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The para-aminophenol motif, epitomized by the century-old
analgesic paracetamol, is an important structural feature in
pharmaceuticals and materials. Numerous methods for the
preparation of para-aminophenols have been reported ever
since Eugen Bamberger discovered the first practical syn-
thesis employing the rearrangement of N-arylhydroxylamine
in aqueous sulfuric acid (Scheme 1 a).[1] This process presum-
ably involves the heterolytic cleavage of the N�O bond and
subsequent intermolecular addition of water to a nitrenium
intermediate. Besides strong Brønsted acids, these N�O bond
cleavage/rearrangement events have also been triggered by
Lewis acids,[2] thermal activation[3] or transition metals.[4]

Pioneering work using Lewis acid-mediated ortho-migration
of a methoxy group was reported by Kikugawa (Sche-
me 1b).[2] Later, the same group disclosed the PBu3/CCl4-
induced ortho-migration of the hydroxyl group in N-acyl-N-
phenylhydroxylamines (Scheme 1c); minor amounts of the
para-isomer were also observed.[5] Ngai described the elegant
ortho-trifluoromethoxylation of aniline through a thermal
rearrangement process (Scheme 1d).[3] Recently, Terada
reported an in-depth study of the elegant cobalt-catalysed
[1,3]-migration of alkoxycarbonyloxyl groups (Scheme 1 e).[5]

Interestingly, the large majority of these N�O bond cleavage
processes lead to the formation of new C�O bonds with ortho-
selectivity. The few approaches achieving para-hydroxylation
either require relatively harsh conditions or produce a mixture
of ortho- and para-regioisomers.[5, 6] To the best of our
knowledge, a mild and practical method for regioselective
para-hydroxylation still has not emerged.[7]

Selenium is an essential oligoelement, perhaps best
known for its occurrence in selenocysteine.[8–10] Within
organic synthesis, organoselenium reagents have also
emerged as unique catalysts for oxidation,[11] reduction,[12]

C�C/C�X bond formation and rearrangements.[13–15] The
heavier selenium shows distinct properties when compared
to the other chalcogens.[16] Herein we present a new selenium-
catalysed, redox-neutral para-selective hydroxylation starting
from hydroxamic acids via consecutive [2,3]-rearrangements
to form para-aminophenols (Scheme 1 f).

In initial efforts, we treated hydroxamic acid 1 with one
equivalent of PhSeBr. Gratifyingly, the para-aminophenol 2
was obtained in 72% isolated yield (Table 1, entry 1).
Encouraged by this early result, we realized that reducing
the loading of phenylselenyl bromide to 10 mol% still
afforded para-aminophenol 2 initially in 66% yield
(entry 2). It is noteworthy that the catalytic process, while
requiring increased reaction time to reach full conversion,
resulted in only a slight decline in yield. We noted that para-
hydroxylation catalysed by PhSeCl gave almost the same
yield as with PhSeBr (entry 3). Changing the catalyst to N-
(phenylselenyl)-phthalimide or 2-nitrophenyl selenocyanate
led to 40 % and 35 % yields of para-aminophenol 2, respec-
tively (entries 4 and 5). To increase the electrophilicity of the
selenium reagent, a combination of PhSeCl and AgOTf was
employed but gave only 25% yield of 2 (entry 6). PhSeSePh
was ineffective and resulted in recovery of starting material.
After these initial observations we elected phenylselenyl
bromide as the catalyst for further investigations. In subse-
quent experiments, several solvents were examined.
Dichloromethane, acetonitrile and ethereal solvents were all
found to be suitable for this reaction (Table 1, entry 8–12).
1,4-dioxane was eventually elected as the best system, since its
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Abstract: A selenium-catalysed para-hydroxylation of N-aryl-
hydroxamic acids is reported. Mechanistically, the reaction
comprises an N�O bond cleavage and consecutive selenium-
induced [2,3]-rearrangement to deliver para-hydroxyaniline
derivatives. The mechanism is studied through both 18O-
crossover experiments as well as quantum chemical calcula-
tions. This redox-neutral transformation provides an uncon-
ventional synthetic approach to para-aminophenols.

Scheme 1. Approaches to N�O bond cleavage/oxygen-migration reac-
tions and work presented herein.
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high boiling point allows more flexibility for recalcitrant
substrates (vide infra).

With suitable reaction conditions in hand, we turned our
attention towards the scope of this selenium-catalysed
hydroxylation (Scheme 2). As shown, the transformation
tolerates a broad range of functionalities, including the
sterically hindered pivalamide 4a and adamantylamide 4b,
as well as the highly strained cyclobutane 4c. Notably, higher
yields and shorter reaction times are achieved for substrates
carrying an electron-deficient benzamide fragment (see 4d, 2,
4e). This appears to correlate with a correspondingly weaker
N�O bond in those substrates. Also tolerated are cinnamy-
lamide 4 f and styrene-amide 4g, albeit with slightly dimin-
ished yields. Next, a variety of different substituents at the N-
aryl ring were investigated. Naphthalene 3 i reacted smoothly
to give aminophenol 4 i. Noteworthy, the congested 3,4-
dimethyl-substituted substrate 3k and 2,6-dimethyl-substi-
tuted substrate 3 l both led to the corresponding para-
aminophenols. Furthermore, our protocol was also applicable
towards various halogen-substituted substrates to afford the
desired para-aminophenol (4o–4t). Electronic effects at the
N-arene ring significantly affected the reaction yield: while
the electron-rich 4-methoxyphenyl substrate 3m was high-
yielding at room temperature, N-electron deficient hydroxa-
mic acids (4 n, 4p, 4q) required higher temperature to form
the corresponding para-aminophenol in moderate yields.[17]

In order to elucidate the mechanism of the reported
reaction, we carried out 18O-labelling studies, as well as
quantum chemical calculations (see Supporting Information
for additional details). In the event, upon reaction of 3 h* and
1 as a 1:1 mixture under the optimised conditions, no transfer
of 18O into product 2 was found (Scheme 3). This strongly
suggests that the process at hand is an intramolecular
transformation.

Quantum chemical calculations have been performed to
understand the mechanism of this process. The computed
catalytic cycle is presented in Scheme 4 (see Supporting
Information for computational details). The active species A
is obtained following combination of substrate 3 h with
PhSeBr and an internal proton transfer, in line with reported

electrophilic selenium reactivity.[18]

The first step A!B is an exergonic
[2,3]-sigmatropic rearrangement
with N�O bond cleavage and
ortho-attack of selenium, followed
by a barrierless proton transfer B!
C. Intermediate C then undergoes
a second proton transfer, preceding
the second [2,3]-sigmatropic rear-
rangement D!E. This step
involves concerted Se�C bond
cleavage and the formation of
a new C�O bond leading to the
para-O-aryl intermediate E. The
fifth step E!F is the highly ther-
modynamically and kinetically
favorable (DG =�28 kcalmol�1,
DG� = 7 kcalmol�1) re-aromatiza-
tion assisted by a second substrate

molecule. The last step ultimately closes the catalytic cycle
yielding the final product and regenerating intermediate A.
Interestingly, the apparent activation energy of the cycle,
DG� = 25 kcal mol�1, is determined by the final step, the
intermolecular proton transfer.

Table 1: Investigation of selenium catalysts. [a] Reactions were carried out at 0.2 M concentration.
[b] Yields were determined by NMR using trimethoxybenzene as internal standard. [c] isolated yield.

Entry Reagent Solvent[a] Temperature Time Yield[b]

1 PhSeBr (1 equiv) 1,4-dioxane rt 1 h 72%c

2 PhSeBr (10 mol%) 1,4-dioxane rt 3 h 66 %
3 PhSeCl (10 mol%) 1,4-dioxane rt 6 h 67 %
4 N-(Phenylseleno)-phthalimide (10 mol%) 1,4-dioxane rt 12 h 40 %
5 2-nitrophenyl selenocyanate (10 mol%) 1,4-dioxane rt 18 h 35 %
6 PhSeCl (10 mol%) AgOTf (10 mol%) 1,4-dioxane rt 18 h 25 %
7 PhSeSePh (10 mol%) 1,4-dioxane rt 18 h 0%
8 PhSeBr (10 mol%) 1,4-dioxane rt 3 h 79% (76%)c

9 PhSeBr (10 mol%) MeOH rt 3 h 29 %
10 PhSeBr (10 mol%) CH2Cl2 rt 3 h 73 %
11 PhSeBr (10 mol%) MeCN rt 3 h 76 %
12 PhSeBr (10 mol%) THF rt 3 h 81 %

Scheme 2. Scope of selenium-catalysed para-hydroxylation. Yields refer
to pure, isolated products.
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The proposed mechanism highlights the critical role of the
substrate itself in the deprotonation of intermediate E, in
agreement with the base-free conditions that are employed.

This redox-neutral, regioselective hydroxylation can be
deployed in a number of synthetically relevant contexts
(Scheme 5). Practolol (Scheme 5a, compound 5) is a known
beta-adrenergic blocking agent, often used for the treatment
of cardiovascular diseases, and it has been previously
prepared by various routes.[19,20] In our gram-scale approach,
hydroxamic acid 3h was exposed to selenium-catalysed para-
hydroxylation providing 72 % yield of para-aminophenol 4h.
Ether synthesis with epichlorhydrin, followed by epoxide
opening by isopropylamine gave practotol 5 in 56% yield
over two steps. Next, we targeted diloxanide furoate 8,
a luminal amoebicide widely used as the treatment against
amoeba infections (Scheme 5b).[21] Readily prepared dichlor-
oacetyl hydroxamic acid 6 was subjected to selenium-catalysis
to yield the corresponding para-dichloroacetyl aminophenol 7
in 57% yield. Introduction of the furoyl group and methyl-
ation completed the synthesis of 8.

Finally, Paracetamol/para-acetaminophenol 4h, one of
the most commonly used and produced drugs worldwide, is
conventionally prepared by a few different methods. Repre-
sentative approaches are depicted in Scheme 5c.[22] The first
route involves a nitration of chlorobenzene 9 that also
produces ortho-chloronitrobenzene as side product.[22] Pro-
cesses using a Bamberger reaction also form significant
amounts of ortho-aminophenol.[22] In contrast, our selenium-
catalysed para-hydroxylation offers a highly regioselective,
alternative solution as it generates para-aminophenol 4h from
simple precursor 3 h as the single regioisomer in excellent
yield.

In conclusion, we have reported a catalytic method for the
synthesis of para-aminophenols from the corresponding
arylhydroxamic acids. The catalytic reaction proceeds via
a unique electrophilic selenium-induced N�O bond cleavage
event followed by a successive [2,3]-rearrangement to form
the para-aminophenol assisted by another substrate molecule.
The mechanism is supported by 18O-crossover experiments as
well as quantum chemical calculations. This operationally
easy process tolerates a broad range of functional groups and
can easily be applied, for example, to prepare practotol 5 and
diloxanide furoate 8 in gram-scale.
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Scheme 3. 18O-crossover experiment. Yields were determined by NMR
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Scheme 4. Computed catalytic cycle at the PBE0-D3BJ-SMD(THF)/
def2-TZVP//PBE0-D3BJ-SMD(THF)/def2-SVP level of theory. The Gibbs
free energies (DG) and the activation energies (DG�) are presented for
each individual step.

Scheme 5. Gram-scale syntheses of a) practolol and b) diloxanide
furoate using Selenium-catalysis. c) Comparison of methods for the
preparation of paracetamol and our one-step, regioselective approach.
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