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Electroencephalography (EEG) monitoring has become technically feasible in daily clinical

anesthesia practice. EEG is a sensitive method for detecting neurophysiological changes

in the brain and represents an important frontier in the monitoring and treatment of

patients in the perioperative period. In this review, we briefly introduce the essential

principles of EEG. We review EEG application during anesthesia practice in the operating

room, including the use of processed EEG in depth of anesthesia assessment, raw EEG

monitoring in recognizing brain states under different anesthetic agents, the use of EEG

in the prevention of perioperative neurocognitive disorders and detection of cerebral

ischemia. We then discuss EEG utilization in the intensive care units, including the use of

EEG in sedative level titration and prognostication of clinical outcomes. Existing literature

provides insight into both the advances and challenges of the clinical applications of EEG.

Future study is clearly needed to elucidate the precise EEG features that can reliably

optimize perioperative care for individual patients.
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INTRODUCTION

Electroencephalography (EEG) is a non-invasive, relatively inexpensive, and objective method for
assessing neurophysiological function. There is increasing interest in the use of EEG monitoring
in clinical practice, and its role in the surgical care pathway continues to evolve and expand.
Although significant advancements have been made in perioperative care, adverse neurological
outcomes remain an ongoing concern among clinicians. The overall picture of what happens to the
brain during the perioperative period is unclear, particularly during procedures performed under
general anesthesia.

EEG can provide important information about the cerebral cortex during the perioperative
period, including detection of cerebral insults and depth of anesthesia. For example, predictable
alterations to EEG can be identified in hypothermia, ischemia, and changes to depth of
anesthesia (1). This paper will review current literature on the clinical applications of EEG
in the perioperative period, including depth of anesthesia assessment and the prevention of
perioperative neurocognitive disorders (PND). We also discuss current findings regarding the
interpretation of raw EEG with administration of commonly used classes of anesthetic agents.
Improved understanding of the advantages and limitations of EEG monitoring will benefit future
surgical patients by promoting optimal, standardized perioperative care.
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FIGURE 1 | EEG recordings performed in patients. The waveform can be

mathematically decomposed into different frequency bands: delta rhythm

(0.5–3Hz), theta rhythm (4–7Hz), alpha rhythm (8–12Hz), beta rhythm

(13–30Hz), and gamma rhythm (>30 Hz).

OVERVIEW OF EEG ANALYSIS

EEG represents the summation of excitatory post-synaptic
potentials generated by individual neuronal cells in the cerebral
cortex. In 1929, Hans Berger made the first observation of
spontaneous electrical activity in the human brain (2). Berger
defined two different frequency bands of wakefulness: alpha
waves (8–12Hz), predominant in the waking state with eyes
closed, and beta waves (13–30Hz), which often occur during
mental concentration (Figure 1). In most of the population,
closing the eyes results in a marked shift from predominately
beta waves to alpha waves. These early findings were followed
by the identification of theta waves (4–7Hz) and delta waves
(0.5–3Hz), characteristic of sleep in adults, and gamma waves
(>30Hz), linked to cognitive function, information processing,
and memory (3).

The first step in evaluation using EEG is the acquisition of EEG
signal. Multiple electrodes, numbering 16–20 in the traditional
“full” EEG, are distributed over the entire scalp (4). In many
commercial processed EEG monitors designed for use in the
perioperative setting, just 2–3 electrodes are placed across the
patient’s forehead. These electrodes effectively capture voltage
fluctuations between different points on the scalp, transmitting
through amplifiers and hard wire filters to yield the raw EEG
signal (5).

EEG monitoring is very sensitive to artifacts and interference,
and heavy disturbances can make gathering meaningful
information especially difficult. Obtaining clean, raw EEG
patterns should be the priority before performing data
processing. In both clinical and research practice for example,
care should be taken in proper skin preparation and conductive
material is required in order to minimize impedance at the

electrode-skin interface. Many factors are known to interfere
with the EEG signals including ambient noise, power-line
interference, EMG artifacts, ECG artifacts, eye-movement
artifacts, and eye blinks (6). Researchers often combine the
selection of a relatively “artifact-free” time segment with the use
of various noise reduction filters and artifacts removal methods
for improved reliability in EEG analysis.

Each EEG recording generates a vast amount of information
for interpretation. The primary description of an EEG consists
of amplitude, frequency, and wave shape. However, these
basic criteria alone cannot comprehensively describe the
multidimensional information present. To allow for more in-
depth analysis, advanced time, and frequency parameters can be
defined and extracted from raw EEG data.

Analysis in the time domain of EEG evaluates characteristics,
changes, and pre-defined events of the waveform morphology
over time. Average waveform length, waveform amplitude, slope
sign change, and number of zero crossings are all examples of
time domain EEG analysis (7). Of special interest in anesthesia
is the occurrence of burst suppression, where a period of high-
frequency sharp waveforms (burst) are followed by flat traces
(suppression). Several accepted models have been developed to
calculate such parameters including burst suppression ratio and
time domain analysis, which have proven important in tracking
transient waveform morphologies like epileptic spikes or sleep
spindles (8).

The predominant frequencies of waveforms in the EEG are
the focus of frequency domain analysis. A central technique
in frequency domain analysis is the Fourier transform, a
mathematical function used to decompose the raw EEG
waveform into a sum of sine waves with discrete frequencies.
The Fourier transform also outputs the relative contribution of
each sine wave to the overall amplitude of the waveform. In
this manner, power spectra with frequency on the x-axis and
power, calculated as the square of the amplitude, on the y-axis can
be plotted to visually represent the presence of each frequency
bands in different brain states. Parameters including median
frequency, peak frequency, and spectral edge frequency can then
be calculated to further characterize the EEG (7).

Time-frequency analysis combines consideration of the time
and frequency domains. Methods used in time-frequency
analysis include short-time Fourier transform, wavelet transform,
multitaper methods, and Hilbert-Huang transformation (9).
Researchers may visualize these data with power spectra where
the relative power at each frequency band, represented by color,
is displayed as it changes with time.

EEG IN THE OPERATING ROOM

Anesthesiologists often adjust anesthetic depth based on clinical
signs, including blood pressure and heart rate. While changes
in clinical signs can represent spinal neuronal responses to
noxious stimulation, they are unable to directly reflect brain
states or depth of anesthesia (10). Physiologic responses to
anesthetics also varies in the population, and patients with overly
light anesthesia levels have been found to lack corresponding

Frontiers in Medicine | www.frontiersin.org 2 June 2020 | Volume 7 | Article 251

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Sun et al. EEG During the Perioperative Period

hemodynamic changes (11). Identifying the appropriate depth
of anesthesia for individual patients in an objective manner
can prevent deleterious consequences of anesthetic under-dosing
(e.g., intraoperative awareness) or anesthetic overdosing (e.g.,
perioperative neurocognitive disorders and long-termmortality).
Gibbs et al. first reported the effect of anesthetic agents on EEG
in 1937, forming the conceptual basis for the use of EEG to
monitor the depth of anesthesia (DoA) (12). Since the 1990’s,
EEG has seen widespread clinical use for assessment of the depth
of anesthesia and sedation (13).

Processed EEG Monitoring for Depth
of Anesthesia
Guidelines published by the Association of anesthetists of Great
Britain and Ireland in 2016 recommend the use of depth of
anesthetic monitors in patients undergoing total intravenous
anesthesia with neuromuscular blocking to reduce intraoperative
awareness (14). Most recently, the World Health Organization-
World Federation of Societies of Anaesthesiologists (WHO-
WFSA) International Standards for a Safe Practice of Anesthesia
published in 2018 suggested the use of an electronic device (DoA)
intended to measure brain function under general anesthesia,
especially in patients at risk of awareness and postoperative
delirium (15).

Several commercially available EEG-basedmonitoring devices
are compared in Table 1. Generally, the raw EEG signal is
captured via forehead electrodes and processed to derive a
numerical index representing the anesthetic state. These index
figures can then be used by the clinician to guide decisions.

The first reported and the most widely-used depth of
anesthesia monitor is the bispectral index, or BIS monitor
(Covidien) (26). The BIS incorporates information from the
time domain, frequency domain, and higher-order spectral
subparameters. The subparameters extracted from the EEG
recording are assigned weights in a proprietary multivariable
model based on a clinical database of EEG changes correlated
with behavioral assessment of hypnosis levels obtained from
1,500 healthy patients who received general anesthesia (13). The
BIS monitor then outputs a single number on an index scale
ranging from 0 (absence of brain activity) to 100 (awake). The
BIS value correlates well with level of consciousness, with loss of
consciousness generally observed to occur at BIS values between
68 and 75 (27). BIS values between 40 and 60 are considered
indicative of adequate maintenance of general anesthesia for
surgery (28). Since its development, further research has provided
insight into the uses of the BIS. The multicenter B-Aware
trial identified decreased incidence of intraoperative awareness
with use of BIS-guided anesthesia (target BIS values, 40–60) in
2,463 high-risk surgical patients who received general anesthesia
(16). A systemic review of 36 trials with a total of 7,761 high-
risk surgical patients identified a lower risk of intraoperative
awareness with use of BIS-guided anesthesia compared to clinical
sign-guided anesthesia (29).

Several other EEG-based depth of anesthesia monitors
have been developed and are approved for clinical use. The
efficacy of these devices in clinical settings and populations

continues to be evaluated, and each demonstrates advantages
and limitations. While the aepEX monitor (Medical Device
Management Ltd.) exhibited higher sensitivity and specificity
compared to the BIS for detection of return of consciousness
in pediatric patients, it was inferior to the BIS in distinguishing
between levels of sedation in that population (17, 30). In a
multicenter randomized trial, continuous monitoring patients
with the PSA 4000 resulted in decreased use of propofol without
increase in unwanted somatic events, hemodynamic instability,
or intraoperative awareness compared to a standard practice
group (18). In a study of 61 children aged 0–24 months, the
Narcotrend device (MonitorTechnik) was found to exhibit an
overall prediction probability of 0.8 in predicting sevoflurane
concentration, with correlation in older children (31). In another
study of children aged 12–17 years receiving propofol deep
sedation, the Narcotrend Index helped to reduce recovery time,
drug consumption, and episodes of undesired oversedation
compared to clinical signs protocol (32).

Despite some studies demonstrating the benefit of using
processed EEG monitoring during total intravenous anesthesia,
no convincing evidence yet supports their application in
anesthesia with volatile agents, when end-tidal anesthetic gas
(ETAG) is also monitored. The B-Unaware trial did not find
decreased incidence of intraoperative awareness with BIS-
guided anesthesia compared to an anesthetic protocol based on
ETAG in 2,000 patients considered high-risk for intraoperative
awareness (33). The subsequentmulti-center BAG-RECALL trial,
conducted in a similar high-risk group of 6,041 patients, found
a lower incidence of intraoperative awareness in ETAG-guided
patients than BIS-guided patients (34).

Knowledge and use of current EEG-based monitors in the
clinical setting has several limitations. Surgical populations
and anesthesia protocols, with and without EEG guidance,
vary significantly between completed studies. The predictive
probabilities of these tools are also generally less reliable in
pediatric patients and especially infants, as reference EEG
databases have been derived from adult populations (35).
Inappropriately low index values are often reported by depth-
of-anesthesia monitors in pathological states including cerebral
hypoperfusion (36), hypoglycemia (37), and hypothermia (38),
conditions which are important to detect perioperatively. Lastly,
index values may increase with administration of ketamine
(23) and nitrous oxide (39), underestimating the true depth
of anesthesia.

Raw EEG for Depth of Anesthesia
While the information from a single processed EEG index
may be limited, researchers have begun to explore the use
of raw EEG to identify and evaluate brain states under
anesthesia. In 2019, the American Society for Enhanced
Recovery and Perioperative Quality Initiative Joint Consensus
Statement recommend anesthesiologists to interpret basic
EEG, including raw waveform and spectrogram (40).
Anesthetic agents are believed to act at specialized receptors
in specific brain circuits, resulting in changes to EEG
features. With ongoing advances in neuropharmacology
and neurophysiology, it may become possible to recognize
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TABLE 1 | Commercial EEG-based monitoring systems for depth of anesthesia.

Product Utilized parameters Scale Clinical correlate References

Bispectral index

(Covidien)

BSR;

Relative beta activity;

Synch-Fast-Slow

0–100 Awake: 100;

Adequate anesthesia: 40–60;

No brain activity: 0

(16–18)

AEP monitor/2

(Danmeter A/S)

ARX model; MLAEP latency and

amplitude;

BSR

AAI:0–100 Awake: 100;

Adequate anesthesia: 15–20;

Very deep hypnosis: 0

(19)

aepEX (Medical Device

Management Ltd.)

MLAEP latency and amplitude 0–99 Awake: 100

Adequate anesthesia: 30–50;

No brain activity: 0

(20)

Entropy Module (GE

Healthcare)

Power spectrum

Shannon function

RE:0–100 (nociception level)

SE: 0–91 (depth of sedation)

Adequate anesthesia for both RE and SE

parameters: 40–60

Need for additional analgesic: RE-SE

difference ≥ 10

(21)

Narcotrend

(MonitorTechnik)

Burst suppression;

AR models;

SEF, median frequency, spectral

entropy, relative delta, theta,

alpha, beta

Stages: A-F;

Index: 0–100

Stages

A (awake) to F (deep anesthesia), with 15

substages

Index values:

100 (awake) to 0 (deep anesthesia),

reflecting the continuous change

of consciousness

(22)

PSA 4000 Monitor

(Physiometrix, Inc)

Power spectrum; PSI:0–100 Awake: 0

Adequate anesthesia:40–50

Eyes opening: 80

(23, 24)

Cerebral State Monitor

(Danmeter A/S)

Alpha and beta ratio

Alpha-beta difference

Burst suppression

CSI:0–100 Awake: 90–100

Adequate anesthesia: 40–60

Deep: 10–40

Very deep: 0–10

(25)

BSR, burst suppression ratio; MLAEP, middle latency auditory evoked potentials; RE, response entropy; SE, state entropy; ARX, autoregressive models with exogenous input; AAI, A-line

autoregressive index; AR, autoregressive; SEF, spectral edge frequency; PSI, patient state index; CSI, cerebral state index.

drug-specific patterns in raw EEG using high-density EEG
recording. This approach may allow identification of shared
and distinct mechanisms of anesthetic agents (8). In this
section, we review current knowledge of neuropharmacology
and clinical electrophysiology of several widely-used
anesthetic agents.

Propofol
Propofol, a GABAA agonist, is the most commonly used
anesthetic for intravenous general anesthesia. It is also
frequently administrated for sedation in the intensive care
unit. Propofol administration has been associated with distinct
changes to EEG, including increased beta oscillation during
paradoxical excitation, which occurs at an early stage of
propofol induction (19). With increase in the propofol
infusion rate, the EEG shifts into the alpha range, with
strengthening of synchronous alpha activity in the frontal
lobes at deeper level of propofol anesthesia (20). This frontal
alpha signature represents synchronous alpha-oscillation
activity in the cortex and thalamus. Global coherence analysis
concurs with these findings, demonstrating a transition of
coordinated alpha activity from the occipital lobes of awake
subjects to the frontal lobes following propofol administration
and loss of consciousness (21). During this transition, low
frequency oscillations (<1Hz) have been identified in the local
field potential, suggesting the potential role of propofol in

disrupting the spatial and temporal organization of network
dynamics (22).

The changing relationship between alpha amplitudes and low
frequency oscillations may also reflect differences in states of
consciousness. During the transition from consciousness into
unconsciousness, alpha amplitudes are maximal at the troughs of
low frequency oscillations. In profound unconsciousness, alpha
amplitudes become maximal at the peaks of low frequency
oscillations (24).

Deep anesthesia induces emergence of burst suppression,
while complete suppression of EEG is associated with excessive
depth of anesthesia (25). Burst suppression appears with
propofol-induced unconsiousness and its onset does not interfere
with the dominant alpha rhythm (41). Burst suppression has been
shown to exhibit substantial asynchrony across different cortical
regions. In some cases of lighter anesthesia, the pattern may
be restricted to certain regions while others exhibit continuous
activity (42).

With emergence from propofol anesthesia, changes in EEG
patterns are generally reversed. Recovery of consciousness is
marked by a decrease in coherent frontal alpha oscillations
and low-frequency power, accompanied by reappearance of
coherent occipital alpha oscillations (24). Maximal alpha
amplitudes are again observed at the troughs of low-frequency
oscillations during this transition between unconsciousness
and consciousness (24). A transient brain state with large,
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spatially distributed, slow sensory-evoked potentials has also
been observed prior to recovery of behavioral responsiveness
following emergence from propofol anesthesia (43).

Volatile Anesthetics
Volatile anesthetic agents are used widely for the induction
and maintenance of anesthesia, especially in pediatric patients.
Isoflurane and sevoflurane induce similar sequences of EEG
changes as general anesthesia is deepened. During light isoflurane
anesthesia, EEG waveforms are shallow and fast. With increased
depth of anesthesia, the EEG waveforms slow and deepen
in amplitude, and burst suppression may begin to appear.
The flat traces during burst suppression become markedly
more pronounced as isoflurane is increased (25). Similar to
propofol, unconsciousness induced by sevoflurane is associated
with coherent alpha rhythms in the frontal lobe and slow
oscillations suggestive of synchronization between the thalamus
and the cortex. Sevoflurane administration is also associated with
increased power and coherence in the theta range (44).

EEG responses to volatile anesthetic exhibits age-dependent
variability. Infants given sevoflurane anesthesia have been
observed to exhibit slow oscillations but lack the predominant
and coherent alpha activity in the frontal lobes seen in adults
(45). At around 4–6 months of age, theta and alpha range
oscillations emerge under maintenance of anesthesia (45). These
waveforms diminish with reduction of end-tidal sevoflurane
and emergence from anesthesia (45). From 4 to 10 months
of age, alpha oscillation power increases in the frontal lobes
(46). Alpha rhythm coherence, characteristic of an inactive brain
under sevoflurane anesthesia in adults, begins to develop in
children around 10–12 months of age (46, 47). These age-related
EEG changes likely reflect processes including synaptogenesis,
differences in glucose metabolism, and progressive myelination
of the cortex in the developing btain (45).

In both children (48) and adults (49), epileptiform EEG
activity has been reported with high-dose sevoflurane induction.
Controlled hyperventilation in adult patients receiving rapid
sevoflurane induction appears to increase incidence of these
epileptiform discharges (49). This effect was reduced but not
eliminated in children receiving shortened exposure (<5min) to
8% sevoflurane at anesthesia induction (50).

EEG and Nitrous Oxide
Nitrous oxide is a sedative hypnotic that potently inhibits the N-
methyl-D-aspartate (NMDA) receptor. Unlike the EEG response
to propofol and volatile anesthetics, administration of nitrous
oxide is associated with decreased alpha and delta activity in the
frontal lobes and increased high beta oscillations (51, 52).

While nitrous oxide alone is not considered sufficient to
produce general anesthesia, it is commonly combined as an
adjunct with volatile anesthetic, oxygen, and air in clinical
practice. The observed clinical effect of nitrous oxide on EEG
is thus altered by concurrently administered agents. In a small
study of 15 surgical patients, addition of nitrous oxide during
steady-state halothane anesthesia resulted in a progression from
delta waves to theta waves, then spindle-type waves similar in
conformation to the original waveforms induced by halothane

(53). In that study, a second admixture of nitrous oxide given
20–30min later resulted in variable EEG responses suggestive
of acute drug tolerance. These changes included an abbreviated
progression of theta waves followed by spindles, continuous
delta waves, and spindle-type EEG waves only (53). In a
separate retrospective study, patients consistently exhibited large
amplitude, slow delta oscillations during the transition from
maintenance sevoflurane anesthesia to facilitated emergence with
over 60% nitrous oxide and total flow rate of >4 L/min (54).

EEG and Ketamine
Ketamine, an NMDA antagonist, is used commonly in clinical
anesthesia. At subanesthetic doses, ketamine has been observed
to induce gradual dissipation of alpha power, with significant
decreases in the precuneus and temporal-parietal junction (55,
56). A gamma-burst EEG pattern, consisting of alternating slow
delta and gamma waves, has also been frequently observed with
ketamine administration. This pattern is commonly followed by
increased theta and decreased alpha/beta oscillations (57). At
anesthetic doses of ketamine, theta power increases in the frontal
lobes and reductions in anterior-to-posterior alpha connectivity
appears to occur in a dose-dependent manner (55).

EEG and Dexmedetomidine
Dexmedetomidine is used most often for light-to-moderate
sedation in intensive care settings. Unlike sedation achieved
with other anesthetic agents, patients can be easily aroused from
dexmedetomidine-induced unconsciousness. Dexmedetomidine
likely acts as a selective agonist at alpha-2 adrenergic receptors,
altering arousal status via inhibition of the ascending arousal
system (58). On EEG, dexmedetomidine administration has been
observed to elicit spindle oscillations with maximum power
and coherence of ∼13Hz in the beta range (59, 60). These
spindle patterns exhibit similar spindle density, amplitude, and
frequency compared to sleep spindles, but are longer in duration.
These findings have clinical correlation with the observation
that dexmedetomidine induces a state similar to non-rapid eye
movement sleep (60).

EEG and Prevention of Perioperative
Neurocognitive Disorders
Surgery and anesthesia can significantly impact cognitive
function and performance, especially in elderly patients. PNDs
are diagnosed in the preoperative or postoperative period and as
defined include baseline cognitive impairment, acute events such
as development of delirium, and the development of cognitive
dysfunction up to 30 days and 12 months after surgery (61).
Patients with preexisting cognitive dysfunction are at greater risk
for developing a PND. Postoperative cognitive decline is closely
associated with increased mortality and other adverse outcomes
(62). Persisting symptoms decrease quality of life, and patients
experiencing cognitive decline postoperatively are at higher risk
for later developing Alzheimer’s disease (63).

EEG has important clinical application in PND prevention.
The European Society of Anesthesiology currently recommends
EEG-guided anesthesia monitoring for the prevention of
postoperative delirium and cognitive decline (64). In a trial
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of 921 elderly adults undergoing general anesthesia for non-
cardiac surgery, patients were randomized to receive BIS-guided
anesthesia in which anesthesia was adjusted to maintain the
BIS value within a recommended range of 40–60 or standard
anesthesia care. Patients who received BIS-guided anesthesia had
lower rates of postoperative delirium and cognitive decline at
3 months compared to routine care (65). In a trial of 1277
patients, patients who received anesthesia with intraoperative
BIS monitoring had lower delirium incidence but no difference
in the rate of cognitive dysfunction at 90 days. BIS-guided
patients experienced fewer episodes of BIS values <20 during
general anesthesia, suggesting deep anesthesia as a possible
precipitant of postoperative delirium (66). Longer durations of
intraoperative EEG suppression is associated with postoperative
delirium (67), and patients with EEG suppression at lower
concentrations of volatile anesthetic are more likely to develop
postoperative delirium (68). A meta-analysis incorporating
these studies found that processed EEG monitoring reduced
the incidence of postoperative delirium in patients over 60
years of age (69). However, the recently completed ENGAGES
trial found no difference in postoperative delirium incidence
within 5 postoperative days in patients receiving EEG-guided
anesthesia and those receiving standard anesthesia care (70).
An updated meta-analysis including ENGAGES trial revealed
no statistically significant reduction of EEG-based monitor on
postoperative delirium risk (71). These findings no doubt elicited
a huge discussion. Experts believed that EEG-guided group in
ENGAGES trial failed to receive appropriate anesthesia, since
that difference of anesthetic consumption between groups was
small (40) and the duration of burst suppression in EEG-guided
group exceeded the threshold relating to delirium occurrence
(72). Further investigation is needed to clarify the role and
limitations of EEG in PND prevention.

While not yet used in current clinical practice, EEG has
emerging potential for detection of cognitive dysfunction.
In prospective studies, postoperative delirium is associated
with higher delta power in the frontal lobes during eyes-
closed EEG recording (73, 74). Functional connectivity
between different regions of the cortex is also disrupted in
delirium. In cardiac surgery patients with delirium, alpha band
functional connectivity decreases while delta band connectivity
increases in the frontal regions (75, 76). Older adults with
preoperative cognitive dysfunction exhibit have been shown to
less intraoperative frontal alpha power during general anesthesia
than their peers, suggesting a role for EEG monitoring in
identifying patients at increased risk of developing PNDs (77).

EEG and Detection of Cerebral Ischemia
During Surgical Procedures
Patients face significant risk for cerebral ischemia during
and after major surgery, especially when undergoing cardiac
procedures. Many patients in the aging surgical population may
be predisposed to experiencing cerebral ischemia due to pre-
existing cerebral vascular disease. In these patients, a highermean
arterial blood pressure (MAP) is required to perfuse narrowed
arteries and arterioles in the brain (78). Other common causes

of perioperative cerebral ischemia include hypoperfusion during
cross-clamping, impaired cerebral autoregulation, embolism,
hypoxia, and anemia (79, 80).

Intraoperative EEG may be used to aid detection of cerebral
ischemia, but its role is not yet well-defined (78). EEG primarily
detects activity of the cortex, with limited-to-no efficacy in
probing deeper brain regions which can also experience ischemia.
One of the most commonly reported EEG features of cerebral
ischemia is the attenuation of alpha and beta wave amplitudes
and the enhancement of theta and delta wave amplitudes
(81). Use of EEG for detection of cerebral ischemia has been
an area of interest in carotid surgery (82). The clamping of
the carotid arteries during CEA procedures and subsequent
vascular shunting may cause insufficient blood flow to the
ispsilateral cerebral hemisphere and cause intraoperative stroke.
Carotid artery clamping resulted in around 20% decreases in
the BIS both in the ipsilateral and contralateral sides (83). Burst
suppression and isoelectric patterns are also indicators of cerebral
ischemia. In patients undergoing aortic hemiarch replacement,
abrupt loss of electrocerebral activity was recorded immediately
after circulatory arrest (84). In this light, for certain surgical
procedures that cause dramatic fluctuation in cerebral blood
flow, changes of EEG provide alarms to clinicians. However,
since anesthetic administration produces similar EEG patterns,
clinicians should pay more attention to the exclusive use of EEG
on detecting ischemic insults (80). While EEG is considered to
have potential for lowering intraoperative stroke risk, it is not
currently recommended for routinely use (85).

EEG IN THE INTENSIVE CARE UNIT

EEG and Depth of Sedation
Despite monitoring depth of anesthesia during surgery, EEG is
expanded to determine sedation levels in critically ill patients.
The PADIS Guidelines in 2018 suggested to maintaining light
sedation states in critically ill, mechanically ventilated adults
(conditional recommendation, low quality of evidence). And
they ungraded stated that “Sedation that is monitored with BIS
compared with subjective scales may improve sedative titration
when a sedative scale cannot be used” (86).

EEG and Clinical Outcomes
Prognostication
In cases of significant permanent or irreversible damage to
the brain, continuous EEG (cEEG) monitoring may hold
significant potential for outcomes prognostication. Post-anoxic
encephalopathy after cardiac arrest is a condition in which cEEG
can be useful in predicting neurological outcomes (87). In a
retrospective study of cEEG in the first 12–72 h after cardiac
arrest, continuous or nearly-continuous patterns at 12 h were
associated with recovery of consciousness. Isoelectric patterns
(voltage <2 µV) at 24 h and EEG suppression (voltage 2–10
µV) at 48 h after stroke were associated with failure to recover
consciousness (87).

There is emerging evidence supporting burst suppression as
a marker for hypoxic-ischemic brain damage. In post-anoxic
encephalopathy after cardiac arrest, burst-suppression at both
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24 and 48 h after stroke was associated with failure to recover
consciousness after the initial insult (87). Burst suppression
with a pattern of identical bursts was found to be associated
with the most widespread patterns of damage on postmortem
histopathology in a series of 11 patients who died following
anoxic coma (88).

While gaining attention in research, cEEG is not easily
interpretable by non-neurologists. Methods for processing raw
EEG data such as amplitude-integrated EEG (aEEG) may aid
in clinical adoption for outcomes prognostication. The lack
of normal trace development within 36 h, status epilepticus,
and burst suppression recorded by aEEG were considered
indicative of “invariably poor” prognoses (89). In a retrospective
study of 61 patients who survived out-of-hospital cardiac
arrest but remained comatose following resuscitation, aEEG was
used effectively in predicting neurological outcomes (90). In
that study, patients were categorized as C1 if they regained
continuous normal voltage on aEEG within 12 h following
return of spontaneous circulation (ROSC). Of 20 C1 patients,
95% experienced a good neurological outcome of a cerebral
performance category score between 1 and 2. Patients who were
categorized as C4, indicating they experienced burst suppression
at any time post-ROSC, universally experienced poor outcomes
(90). In a retrospective study of 63 out-of-hospital cardiac arrest
patients, epileptiform activity, or cerebral inactivity detected on
BIS at any time post-ROSC was also found to be predictive of
poor outcomes (91).

CHALLENGES AND PERSPECTIVES

There are still many obstacles and challenges to the widespread,
effective adoption of EEG monitoring in the perioperative
period. First, the generalizability of existing evidence is not
clear as age-related changes profoundly affect the brain and
its response to physiological insults. Second, the complexity

of raw EEG signal challenges the feasibility of raw EEG
monitoring and interpretation in the clinical anesthesia setting.
Researchers currently employ multiple disparate algorithms
and analysis methodologies to investigate perioperative EEG
patterns. There is no unified standard for the analysis of EEG
features and its practical applications perioperatively, and any
such application would likely require extensive training of
medical personnel.

CONCLUSION

In this review, we survey the clinical applications of EEG in the
operative room and intensive care units, including assessment of
depth of anesthesia, prevention of perioperative neurocognitive
disorders, detection of cerebral ischemia, assessment of sedative
states, and clinical outcome prognostication. We also discuss
current knowledge of the effect of major anesthetic agent classes
on EEG. Although with limitations, EEG has great potential as an
objective, non-invasive tool in clinical and research settings. As
the understanding of its effective use in the perioperative period
improves, we believe that EEG can help provide customized
delivery and improve outcomes of perioperative management
for patients.
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