
entropy

Article

Context-Aware Superpixel and Bilateral
Entropy—Image Coherence Induces Less Entropy

Feihong Liu 1,* , Xiao Zhang 1 , Hongyu Wang 2,3 and Jun Feng 1,4,*
1 School of Information Science and Technology, Northwest University, Xi’an 710027, China;

201531439@stumail.nwu.edu.cn
2 School of Computer Science and Technology, Xi’an University of Posts and Telecommunications,

Xi’an 710121, China; hywang@xupt.edu.cn
3 Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi’an University of Posts and

Telecommunications, Xi’an 710121, China
4 State-Province Joint Engineering and Research Center of Advanced Networking and Intelligent Information

Services, School of Information Science and Technology, Northwest University, Xi’an 710127, China
* Correspondence: sinceow@gmail.com (F.L.); fengjun@nwu.edu.cn (J.F.)

Received: 24 November 2019; Accepted: 20 December 2019; Published: 23 December 2019 ����������
�������

Abstract: Superpixel clustering is one of the most popular computer vision techniques that aggregates
coherent pixels into perceptually meaningful groups, taking inspiration from Gestalt grouping rules.
However, due to brain complexity, the underlying mechanisms of such perceptual rules are unclear.
Thus, conventional superpixel methods do not completely follow them and merely generate a flat
image partition rather than hierarchical ones like a human does. In addition, those methods need to
initialize the total number of superpixels, which may not suit diverse images. In this paper, we first
propose context-aware superpixel (CASP) that follows both Gestalt grouping rules and the top-down
hierarchical principle. Thus, CASP enables to adapt the total number of superpixels to specific
images automatically. Next, we propose bilateral entropy, with two aspects conditional intensity
entropy and spatial occupation entropy, to evaluate the encoding efficiency of image coherence.
Extensive experiments demonstrate CASP achieves better superpixel segmentation performance
and less entropy than baseline methods. More than that, using Pearson’s correlation coefficient,
a collection of data with a total of 120 samples demonstrates a strong correlation between local image
coherence and superpixel segmentation performance. Our results inversely support the reliability of
above-mentioned perceptual rules, and eventually, we suggest designing novel entropy criteria to
test the encoding efficiency of more complex patterns.

Keywords: computer vision; superpixel; image representation; image entropy; minimum entropy
principle; Gestalt grouping rules

1. Introduction

Superpixels are groups of coherent pixels. Instead of the huge amount of pixels in the uniform
grid, only several superpixels in irregular shape are the elementary unit of an image, which serve in a
number of subsequent computer vision methods. At the very beginning, superpixel designers take
inspiration from Gestalt grouping rules [1]. Although the correlation between such perceptual rules
and visual efficiency is not well interpreted yet, Gestalt researchers, based on behavioral evidence,
hypothesized the minimum principle that illustrates the efficiency of visual processes [2]. On the other
hand, the employment of superpixels has greatly reduced image redundancy and has significantly
improved the processing efficiency of a number of computer vision methods in practice, including
object segmentation [3–5], recognition [6], location [7] and tracking [8], and so forth.
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While the underlying mechanisms of visual efficiency are not figured out yet, vision researchers
continuously discover mechanisms supporting that stimuli coherence depicted by Gestalt grouping
rules accelerates vision formation, even at the very early stages of perception (i.e., in the visual working
memory) [9–11]. However, since the human brain is extremely complex, it is impossible to evaluate
the efficiency of transmitting, encoding, or processing visual information in vivo so far. Only a
few pioneer researchers attempt to quantitatively figure out that question in virtue of information
theory [12,13]. They hypothesized that the human visual system transmits visual information with the
utmost economy either with respect to time or bandwidth.

As an alternative of the brain, an increasing number of computer vision systems serve as
experimental platforms in testing research hypotheses [14–16]. Those artificial vision systems even
excel humans on a number of practical tasks, owing to the advance of computer vision techniques;
and they can be a reliable tool assisting humans in routine tasks [17–20]. Therefore, a superpixel method
that completely follows perceptual rules can be exploited to test the Gestalt minimum hypothesis.
Nevertheless, there are limitations on conventional superpixel algorithms and the image entropy.

Firstly, conventional superpixel algorithms do not completely follow Gestalt grouping rules.
Normalized cuts is an Eigen-based method [1], which is very time-consuming. Next, Achanta et al.
(2012) proposed the simple linear iterative clustering (SLIC) which iteratively aggregates pixels based
on the K-means clustering in a 5D Euclidean space [21]. Because SLIC can only utilize local image
characteristics, which is less effective, Li and Chen proposed linear spectral clustering (LSC) which can
capture perceptually important global features [22]. Nevertheless, these methods only generate the flat
image partition rather than hierarchical image structures like a human does. Besides, those algorithms
should be initialized by manually specifying the total number of superpixels, which could hardly suit
to various images under diverse environments.

Secondly, conventional image entropy [23] merely involves the overall intensity statistics which
cannot respond to intensity patterns over spatial, as shown in Figure 1. Such intensity or visual
patterns over spatial are definitely crucial to any biological or artificial vision system. First of all, the
ventral and dorsal two visual pathways transmit and ’manipulate’ the physical appearance and spatial
information, respectively [24], viz., visual patterns involve the visuospatial domain. Second and more
apparently, Gestalt grouping rules involve stimuli patterns of both aspects [25]. Last but not the least,
surrounding objects (i.e., visual context) modulate the firing rate of neurons representing the target
object [26,27], which affects the visual awareness inherently.

(a) Original image (b) Background rearranged (c) Foreground rearranged (d) Whole image rearranged

0

255

Figure 1. Conventional image entropy is ineffective at responding to pixel patterns over spatial.
Although the image may show significantly different patterns, it must derive identical image entropy if
they have the same set of pixels. (a) The eagle image is selected from BSD300, with a background of
sky and the foreground of one eagle standing on a tree. Its pixels at the background, foreground, and
the whole regions are rearranged respectively so that generate 3 different images, as shown in (b–d).
Their entropy equals 6.3884 although the image contents are different.

In this paper, we propose a context-aware superpixel (CASP) algorithm and the bilateral
entropy (BE), aiming to test the encoding efficiency of Gestalt grouping rules. CASP iteratively
aggregates pixels from coarse to fine and each clustering iteration explicitly follows the similarity
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and proximity grouping rules. The coarse-level superpixels with contextual information guide
to generating superpixels in a fine-level. Besides CASP, we propose BE with two aspects, that is,
conditional intensity entropy and spatial occupation entropy which involve local image coherence,
spatial occupation respectively. With extensive experiment results, CASP demonstrates promising
superpixel segmentation performance, compared with SLIC and LSC; while CASP will achieve the
smallest entropy of all three criteria when it segments coherent objects out precisely. Besides, further
results demonstrate a strong correlation between local image coherence and superpixel segmentation
performance, based on Pearson’s correlation coefficient, in a collection of data with a total of 120
samples. Our results support the visual system inclines to encode visual information in the most
efficient fashion.

Our paper is organized as follows. In Section 2, we will describe the workflow of CASP.
In Section 3, we will give a detailed description of BE. In Section 4, we will demonstrate the effectiveness
of CASP with respect to both segmentation performance and encoding efficiency. Finally, in Section 5,
we will discuss and conclude our works.

2. Context-Aware Superpixel (CASP)

We design CASP to generate a hierarchy of large to small superpixels that represent the input
image from coarse to fine. To achieve this, CASP iteratively partitions an image, and each iteration
contains 3 stages, including (1) similarity clustering, which aggregates pixels with similar physical
appearance; and (2) proximity clustering, which defines proximity by connectedness and isolates
spatially unconnected groups; and (3) merging stage, which merges tiny groups into the most similar
neighbor.

The workflow of CASP is vividly illustrated in Figure 2, each column, with three blue boxes
denoting three clustering stages respectively, demonstrates one clustering iteration; and the image
below each box is outcome label map of the corresponding clustering stage. From the left column to
the right, CASP generates superpixels from coarse to fine. The preceding clustering iteration generates
coarse-level aggregations that serve as the context to subsequent clustering. The coarse-level outcomes
are next entered into the next iteration of clustering separately to adopt fine-level ones. By this, CASP
can gradually pop out the less salience image regions (i.e., circular halo in the background region), as
shown in Figure 2.

In the first stage, CASP employs expectation maximization (EM) clustering in simulating the
Gestalt similarity grouping rule. Denote an image with N pixels, I(~x) = {I(~x1), . . . , I(~xi), . . . , I(~xN)},
EM clustering aggregates them into two coherent groups with labels ` ∈ {`1, `2}, which intensity
distributions are represented by two Gaussian models, with a parameter set θt, ` that has maximized
the lower-bound of log-likelihood [28],

arg max
θ∗t, `

∑
`∈{`1,`2}

p (` | I(~xi), θt, `) log p
(

I(~xi), ` | θ∗t, `

)
, (1)

where θt, ` =
{

µt, `, δt, `
}

consistes of mean µt, k and standard deviation (STD) δt, ` of the ` cluster at
t-th level.

The input pixels are split into two parts, which are denoted by two colors in the label map of 1st

similarity clustering, shown in Figure 2. Next, proximity clustering defines connectedness as a type
of proximity for simulating Gestalt proximity grouping rule. It detects outcome connectivity of first
stage and gives each isolated part a unique label. The label map hence becomes more colorful. After
proximity clustering, the adopted clusters may be tiny, even only have 1 pixel. The third stage hereby
merges tiny groups into the most similar neighbor. Finally, CASP derives superpixels in a specific
coherence level.

Initialized by four parameters. They heuristically adapt the total number of superpixels to diverse
images. They will be introduced in Section 4.1 in detail.
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Figure 2. The clustering workflow of context-aware superpixel (CASP). Different colors in label maps
denote the adopted cluster labels. We can see the whole yellow background of the outcome of 1st

similarity clustering is split into several connected parts by the 1st proximity clustering. The outcome
of proximity clustering is not only filled into the next iteration of clustering but also used to generate
superpixels.

Figure 2. The clustering workflow of context-aware superpixel (CASP). Different colors in label maps
denote the adopted cluster labels. We can see the whole yellow background of the outcome of 1st

similarity clustering is split into several connected parts by the 1st proximity clustering. The outcome
of proximity clustering is not only filled into the next iteration of clustering but also used to generate
superpixels.

3. Bilateral Entropy

Gestalt grouping rules do not only shed light on how inner consciousness represents afferent
visual stimuli but also are the strategies to aggregate coherent pixels into superpixels. They emphasize
the crucial function of both physical appearance and spatial information. However, conventional
image entropy cannot respond to intensity patterns over spatial,

HIM(I(~x)) = −
255

∑
I(~x)=0

p(I(~x)) log2 p(I(~x)), (2)
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where HIM(I(~x)) merely measures overall intensity statistics. If images share the same intensity
histogram, it will generate an identical value, regardless of their content differences.

To evaluate the encoding efficiency of superpixels or image coherence, we propose bilateral
entropy that extends the conventional image entropy for concurrently considering the local image
coherence and spatial occupation,

HBE (I(~x),L(~x)) = −
255,K

∑
I(~x)=0,L(~x)=1

p (I(~x),L(~x)) log2 p (I(~x),L(~x)) , (3)

where the joint probability distribution

p (I(~x),L(~x)) = p (I(~x)|L(~x)) p (L(~x)) , (4)

thus, we can derive the bilateral entropy in the form,

HBE (I(~x),L(~x)) = −
255,K

∑
I(~x)=0,L(~x)=1

p(I(~x)|L(~x))p(L(~x)) log2{p(I(~x)|L(~x))p(L(~x))}, (5)

where L(~x) denotes the label of superpixels; p(L(~x)) is the occupation ratio; and p(I(~x)|L(~x)) is local
intensity histogram of L(~x)-th superpixel. Typically, HBE (I(~x),L(~x)) can be rewritten by

HBE (I(~x),L(~x)) = HCON (I(~x)|L(~x)) + HOCC (L(~x)), (6)

where HCON (I(~x)|L(~x)) and HOCC (L(~x)) measure local intensity statistic and spatial occupation
respectively. Both terms involve the complexity of a visual task reflected by similarity and proximity
Gestalt grouping rules and we propose HBE (I(~x),L(~x)) which is the sum of both terms to integrally
measure both aspects with the same significance weight.

4. Results

In this section, we will first introduce the parameter settings of CASP then describe the evaluation
criteria; and next, two baseline methods will be introduced for comparison. At last, we will report the
experimental results w.r.t. superpixel segmentation performance and encoding efficiency.

4.1. Parameter Settings

In all experiments, we initialize the parameters of CASP as follows:

1. Maximal clustering iteration limit Dp: Dp determines the maximal depth of the superpixel
hierarchy, which is 7 to acquire superpixels in 6 levels.

2. Maximal cluster size Mxc: We set Mxc to 100. During each similarity clustering stage, only the
group of input pixels which size exceeds 100 is divided into subgroups.

3. Minimal cluster size Mnc: We set Mxc to 4. During each merging stage, a cluster with a size
smaller than 4 is merged into the most similar neighbor.

4. neighbourhood range Ne: We initialized Ne to 8 to retrieve 8 neighbors of a pixel.

4.2. Evaluation Criteria

Under-segmentation error (USE), boundary recall (BR) and achievable segmatiaon accuracy
(ASA) are the most commonly used criteria to evaluate superpixel segmentation performance. The
USE, ASA and BR close to 0, 1 and 1 respectively are desired. Denote a ground-truth segmentation of
an image as G = {g1, . . . , gi, . . . , gK′} and a superpixel partition as S =

{
s1, . . . , sj, . . . , sK

}
.
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1. USE: Given a ground-truth segmentation gi, USE measures the fraction of pixels that leak across
its boundaries caused by the overlapping superpixels sj [29],

USE =
∑sj∈S :Area(sj∩gi)>Bj

Area(sj)− Area(gi)

Area(gi)
, (7)

where Area(·) counts the pixel amount of an image region. We set Bj to 25 percent of Area(sj)

because CASP may generate the smallest superpixel with a size of 4. We use the average of all
segments in G.

2. BR: Given the boundaries of ground-truth segmentations, denoted by δG, BR measures the
percentage of the ground-truth boundaries recovered by superpixels, denoted by δS . We compute
BR by

BR =
∑p∈δG ll(minq∈δS‖p− q‖ < ε)

|δG| , (8)

where p and q denote the location of pixels belong to δG and δS respectively. We set ε to 1 so that
count a pixel at q that falls within a 1 pixel range of q, which operation is denoted by ll.

3. ASA: Given all ground-truth segmentations G, ASA gives the largest overlapping area between
superpixels and the ground truth segments [30]

ASA =
∑sj∈S maxθ(gi∈G)

{Area(sj) ∩ Area(gi))}

∑gi∈G Area(gi)
. (9)

In general, ASA is the highest achievable accuracy for object segmentation that utilizes
superpixels as units.

4.3. Baseline Methods

We compare CASP with two baseline methods, SLIC and LSC, which need to be initialized by the
total number of superpixels. Because CASP heuristically generates the total numbers in 6 levels, we
specify them to the baseline methods, which will be listed in Section 4.4.

1. SLIC employs a balance factor to weigh the importance of color and coordinates [21]. We initialize
the balance factor 40 and merged tiny image regions that radius is smaller than 1.

2. LSC approximates the coherence metric using a kernel function and maps color and coordinates
to a high dimensional feature space [22]. We set the compactness factor to 0.066.

4.4. Evaluation Datasets

1. BSD300 [31] is a natural image database, which suits conventional methods working in
chrominance space. However, the labels are manually placed, which are not precise, shown in
Figure 4a. We hence do not use it for quantitative evaluation. To initialize LSC and SLIC, the
superpixel numbers in 6 levels are [24, 532, 1121, 2253, 4390, 6115].

2. MRBrainS [32] contains 3T T1-weighted magnetic resonance (MR) brain scans. We employ 4
subjects from the training dataset, each of which contains 48 slices. The labels are carefully placed,
including gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). The background
image regions are removed out and filled with an intensity of 0. As the MR images are in the
UINT16 encoding format, which cannot be used by the LSC, we transform the intensity range to
UINT8 and duplicate each slice to 3-channels. To initialize LSC and SLIC, the superpixels number
of 6 levels are [2, 15, 136, 392, 595, 615].

And next, for testing the segmentation performance under noise corruption, we add spatially
varying Rician noise to MR magnitudes. To achieve this, we firstly simulate phase maps according
to the literature [33]; and next, we generated both real and imaginary components and added
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spatially varying Gaussian noise to each component separately. The noise level follows the 2D
Gaussian distribution in the same manner as the literature [34]. Based on the noisy components,
we eventually generate the noisy magnitude with Rician noise using the simple sum of square
(SoS) image reconstruction manner [35]. More specifically, we added 4 levels of spatially varying
Gaussian noise to the complex components, with maximal noise levels Nmax = {10, 20, 30, 50}.
The noisy images and residual noise maps are shown in Figure 3.
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Figure 3. After added Rician noise to the ground truth data, we can see in the first row that the image
is corrupted by the noise in different levels, denoted by Nmax. After subtracting the noisy image from
the ground truth, we derived residual maps of Rician noise shown in the second row. Because the
Rician noise is signal dependent, we can see apparent content textures in the residual noise maps.

4.5. Segmentation Performance

Figure 4a shows the ground-truth segments of the eagle image, including the superpixel
boundaries and a label map for clear graphic-illustration. We can find ground-truth segments do not
well adhere to true boundaries. We hence do not quantitatively evaluate superpixels on BSD300. Our
qualitative results are shown in Figure 4b. Prominently, we can find CASP partitioned the image from
coarse to fine, image details are gradually popped out.
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Figure 4. Coarse to fine superpixels on the eagle image. Owing to the hierarchically clustering, CASP
can even capture halo in a circular pattern which is neither a salient feature of human vision nor of
baseline methods. (a) The ground truth segmentation of the eagle image; (b) superpixel segmentation
results of three methods in 6 levels.

Figure 5a shows an MR brain slice from MRBrainS. The ground truth segments with 4 labels are
denoted by 4 different colors in the label map. We can see from Figure 5b, in the row of iteration 1, SLIC
fails to segment the intracranial region, while LSC and CASP successfully achieve this. More apparently,
CASP aggregates the background as one unit and extracts more details in the intracranial regions.
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Figure 5. Coarse to fine superpixels on the magnetic resonance (MR) brain image. Due to manually
specifying the total number of superpixels, simple linear iterative clustering (SLIC) and linear spectral
clustering (LSC) evenly generate superpixels in the constant background image region. By contrast,
CASP only generates one superpixel for representing background, indicating high-level adaptivity. (a)
The ground truth segmentation of a MR slice; (b) superpixel segmentation results of three methods in
6 levels.
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Figure 6a–c demonstrate the quantitative superpixel segmentation performance w.r.t. USE, BR,
and ASA respectively. The solid curves denote the mean across average values of 4 subjects, while the
shades denote the STD. We can find the CASP outperforms others.
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Figure 6. CASP achieves better segmentation performance than baseline methods, with respect to
under-segmentation error (a), boundary recall (b), and (c) achievable segmentation accuracy.

4.6. Encoding Efficiency

We first synthesize two groups of toy images as shown in Figure 7a,b respectively. Each group
contains three images with the same pixel set but in 3 different patterns. From the left column to the
right, the superpixel number increases significantly.

In Figure 7a, each of the three synthetic images only has 256 pixels, with a size of 16 × 16.
Every pixel is unique in intensity, which value involves the UINT8 range from 0 to 255. The
synthetic images along with label maps were used to generate the HOCC (L(~x)), HCON (I(~x)|L(~x)),
and HBE (I(~x),L(~x)), attached below each label map. We can find HBE (I(~x),L(~x)) degenerates
to HIM(I(~x)), which equals to 8 all the times. From the left column to the right, with the
increase of superpixel number, HOCC (L(~x)) increases, and HCON (I(~x)|L(~x)) decreases synchronously,
demonstrating their complementary role. When HCON (I(~x)|L(~x)) = 0, HBE (I(~x),L(~x)) degenerates
to HOCC (L(~x)). The degeneration indicates that the uncertainty contribution will only exist in the
group of noticed objects if a visual system has focused on the constant objects. Typically, such
uncertainty among objects may equal to the one in their exterior physical appearance.

In Figure 7b, the synthetic images had a size of 256× 256. Pixels are roughly in 4 intensity levels,
each of which is biased by small-level Gaussian noise. These pixel intensities may overlap. In the
third column, we organize the image so that the same pixels belong to one superpixel. The intensity of
different superpixels may be the same. We can find the bilateral entropy decreases with the increase
of local coherence. Typically, it is interesting to find even when the total number of superpixels is far
more than the one in the middle column, and the bilateral entropy has been decreased.

The curves and shades in Figure 8a–c demonstrate the mean and STD values across 4 subjects
of HCON (I(~x)|L(~x)), HOCC (L(~x)), and HBE (I(~x),L(~x)), respectively. The descending curve slope
in Figure 8a indicates the enhancement of local coherence within superpixels. While as shown in
Figure 8b, the increasing amount of superpixels drives ascending curve slope. The integral function
of both terms is illustrated by HBE (I(~x),L(~x)), shown in Figure 8c. Most prominently, we can see
CASP achieves the smallest values for all three cases. In addition, CASP increases HOCC and HBE

much less, outperforming LSC and SLIC significantly, although the total number of superpixels of the
three methods are roughly identical.
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Figure 7. Entropy values of synthetic images. Denote a superpixel as one object. The complementary
role of HCON and HOCC indicates that uncertainty is transferred from that within objects to that among
objects. (a) HBE degenerates to HIM when HCON = 0 and HOCC = HIM. (b) The increasing object
amount elevates HBE, while we can find a proper arrangement of pixels may decrease the HBE.

2 4 6

0.6
0.8

1
1.2
1.4

Iteration ids.

(a
)

H
C

O
N

2 4 6
0
2
4
6
8

10

Iteration ids.

(b
)

H
O

C
C

2 4 6
0
2
4
6
8

10

Iteration ids.

(c
)

H
BE

SLIC LSC CASP

Figure 8. CASP derives less entropy values than based line methods. (a) CASP generates superpixels
with less HCON , indicating a higher level of local intensity coherence; (b) Also, HOCC derived from
CASP is smaller than other baseline methods; (c) Accordingly, HBE derived from CAPS is the smallest.
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4.7. Segmentation Robustness and Local Image Coherence

Since the human visual system is widely believed to be robust to arbitrary interference, we further
evaluate CASP on the MR data, which are manually added spatially varying Rician noise. Accordingly,
we have a large number of MR data, both noise free and noisy ones. Ultimately, we evaluate the
correlation between local coherence, HCON (I(~x)|L(~x)) and segmentation performance, including
USE, BR and ASA, respectively.

Figure 9 shows both superpixel segmentation, which is in the left column, and encoding efficiency
performance, which is in the right column. Different methods are marked by curve colors, while the
performance under different noise conditions are denoted by the line types. In general, the higher
the noise level, the worse the segmentation performance, and the robustness of a method behaves
through, besides better performance, the shape consistency of the group of curves demonstrating
under different noise levels. We can find in Figure 9 that, CASP demonstrates superiority on the two
aspects, which curves not only locate at places indicating better performance but also demonstrate
higher-level consistency in curve shape. By contrast, the curves of SLIC demonstrate arbitrary shapes
indicating vulnerability to noise.

Comparing the two sub-figures in the first row of Figure 9, it is interesting to find the HCON

curves of SLIC seem to correlate with its USE curves. To find out the relationship between local image
coherence and superpixel segmentation performance, we employ Pearson’s correlation coefficient
(PCC).

Figure 10 illustrate the correlation between HCON and USE, BR, and ASA respectively. Each
blue circle denotes a subject (4 in total) that is represented by superpixels in a specific iteration (6 in
total) and noise level (5 in total, including noise free). There are 120 samples used to generate PCC in
total. No matter from the shape of scattered circles or PCC values, our results support that local image
coherence and superpixel segmentation has a strong correlation.
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Figure 9. Under image corruption that is caused by no matter slight or severe noise, CASP demonstrates
better performance than baseline methods. (Denote noise level Nmax)
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Figure 10. Pearson’s correlation coefficient between local image coherence, HCON and superpixel
segmentation performance w.r.t. USE, BR, and ASA. USE has a positive correlation with HCON, while
BR and ASA negatively correlate with HCON.

5. Discussions and Conclusions

In this paper, we proposed a superpixel clustering algorithm, named context-aware superpixel,
which aggregated pixels explicitly following two of Gestalt grouping rules and top-down hierarchical
principle. Next, we proposed the conditional intensity entropy HCON (I(~x)|L(~x)), spatial occupation
entropy HOCC (L(~x)), and bilateral entropy HBE (I(~x),L(~x)) in the context of superpixel segmentation
to test the encoding efficiency of local image coherence, as an alternative of the complex brain.

In the superpixel segmentation task, as shown in Figures 4 and 5, CASP generated superpixels
that fitted image contents more precisely than SLIC and LSC. The superiority of CASP attributed to
the hierarchical image representation. First, CASP avoided to manually specify the total number of
superpixels, like the hierarchical model enables the learning of prior knowledge [36,37]; and second,
CASP discerned fine details based on a coarse aggregation, which took advantage of the information
in coarse-level [26,38]. As a result, the superpixels adopted by CASP in the fine-level reserved the
boundaries of superpixels in the coarse-level. By contrast, the well-segmented boundaries of SLIC
and LSC in coarse-level did not present in the fine-level. They can not generate the hierarchical
representations although they were initialized by a list of small to large numbers of superpixels. As
shown in Figures 6 and 9, quantitative results consistently supported the superiority of CASP.

Theoretically speaking, superpixel methods simulate how the human visual system reduces
redundancy. Luck and Vogel (1997) claims that what maintains in visual working memory are the
integrated objects rather than individual features [39]; besides, the working memory is only capable of
maintaining a limited number of objects at the same time [40]. Therefore, discarding trivial information
that does not affect recognition improves the visual efficiency [41].

Meanwhile, Gestalt perceptual rules play a crucial role in both visual working memory and
superpixel methods, and they manifest the visual efficiency of the human visual system. Most
prominently, contrasting to Barlow’s (1961) redundancy reduction [41], Gestalt grouping rules, or
superpixels that did not discard any information but did structure pixels, demonstrated improvement
on encoding efficiency. To test the encoding efficiency of superpixels, we proposed three entropy
criteria. From Equation (6), we can find the HCON (I(~x)|L(~x)) and HOCC were the two aspects of HBE

that concurrently measured local image coherence and spatial occupation. From Figures 8 and 9, we
can see CASP achieved less entropy than LSC and SLIC in all three criteria. Specifically, the local image
coherence strongly correlates with superpixel segmentation performance, as supported by Pearson’s
correlation analysis shown in Figure 10.

To sum up, partitioning image according to image coherence, although without any loss of detail
information, induced less entropy. Such results support Gestalt minimal principle and might imply
an underlying principle, that is, the minimum entropy principle that a visual system reduces the
uncertainty existing in visual stimuli efficiently if the stimuli have a minimal entropy.

Compared to Edwin Jaynes’ (1957) maximum entropy principle, our conclusion seems to
contradict. We denote different two aspects. For Edwin Jaynes’, the probability distribution with
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maximum entropy is the a priori criterion used in an inference process when little or even no
information is available [42]. During the inference iterations, this prior distribution changes to have
a sharp shape with newly available information [43]. By contrast, for ours, the minimum entropy
principle involved the statistics within the data, and it was a measure of uncertainty of the image itself,
with reference to local image coherence and spatially occupation. Although they were both named
entropy, their roles are different.

More specifically, it is worth noting that the proposed entropy criteria involve the image structure
in a hierarchy captured by CASP following the top-down manner. If considering such a hierarchy as
the inner structure of visual awareness, each superpixel may involve one visual object. Accordingly,
the hierarchical structure is the information that is transmitted from raw stimuli to the visual system.
Denote the mutual information

Imu (I(~x),L(~x)) = HIM (I(~x))− HCON (I(~x)|L(~x)) , (10)

since HIM (I(~x)) must be a constant, Imu (I(~x),L(~x)) is determined by the HCON (I(~x)|L(~x)).
Thus, maximizing Imu (I(~x),L(~x)) equals to minimizing HCON (I(~x)|L(~x)). Because a smaller
HCON (I(~x)|L(~x)) indicates a higher-level of intensity coherence of a superpixel, we can summarize
that the way to represent image coherence minimizes the conditional entropy HCON (I(~x)|L(~x)) and
maximizes mutual information Imu (I(~x),L(~x)), maximizes the information transmission, indicating
visual efficiency. On the other side, the statistics of local image coherence reflect the complexity within
the data. Thus, the local image coherence that is reflected by HCON (I(~x)|L(~x)) can be used to depict
the complexity within the data, and it is obvious that an image with a simple structure is easily be
recognized by human and be represented by CASP. We, therefore, suggest that the coherence-based
image structure might be one type of the data structure of unlabelled data, anticipated by Hinton
(2018) [44], which can be fully exploited. Furthermore, it is the coherence rather than the individual
features that improve the encoding efficiency, and our results may respond to the query whether
feature invariance is always an optimal strategy for biological and artificial vision [38].

As far as we know, this work is the first investigation to test Gestalt minimum hypothesis utilizing
a superpixel algorithm (i.e., CASP) and entropy criteria (i.e., HCON (I(~x)|L(~x)), HOCC (L(~x)) and
HCON (I(~x)|L(~x)) ). However, there are limitations worth to note. First, the artificial vision system is
too simple to understand the true underlying visual mechanisms, and typically, the adopted entropy
value might is unable to indicate the true number of firing neurons. Second, the bilateral entropy
can only weigh the encoding efficiency of patterns at the very early perceptual stage, viz., the image
coherence. Even so, the strong correlation between local image coherence and superpixel segmentation
performance suggests the potential to exploit the proposed entropy criteria as constraints in designing
a loss function of the segmentation tasks. Besides the intensity coherence over spatial, as claimed by
Attneave (1956), visual patterns also demonstrate many other types, such as shape, angle, curvature,
and so forth [13]. Simultaneously, Gestalt Berlin school claims a whole-part relationship that the
whole is different from the sum of the parts [2]. Both reasons let us know that the proposed entropy
criteria may fail to respond to more complex patterns. Therefore, we suggest that it should design
specific entropy criterion to measure the encoding efficiency of complex patterns corresponding to
specific vision level, by which human vision and computer vision researchers could test and refine
their hypotheses theoretically and quantitatively.
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Abbreviations

The following abbreviations are used in this manuscript:

CASP Context-Aware SuperPixel
SLIC Simple Linear Iterative Clustering
LSC Linear Spectral Clustering
USE Under-Segmentation Error
BR Boundary Recall
ASA Achievable Segmatiaon Accuracy
MR Magnetic Resonance
STD Standard Deviation
SoS Sum of Square
PCC Pearson’s Correlation Coefficient
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