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Abstract: Currently, there are no free databases of 3D point clouds and images for seedling pheno-
typing. Therefore, this paper describes a platform for seedling scanning using 3D Lidar with which
a database was acquired for use in plant phenotyping research. In total, 362 maize seedlings were
recorded using an RGB camera and a SICK LMS4121R-13000 laser scanner with angular resolutions
of 45° and 0.5° respectively. The scanned plants are diverse, with seedling captures ranging from less
than 10 cm to 40 cm, and ranging from 7 to 24 days after planting in different light conditions in an
indoor setting. The point clouds were processed to remove noise and imperfections with a mean
absolute precision error of 0.03 cm, synchronized with the images, and time-stamped. The database
includes the raw and processed data and manually assigned stem and leaf labels. As an example of a
database application, a Random Forest classifier was employed to identify seedling parts based on
morphological descriptors, with an accuracy of 89.41%.

Keywords: 3D maize database; LiDAR platform; plant phenotyping; point clouds; 3D reconstruction

1. Introduction

By 2050, the world’s population is expected to rise by almost 10 billion, while the
average rate of increase in crop production is only about 1.3% per year [1]. Therefore,
new technologies have been developed to improve agricultural yield without affecting the
environment to ensure global food sustainability. One way to improve production is to
find among plants those more productive varieties, resistant to diseases or stress, among
other advantages. To distinguish them, their phenotype is determined, i.e., the specific
observable aspects of a plant or its visible characteristics, such as internal factors, related
to the genetics itself, and external factors associated with the environment, adaptation,
regulated by abiotic factors [2].

The plant phenotype is formed during plant growth from the influence of the species-
specific genotype and its interaction with abiotic and biotic factors. Over the years, pheno-
typing measurement and analysis have been a laborious, expensive, and time-consuming
task, so research in this field has focused on the development of automated, multifunctional
and high-throughput phenotyping technologies to advance in breeding [3]. Therefore,
in the phenotyping study, the measurement of the 3D morphology of a plant plays an
important role. Morphological traits provide a viable way to evaluate stress, yield, growth,
anatomy, and overall plant development [4–7]. Plant morphology can be analyzed at three
scales: canopy scale in the field, individual plant and organ scale indoors, and micro-scale
in laboratories [8]. Indoor applications usually employ pot-grow plants and combine
non-destructive data acquisition techniques such as RGB imaging, depth imaging, and
laser scanning.

Currently, single-plant phenotyping platforms are fairly advanced [9–11], and their
use indoors guarantees adequate light conditions for imaging and low airflow, avoiding
disturbances in the measurements. Different studies address population phenotypes by
looking for plants that have accelerated growth or better production and thus find better
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genotypes. Other studies evaluate individual phenotypes, which estimate characteristics
such as height, volume, and the number of leaves to obtain parameters to determine the
best phenotypes. Among the studies reviewed, none was found that separates the plant
organs in order to determine the phenotype, since the particular characteristics of each
organ could be used to obtain a better approximation of the phenotype. On the other hand,
field platforms for individual plants still need to be improved for more detailed feature
extraction [12].

To improve the identification of varieties and their characteristics, the phenotype
is analyzed in detail using Machine Learning techniques. For this purpose, it is often
important to acquire a large amount of high-resolution and accurate data. Several ac-
quisition techniques have been employed for this purpose, which can be grouped into
two classes. The first, employing multiple cameras [13] or one single camera at different
angles [14–16]. The second uses depth cameras based on Kinect or Light Detection and
Ranging (LiDAR) [17,18]. The latter technology has a lower computational cost due to the
fewer points on the plant, compared to data obtained using photographic cameras.

According to The Food and Agriculture Organization (FAO), maize is among the
world’s five most important crops. It is expected to absorb a significant proportion (more
than 22%) of the harvested area by 2050. As a result, more than half of the increase in food
demand for cereals is expected to come from maize. Therefore, many researchers have
developed efficient, high-throughput phenotyping platforms and methods to acquire traits
from maize plants [10,19–24]. Although several papers have been published on data acqui-
sition methods for 3D point cloud plant phenotyping using cameras and Kinects [18,25,26],
few have been developed for 3D acquisition using LiDAR [27]. Despite these develop-
ments, their verification has to be performed with closed and incomplete databases, which
presents drawbacks for future research. Therefore, this study presents a new prototype
for the acquisition of plant morphological data based on a LiDAR sensor that allows the
rotational and translational displacement of the seedling placed on a rotating platform
and the vertical movement of the sensor. The platform was tested on a database of indoor
potted maize seedlings containing 362 three-dimensional scans and 2749 images.

The structure of the paper is as follows. In Section 2 the development of the LiDAR
platform (Section 2.1) and the application of the constructed point cloud (Section 2.2) are
discussed. Subsequently, the results obtained in the project are presented and discussed in
Section 3. Conclusions are presented in Section 4.

2. Materials and Methods
2.1. Platform LiDAR

The physical configuration of the developed platform consists of a turntable, driven by
a stepper motor, where the plant to be scanned is placed and which allows a 360° rotation
at a resolution of 0.1°. As shown in Figure 1, the scanning system consists of a LiDAR
sensor (LMS4121R-13000, SICK AG) with visible red light, which emits a laser beam that
scans the plant vertically. The main features of the laser sensor are presented in Table 1.
The combination of rotary movement and vertical scanning creates a 3D point cloud of the
plant with a 360° view.

The LiDAR measurement method is based on the phase correlation principle. The
sensor emits a continuous laser beam, which is reflected when it makes contact with an
object and is sensed by the scanner’s receiver. The resulting phase delay between the
emitted and received 0 is used to determine the distance in centimeters. This device has
a scanning frequency of 600 Hz and an aperture angle of 70°. The point furthest from
the center of the plant in the horizontal plane is located at a minimum distance of 70 cm
from the sensor in the sensor’s working range. This system has some flexibility to set the
appropriate LiDAR platform height and distance to the rotation stage depending on the
size and shape of the plant.
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(a) (b)

(c) (d)

Figure 1. Illustration of the proposed platform based on a LiDAR sensor and a turntable for 3D plant
reconstruction. (a) Frontal view, (b) Isometric view, (c) Top view, (d) Lateral view.

Table 1. Main features of LiDAR sensor.

Feature LMS4121R-13000

Application Indoor
Reading field Front
Light source Visible red light
Laser class 2 (IEC 60825-1:2014, EN 60825-1:2014)

Aperture angle 70°
Scanning frequency 600 Hz
Angular resolution 0.0833°

Working range 70 cm ... 300 cm

The LiDAR sensor requires a different power supply than the other devices. For this
purpose, an intrinsically safe power supply was used. The communication between the
computer system and the LiDAR is also performed through the Transmission Control
Protocol (TCP)/Internet Protocol (IP), so a previous configuration of the sensor in the Local
Area Network (LAN)/Wide Area Network (WAN) network was necessary.

The sensor was also configured to perform the measurements according to the needs
of the proposed system, using the SOPAS ET configuration software. For this purpose,
a fixed IP address was initially established for the sensor and a session was initiated to
make changes to the predefined parameters in this software. Within the basic configuration,
sensor input 1 was set as the control signal and the median and edge detection filters were
activated, as this allows better results in data acquisition. Finally, this setting was saved
permanently for the continuous use of the sensor, as shown in Figure 2.

For data acquisition, a computer with an Intel Core i7 1.10 GHz × 12 processors
and 16 GB RAM was used, running the Ubuntu 18.04 operating system and a Melodic
distribution of Robot Operating System ROS. As shown in Figure 3, the stepper motor
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manipulation was performed by the computer system using an Arduino Nano and a V44
A3967 power driver, synchronized with the laser sensor to acquire a profile of information
at each angle of rotation of the platform. Using a high-resolution Logitech Brio camera,
the process of taking images of the plants at different angles of rotation was carried out in
order to obtain their ground truth information.

Figure 2. LiDAR configuration in the SOPAS ET software.

Figure 3. Schematic diagram of the connections for the electronic devices.

The measured distance S between the LiDAR and the target, together with the beam
angle θ, were obtained using the individual measurement points generated by the sensor.
The angle of the rotation stage φ was calculated by means of a worm and wheel mechanism
adjusted to the resolution of the stepper motor (Figure 4).

The employed motor has a reduction ratio of 1:100, a speed of 3024 RPM, and a number
of steps per revolution of 10,000. The worm gear mechanism adds a reduction ratio of 1:36,
so the speed is reduced to 0.084 RPM and the number of steps per revolution is increased
to 360,000. Hence, the resolution of the complete mechanism is 0.001° and the selected
angular resolution of the platform was 0.1°. Since this angle is very small, the vibration of
the seedlings is negligible. However, to ensure that it is zero, a rest time of 5 s was given
between each acquisition.
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Figure 4. Schematic of the developed scanning system. The functional diagram shows the LiDAR
device and the rotation platform and its reference frames.

Using the coordinate systems illustrated in Figure 4, the vertical scan plane of the
LiDAR passing through the center of the rotating disc O is taken as the XZ-plane, having
its origin at O. The distance d between the LiDAR and the center of the rotation stage,
together with the distance h and the tilt angle of the sensor ϕ were calculated by means of a
platform calibration process. For this, a target of size 40 cm × 4.5 cm, placed on the disc,
centered at O, and made of a low-reflective material to reduce laser beam scattering, was
scanned beforehand. The scanning result is a vertical line, from which information about
the distances and inclination between the sensor and the turntable is extracted.

The LiDAR measurements were converted into Cartesian XYZ coordinates using
homogeneous transformations. Firstly, being a 2D LiDAR, in the X′Z′ plane, the Cartesian
coordinates of the sensor are defined by Equation (1).

X′

Y′

Z′

ω′

 =


−s ∗ cos(θ)

0
s ∗ sin(θ)

1

. (1)

This plane must then be rotated around the Y′ axis, taking into account the tilt of the
sensor in the X′Z′ plane. For this purpose, the following homogeneous transformation is used:

R =


1 0 0 0
0 cos(ϕ) −sin(ϕ) 0
0 sin(ϕ) cos(ϕ) 0
0 0 0 1




X′

Y′

Z′

ω′

. (2)

Then, to align the coordinate planes, the following translation transformation is used.

t =


1 0 0 d
0 1 0 0
0 0 0 h
0 0 0 1

 ∗ R. (3)
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Finally, to obtain the XYZ coordinates of each LiDAR scan within the reference frame,
a rotation transformation is performed given by the disk angle φ, as shown in Equation (4).
Algorithm 1 describes the process of acquisition and reconstruction of the 3D point cloud
using the notation presented in Figure 4. It includes the most relevant steps, such as plat-
form calibration, sensor data acquisition, the transformation of the data into homogeneous
coordinates, and the generation of the point cloud and images.

X
Y
Z
ω

 =


cos(φ) −sin(φ) 0 0
sin(φ) cos(φ) 0 0

0 0 1 0
0 0 0 1

 ∗ t. (4)

The platform control was written in Python 3.6, using the serial, opencv, cv_bridge,
and open3d libraries to process the information obtained from the devices. The distance
and intensity measurements sensed by the LiDAR were obtained with the ros node
sick_lms_4xxx [28] and the images were acquired with the Logitech camera using the
usb_cam node [29]. A camera calibration process was previously performed with the ros
package camera_calibration using a checkerboard as a target, obtaining the camera, distor-
tion, rectification, and projection matrices. Using the ros package image_proc the image
distortion was removed, which was registered in the ros topic image_rect_color, as shown in
Figure 5. Finally, through the multiplatform framework kivyMD and its respective libraries
and ros nodes (simple_gui), an interface between the different device control commands
and the user was created.

Figure 5. Diagram of the active ros nodes during 3D reconstruction.

The graphic interface shown in Figure 6 was implemented in order to allow interaction
between the user and the prototype. The interface executes in a specific order the different
rosnodes used for the initialization of the platform devices and data collection. Then, a
calibration process is carried out, which must be repeated each time the platform where
the plant is located is moved. In addition, it allows the input of the parameters for the
experiments, such as the angular resolution of the imaging platform θ, initial angle (ωi), and
final angle (ω f ) of scanning. As a result of the 3D scan, three types of files have generated
A file in TXT flat format with the information of the Cartesian coordinates of the 3D model
obtained; a set of RGB images taken throughout the process and another set of the same
size in rosbag format with the synchronized information of the rostopics used during the
3D reconstruction process.

To determine the accuracy of the measurements at each coordinate, a small cube was
scanned, since only the length of one of its edges needs to be detected to know its size. In
this way, the lengths of the cube’s sides were obtained, as shown in Figure 7. The edges
located on the top face of the cube were denoted with the letter “U”, the front ones with
“L”, and those on the bottom face with “D”.
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Algorithm 1: 3D model generation with the proposed LiDAR scanning platform.
Input: name = name of the file to be saved
Input: cangle = image capture angle
Input: dstep = scanning angle step
Input: mangle = maximum degree scan
Output: pcl = 3d point cloud
Output: img = image at angle step
Output: bag_file = bag files with cloud and image information

1 begin
2 Start ROS nodes
3 function calibration():
4 Read LiDAR node in variable ranges;
5 Calculate mean values from LiDAR ranges in variable prom_data;
6 Create vector angles with a range of 35° to −35°;
7 Distance d is calculated from the minimum value of ranges;
8 Angle ϕ is calculated from the distance d and the scanning frequency;
9 Distance h is calculated by filtering prom_data;

10 return d, ϕ, h
11 Start recording a bag file (bag_file) with LiDAR topic and name;
12 Initialise variables inc and φ in zero;
13 function scanner ():
14 Read variables d, ϕ and h as inputs of the function;
15 Create vector θ with a range of 35° to −35°;
16 while True do
17 Read LiDAR node in variables ranges and intensities;
18 Calculate mean values of ranges in variable s;
19 Calculate LiDAR coordinates X′,Y’,Z′ using s and θ;
20 R is calculated with an homogeneous transformation using
21 X′, Y′, Z′ and ϕ (Y′-axis rotation);
22 Translation transformation t is calculated using d, h and R;
23 Rotation stage coordinates X, Y and Z are calculated with a
24 transformation using φ and t;
25 Function control_motor() :
26 Use dstep and mangle variables to increment inc and φ;
27 for from zero to the variable X length do
28 Save point cloud (pcl) as a txt file with X, Y, Z and
29 intensities data, named using name and dstep
30 variables;

31 if φ =cangle then
32 Read camera node;
33 Start recording a bag file (bag_file) with camera topic,
34 named using name and φ variables;
35 Save image (img) from camera topic, named using
36 name and cangle variables;
37 Stop camera bag file recording;

38 if inc>mangle then
39 Exit

40 Stop LiDAR bag file recording;
41 end
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Figure 6. User Interface for LiDAR platform.

(a) (b) (c)

(d) (e) (f)

Figure 7. Measurement of the cube edges. (a) U1 and U2. (b) U3 and U4. (c) L1 and D1. (d) L2 and
D2. (e) L3 and D3. (f) L4 and D4.

Once the edge lengths were obtained, the measurement error was calculated as follows:

Indiv. Error [%] =
∣∣∣∣m− Re f

Re f

∣∣∣∣ ∗ 100, (5)

where m is the measured value and Re f is the actual one. The measurement errors in the X,
Y, and Z coordinates were obtained as the average of the individual errors per axis. The
average accuracy is given by the mean of the errors in each coordinate and the absolute
error of all measurements by:
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Abs. Error =

√
∑(m− m̄)2

N(N − 1)
, (6)

where m̄ is the mean value and N is the amount of data.
To determine the accuracy of the measurements made with the platform, 142 repe-

titions of the distance determined from the point cloud were compared with a reference
measurement obtained manually. The CloudCompare software was used to determine
the distance in the point cloud, taking into account that the measurements obtained with
the LiDAR correspond to the light beam emitted with a sweep angle of zero degrees with
respect to the horizon, which corresponds to the case with the minimum angle of incidence.
This process was repeated four times varying the distance between the sensor and the cube,
in a range between the minimum value detected by the LiDAR and the maximum length
allowed by the platform, as shown in Figure 8. Once the experiment was performed, a
mean dispersion of 0.071 cm was obtained. Thus, a third-degree polynomial regression
was performed, resulting in Equation (7), which represents the trend of the precision of the
sigma platform as a function of the distance between the seed and the d laser sensor.

σ(d) = 0.0639d3 + 0.1139d2 + 0.0473d + 0.0589. (7)

It is worth noting that the accuracy measured using a light beam at an angle of
incidence close to zero degrees and that, although not evident in the above equation,
the scattering is proportional to the angle of incidence between the light beam and the
illuminated object, which has a significant impact on the quality of the three-dimensional
reconstruction and, consequently, affects the determination of phenotypic characteristics.
For this reason, each profile acquisition performed by the platform is performed one
hundred times to obtain the average value of each point at each angle and to accumulate a
measurement with measurement noise reduction in the final reconstruction.

Figure 8. Diagram of the lengths used to measure the precision were measured with the proposed device.

A database of maize plants at different phenological stages was constructed using the
proposed platform by obtaining 362-point clouds. For this purpose, 38 seeds were planted
in pots, and days after planting (DAP) were used as a parameter. The cultivated maize
plants were scanned under laboratory conditions by placing the pots on the platform and
measuring the light intensity in lux at the initial instant. The process was carried out with a
first sowing up to the scion stage and six more sowings up to the seedling stage, to evaluate
different growth scenarios.

The angle of incidence, light conditions, material, texture, and measuring range influ-
ence the fidelity of the measurements and thus the exact determination of the phenotypic
characteristics acquired from the point clouds. Some of these factors affect the quality of
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the measurements, producing noise. Thus, the reflectance of the material, its color, and its
texture cause the laser to deflect and produce unwanted values. Noise can be removed by
using classical filtering techniques such as Statistical Outlier Removal [30].

Due to the nature of the laser, when the structure to be reconstructed is very thin, the
beam passes through it and is not detected. For this reason, some parts of the seedling
will have disconnected sections. To solve this problem, different techniques based on
mathematical morphology or growth by regions are used. Another type of solution consists
of reconstructing the missing sections from the information obtained from photographs
taken of the seedling simultaneously during the acquisition of the point cloud.

2.2. Application

To demonstrate the reconstruction reliability, a phenotypic analysis of characteristics
such as height, volume, and classification of seedling organs was performed. For such
phenotypes, it is first necessary to segment the point cloud. This is performed by limiting
the working area on the Z-axis, eliminating the pot and outliers above the maximum
allowed height of the seedling.

• Seedling height h:
To determine the height of the plant, the point in the cloud with the highest value on
the Z-axis is required.

h = maxz. (8)

• Total Volume v:
To calculate the volume of the plant, a voxelization of the points with a distance
of 25 cm is performed. Then the voxel count is denoted in the (9) equation as the
summation of the V parameter is performed and multiplied by the distance value
used. The distance value was calculated experimentally.

v = 2.5× 10−3
N

∑
i=1

Vi. (9)

• Classification of organs:
In order to separate the organs of the seedling, a classification is made with respect
to the stem and leaves. The database is split in two, taking the first days of shoot
and seedling up to the third leaf as one database and the rest as another. In each
database, 60% of the point clouds are used for training a Random Forest classifier, 20%
for tuning the classifier parameters, and the rest for model validation.
Once this result has been obtained, filtering of leaf segments that were considered
stems is carried out. To do this, a virtual ring is used that goes up from the base of the
plant to the highest point [31]. The radius of the ring was 0.0015 and was estimated
and validated experimentally.

3. Results and Discussion

As mentioned in Section 2, the point cloud of a cube-shaped reference object was used to
establish the precision error of the reconstruction performed. The results obtained are shown
in Table 2. As can be seen, the error was less than 3 cm with respect to the ground truth.

The constructed platform was used for 3D scanning of plants at different phenological
stages. Figure 9a shows the development of a plant from the first plantation, which was
scanned during three stages of its life cycle. The growth process of a plant from the second
plantation is also presented (see Figure 9b). The color scale in the point clouds corresponds
to the intensity values delivered by the LiDAR sensor. Each reconstruction took about
42.5 min with the default values set in Section 2.
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Table 2. Measurement error obtained with the cube’s 3D point cloud.

Ground Truth Point Cloud Error Calculation

Coord. ID Re f [cm] m [cm] Indiv.
Error [%]

Prom.
Error [%] m − m (m − m)2

X

U1 5.5 5.4383 1.1218

1.6773

0.0134 0.0002
U2 5.5 5.5573 1.0418 0.1056 0.0111
D1 5.5 5.3808 2.1673 0.0709 0.0050
D2 5.5 5.3692 2.3782 0.0825 0.0068

Y

U3 5.5 5.5431 0.7836

2.1418

0.0914 0.0084
U4 5.5 5.6141 2.0745 0.1624 0.0264
D3 5.5 5.3308 3.0764 0.1209 0.0146
D4 5.5 5.3552 2.6327 0.0965 0.0093

Z

L1 5.5 5.4363 1.1582

1.6755

0.0154 0.0002
L2 5.5 5.4902 0.1782 0.0385 0.0015
L3 5.5 5.3051 3.5436 0.1466 0.0215
L4 5.5 5.6002 1.8218 0.1485 0.0220

Accuracy [%] 1.8315

m 5.4517 Σ(m−m)2 0.1271

Abs. Error [cm] 0.0310

Figure 9. Three-dimensional (3D) point clouds of plants 01 and 08 in three growth phases. The color
scale corresponds to the signal strength received by the Lidar.

A database containing 362 seedlings was created using the designed platform. In
Table 3 it can be seen each group of data taken from each planting campaign. The database,
which will be freely accessible, is distributed in seven folders, one per campaign. Each
one contains the folders of each plant, with an identifying name and the day of scanning
according to its DBH. Each folder includes eight images of the plant taken every 45 degrees,
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a file with the raw point cloud taken with the LiDAR, and a file containing the processed
point cloud, which contains the stem and leaf labels.

As mentioned in Section 2.2, the database was used to estimate the phenotypic charac-
teristics of each plant. Figure 10 shows the percentage error obtained by comparing the
actual height of eight randomly selected plants with the estimated one. Table 4 presents
the estimated volume of a seedling over time and Table 5 the stem and leaf classification
accuracy obtained with 70 samples, which was on average 89.41%.

Table 3. Point clouds of maize plants separated by campaigns with their respective acquisition dates
and number of scanned data.

Campaign Date # Plants Link

First 7 July 2021 to 21 October 2021 21 https://osf.io/fcgwk/

Second 21 October 2021 to 12 November 2021 40 https://osf.io/x5cn9/

Third 2 February 2022 to 18 February 2022 45 https://osf.io/5vykw/

Fourth 28 February 2022 to 23 March 2022 80 https://osf.io/ks7my/

Fifth 28 March 2022 to 9 April 2022 55 https://osf.io/tnhxy/

Sixth 25 April 2022 to 17 May 2022 80 https://osf.io/h63jq/

Seventh 23 May 2022 to 14 June 2022 41 https://osf.io/7uvm4/

Figure 10. Height estimation error of 8-point clouds.

Table 4. Estimation of the volume of a seedling in its different temporal stages.

Maiz08

TAP (h) Volume (cm3)

147.75 1.2068

167.91 1.5688

176.96 3.6859

192.02 7.3712

200.48 11.5586

297.30 19.7802

321.05 24.1338

345.16 38.5767

https://osf.io/fcgwk/
https://osf.io/x5cn9/
https://osf.io/5vykw/
https://osf.io/ks7my/
https://osf.io/tnhxy/
https://osf.io/h63jq/
https://osf.io/7uvm4/
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Table 4. Cont.

Maiz08

TAP (h) Volume (cm3)

384.02 67.4274

432.32 100.5300

456.84 107.0390

Table 5. Accuracy obtained on 70 specimens by classifying their stems and leaves respectively.

Name (Campaign 6) Accuracy (%) Name (Campaign 6) Accuracy (%)

01_01 93.44 05_11 93.34

01_02 89.16 06_01 98.92

01_03 97.97 06_02 87.41

01_04 89.03 06_03 94.10

01_05 78.71 06_04 87.31

01_06 93.69 06_05 98.02

01_07 83.61 06_06 86.13

01_08 91.26 06_07 89.54

01_09 95.12 06_08 82.57

01_10 92.23 06_09 78.65

01_11 91.63 06_10 79.32

02_04 90.34 06_11 91.80

02_05 88.81 09_01 90.91

02_06 86.30 09_02 96.38

04_01 95.75 09_03 95.66

04_02 94.59 09_04 90.42

04_03 91.96 09_05 93.55

04_04 96.02 09_06 94.53

04_05 84.09 09_07 89.51

04_06 97.00 09_08 94.05

04_07 95.52 09_09 95.33

04_08 89.24 09_10 90.12

04_09 98.79 09_11 94.18

04_10 92.25 09_12 94.64

04_11 90.64 12_01 90.00

04_12 87.11 12_02 87.63

05_01 79.91 12_03 81.86

05_02 88.58 12_04 90.02

05_03 90.22 12_05 89.71

05_04 91.42 12_06 91.28

05_05 93.28 12_07 86.62

05_06 95.22 12_08 85.76

05_07 86.77 12_09 90.09

05_08 94.34 12_10 90.77

05_10 96.21 12_11 96.06

Average accuracy = 89.41%
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4. Conclusions

This paper presents a new prototype LiDAR platform for plant phenotyping in a
controlled environment. The acquisition time is relatively long (42.5 min), in order to obtain
a high accuracy (0.0325) and precision (0.0310) of the points obtained. With this equipment,
a freely accessible database of 362 maize plants was constructed and used to obtain three
phenotypic parameters, height, volume, and classification of stalks and leaves, in order to
verify the reliability of the database. The first two parameters were compared with the real
values, obtaining an error of 2.3% and 7.1% respectively.
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