 at the maximum. The impact strength 
had a maximum at 1000 rpm and decreased at higher screw rotation speed, suggesting that the polymer degrada-
tion occurs not only thermally by the shear heat but also mechanochemically by the shearing itself. We further 
increased the elastomer content from 20 to 30 wt% at the reduced temperature condition and obtained higher 
impact strength of 69.0 kJ m−2. The result supports our strategy proposed by the random forest analysis.

Figure 5.   (a) Polymer temperature T1 as a function of the elastomer content and the screw rotation speed 
in the melt-blending process of PPS/BF-7L at a fixed barrel temperature of 300 °C. The curved surface was 
obtained by a nonlinear support vector regression of the experimental data. (b) T1 calculated from the 
regression plotted against the measured one.

Figure 6.   Melt viscosity of the PPS/BF-7L blend as a function of (a) the screw rotation speed and (b) the 
polymer temperature T1 at various elastomer contents.
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Conclusion
We applied a random forest regression for the optimization of melt-blending process of PPS and elastomer with 
a high-speed twin-screw extruder. The regression gave us a strategy that high impact strength is obtained at high 
elastomer content and low polymer temperature below 320 °C. The latter condition was found to be important 
to avoid the polymer degradation by the overheating due to heat of shear. By reducing the barrel temperature to 
adjust the polymer temperature T1 around 310 °C, the Charpy impact strength was improved up to 69.0 kJ m−2. 
The present approach is quite general and needs no prior knowledge. This method will be thus applicable for a 
wide variety of engineering processes to find key parameters, tune multivariable recipes, shorten the develop-
ment time, and gain deep insight into hidden relationship.
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