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Background: Clinical outcomes of bladder cancer (BC) are tightly associated with the

stage and grade of the initial diagnosis of BC because early detection is clearly important

for patients with BC. However, the diagnostic capability of current detection methods,

such as urinary cytology, cystoscopy, imageology method, and several urine-based

tests, is inadequate for early detection of BC. The objective of our study is to discover

novel biomarkers for detecting BC at an early stage, called non-muscle invasive (NMI)

BC, using liquid chromatography-high resolution mass spectrometry (LC-HRMS)-based

metabolomics.

Methods: First, morning midstream urine samples were collected from healthy adult and

NMIBC patients. The LC-HRMS-based metabolomics were applied to distinguish the

NMIBC group without hematuria from the controls (gender- and age-matched volunteers

with normal clinically healthy index), low-grade NMIBC from the controls, and high-grade

from low-grade NMIBC.

Results: A total of 284 subjects were enrolled in our study including 117 healthy

adults, 80 NMIBC patients without hematuria, and 87 NMIBC patients with hematuria.

The metabolite panel including dopamine 4-sulfate, MG00/1846Z,9Z,12Z,15Z/00,

aspartyl-histidine, and tyrosyl-methionine was found in a discovery set, which showed

the predictive ability to distinguish the NMIBC group from the control group with

an area under the curve (AUC) of 0.838 in an external validation set. The AUC

of the panel for low-grade NMIBC samples, which consisted of 3-hydroxy-cis-

5-tetradecenoylcarnitine, 6-ketoestriol, beta-cortolone, tetrahydrocorticosterone, and

heptylmalonic acid, was 0.899. The sensitivity and specificity were 0.881 and

0.786, respectively. The AUC of the panel for distinction of low-grade NMIBC

with and without hematuria against high-grade NMIBC with and without hematuria

were 0.827 and 0.755, respectively. In addition, metabolites involved in tryptophan

metabolism were upregulated in the urine of high-grade NMIBC patients when

compared with low-grade NMIBC patients with the presence or absence of hematuria.
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Conclusion: The NMIBC urinemetabolic profiling was able to assist in the early detection

of BC. Panels of metabolites were discovered to have a potential value for high-grade

NMIBC and low-grade NMIBC diagnosis as well as for NMIBC grading distinction.

Keywords: metabolomics, bladder cancer, non-muscle invasive, early detection, biomarker

INTRODUCTION

Bladder cancer (BC) is the ninth most common cancer and
affects more than 400,000 patients annually worldwide (1).
Early detection and treatment are clearly effective methods for
improving the five-year survival rate, which is up to 90% for non-
muscle-invasive (NMI) BC (2). BC is mostly an asymptomatic
disease, particularly at its inception, which hinders its detection.
Patients without hematuria or even with microscopic hematuria
can have an early stage of BC (3). Due to the absence of
hematuria, these individuals are not referred to a urologist;
therefore, their disease is not treated at an early stage. Thus,
earlier detection of the disease before the development of
gross hematuria can improve the survival of patients with
BC.

Current detection of BC is primarily based on urinary
cytology, cystoscopy, and imageology methods [such as
computed tomography (CT) and ultrasound (US)]. However,
the detection of small lesions by CT and US in an incompletely
filled bladder, which is a common problem in patients without
hematuria, is still challenging. The diagnostic sensitivity of
urinary cytology is low, only 16% for low-grade NMIBC (4, 5),
and cystoscopy is invasive and costly. Currently, a number
of urine-based tests, such as bladder tumor antigen (BTA),
nuclear matrix protein 22 (NMP22), ImmunoCyt, and FISH
(UroVysion), have been developed and approved by the Food
and Drug Administration (FDA) (6). However, the diagnostic
capability of these tests is insufficient, especially for NMIBC (7).
Moreover, at the time of diagnosis of BC, approximately 70–80%
of BC is NMIBC, while the remaining 20–30% is muscle-invasive
BC (MIBC) (8). Although both cancer types originate from the
urothelium in the bladder, MIBC, and NMIBC have distinct
clinical characteristics and different metabolites (9). Therefore,
the discovery of novel biomarkers for NMIBC screening is still
an urgent necessity.

Urine is in direct contact with the bladder epithelial cells
that may give rise to BC. Compared with other body fluids
such as blood, urine is collected noninvasively and in large
amounts. Metabolomics is a relatively new scientific field
for the investigation of biochemical processes that involve
metabolites. As a result, urine metabolomics has become a
useful and promising strategy to identify biomarkers for BC

Abbreviations: BC, bladder cancer; NMIBC, non-muscle invasive bladder cancer;

AUC, area under the curve; LC-HRMS, liquid chromatography- high resolution

mass spectrometry; QC, quality control; PCA, principal component analysis;

OPLS-DA, orthogonal partial least squares discriminant analysis partial least

squares discriminate analysis; ROC, receiver operator characteristic curve; VIP,

variable importance plots; CV, coefficient of variation.

(9–12). In 2014, high performance liquid chromatography-mass
spectrometry (HPLC-MS) was used by Jin et al. to perform
a urine metabolomics study in 138 BC patients against 121
controls. Within that study, 12 metabolites were successfully
used to identify BC versus controls with an area under
the curve (AUC) of 0.937 (9). These 12 metabolites were
associated with glycolysis and beta-oxidation. Wittman et al.
analyzed urine samples using ultra-HPLC-MS/MS (UHPLC-
MS/MS) and gas chromatography-mass spectrometry (GC-MS)
and generated a metabolite panel that was able to discern
BC from noncancerous controls with an AUC of 0.81 (12).
Recently, in 2017, a study of urine metabolomics compared 87
BC patients with 65 hernia controls by UPLC-time of flight-
MS (UPLC-TOF-MS) and described a predictive model for BC
detection based on six metabolites with an 84.76% accuracy,
but only a single metabolite, imidazoleacetic acid, was identified
(10).

According to our previous study (13), gender and age can
influence interindividual variations in the urine metabolome.
This relationship has been confirmed by other urine metabolome
studies (14, 15). Furthermore, metabolites of hemoglobin in
urine might also influence the diagnostic value of urine
metabolomics as a biomarker for BC. Perturbations in these
factors must be controlled when designing studies to obtain
useful diagnostic information. However, the most recent studies
have not taken these variations into consideration when
discovering metabolic markers. Moreover, until now, only a
few studies have reported biomarkers of NMIBC for the early
detection of BC, which is more important for improving
the survival rate than the detection of BC only. In the
present work, liquid chromatography-high resolution mass
spectrometry (LC-HRMS)-based metabolomics was applied for
the early detection of BC in patients without hematuria.
This study recruited the largest number of NMIBC subjects
without hemoglobin in their urine. Gender- and age-matched
volunteers with a normal clinically healthy index were grouped
as control subjects. A combinatorial biomarker panel was
defined for NMIBC diagnosis. To address the shortcomings
of urine cytology for the diagnosis of low-grade NMIBC,
a metabolomic approach was used as a surrogate tactic for
accurate low-grade NMIBC probing. Furthermore, we were able
to discover a biomarker panel that could distinguish between
high-grade NMIBC with hematuria and low-grade NMIBC.
The differences in metabolites found in patients with high-
grade NMIBC vs. the healthy controls and in patients with
high-grade NMIBC vs. patients with low-grade NMIBC may
contribute to an overall understanding of the progression
of NMIBC in further studies. The workflow is provided in
Figure 1.
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FIGURE 1 | The workflow of this study.

MATERIALS AND METHODS

Urine Collection
This study was approved by the Institutional Review Board of the
Institute of Basic Medical Sciences, Chinese Academy of Medical
Sciences. Midstream urine samples were collected from healthy
adult and NMIBC patients at the Peking Union Medical College
Hospital, which excluded subjects with renal dysfunction and
metabolic disorders. The urine samples were collected from the
first urination in the morning. Samples were centrifuged within
6 h of collection; the supernatants were isolated, aliquoted, and
stored at −80◦C until analysis. All human subjects provided
informed consent before participating in this study.

Urine Sample Preparation
Urine samples were prepared using the method described in
our previous study (13). In brief, 200 µl urine was mixed with

200 µl acetonitrile and vortexed for 30 s. The mixture was
centrifuged at 14,000 × g for 10min. Then, the supernatant
was dried under vacuum and stored at −80◦C until analysis.
Before analysis, the dried powder leftover from the supernatant
was reconstituted in 200 µl of 2% acetonitrile. Additionally, a
small-protein depletion was performed using 10 kDa molecular
weight cutoff ultracentrifugation filters (Millipore Amicon Ultra,
MA) before transferring the samples to an autosampler. Quality
control (QC) samples were prepared by mixing equal aliquots of
80 representative samples across the various groups undergoing
the analysis. The QC samples were injected between every 10
samples throughout the analytical run to assess the stability and
repeatability of the analytical process.

LC-HRMS Analysis
Urine samples were analyzed using a Waters ACQUITY H-class
LC system coupled with an LTQ-Orbitrap mass spectrometer
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(Thermo Fisher Scientific, MA, USA). A 17min gradient was run
on a Waters HSS C18 column (3.0× 100mm, 1.7µm) at a flow
rate of 0.5 ml/min to separate urine metabolites. Mobile phase A
was 0.1% formic acid inH2O andmobile phase B was acetonitrile.
The gradient was set as follows: 0–1min, 2% solvent B; 1–3min,
2–55% solvent B; 3–8min, 55–100% solvent B; 8–12min, 100%
solvent B; 12–12.1min, 100–2% solvent B; and 12.1–17min, 2%
solvent B. The column temperature was 50◦C. The mass scan
ranged from 100 to 1,000 m/z. The MS1 analysis resolution was
set as 60K, and the MS2 resolution was 15K. The MS1 automatic
gain control target was 1 × 106, and the maximum injection
time (IT) was 100ms. TheMS2 automatic gain control target was
set as 5 × 105 and the maximum IT was 50ms. Higher-energy
collisional dissociation (HCD) fragmentation mode was used
to dissociate differential metabolites with the optimal collision
energy of 20, 40, 60, or 80.

Normalization of Data
Urine MS data were normalized using the “normalize to all
compounds” method to eliminate the bias of the sampling
and analysis system. The normalization method includes the
following steps:

1. Normalization reference (the “target”): one run is
automatically selected as the normalization reference.

2. Log10 ratio calculation: for every run, a ratio of the value
of the compound ion abundance in that run to the value
in the normalization reference was calculated. This ratio
calculation removes the influence of absolute abundance from
the process and has a major advantage over total-abundance-
based methods.

3. Scalar estimation in log space: the next step is to center
the log10 ratio distributions onto that of the normalization
reference for each sample run.

4. Scalar application: once the scalar has been derived in the log
space and returned to an “abundance-space ratio,” the value
can be used to normalize all values in the sample run; this
completes the process.

Data Processing
Mass Spectrometry raw data were processed by Progenesis QI
(Waters, Milford, MA, USA) software (16, 17). The detailed
workflow is given in the Supplementary Material. The exported
feature file was imported to MetaboAnalyst 3.0 (http://www.
metaboanalyst.ca) to perform missing value estimation, log
transformation, and Pareto scaling. Variables missed in 50% or
more samples were removed from further statistical analysis. The
Wilcoxon rank-sum test was used to evaluate the significance
of the variables. False discovery rate (FDR) correction was used
to estimate the chance of false positives and correct values for
multiple hypothesis testing. The cutoff was set as 0.05. Principal
component analysis (PCA) and orthogonal partial least squares
discriminant analysis (OPLS-DA) were performed using SIMCA
14.0 (Umetrics, Sweden) software. Differential variables were
selected according to the following: (1) adjusted P-value < 0.05;
(2) fold change > 1.5; and (3) VIP value >1.0. The receiver

operator characteristic curve (ROC) analysis was used to evaluate
the prediction accuracy of metabolites for BC.

RESULTS

Subjects
A total of 284 subjects were enrolled in our study including
117 healthy adults as the control group, 80 NMIBC patients
without hematuria, and 87 NMIBC patients with hematuria. The
detailed clinical information for the patients is listed in Table S1.
All the NMIBC cases were histopathologically proved to have
transitional cell carcinoma without any other histologic variants
such as squamous cell carcinoma, adenocarcinoma, metaplasia,
etc. For early detection, biomarkers for NMIBC were discovered
based on differential analysis of 54 age- and gender-matched
patients and 78 control samples and then were validated in
another batch of samples consisting of 26 NMIBC samples and 39
control samples. In an attempt to discover potential biomarkers
of low-grade NMIBC, 43 low-grade NMIBC samples and 43
age- and gender-matched control samples were differentially
analyzed. Furthermore, urinary metabolic profiling differences
between the low-grade and high-grade NMIBC samples were also
analyzed. For this study, 43 samples of low-grade NMIBC and
37 samples of high-grade NMIBC without hematuria were used,
as well as 18 of low-grade and 69 of high-grade NMIBC with
hematuria. The details of the subjects are shown in Table 1.

Quality Control
All samples were analyzed randomly over approximately 5
days. The stability of the system was assessed by the QC
sample, which is an important quality-control process in large-
scale metabolomic studies. Overall, 24 QC injections were
analyzed. Variations in the QC sample with time were plotted
to evaluate the technical reproducibility. The results showed a
stable condition with small variation (< ± 2SD) (Figure S1A).
In addition, tight clustering of the QC samples (Figure S1B)
demonstrated good consistency in the QC data. The results
suggested that group differences result from biological variations
rather than from an analysis bias.

NMIBC Biomarker Discovery
To define whether hematuria influences the components of the
urinary metabolome and the analysis of various BC groups, PCA
analysis was performed in the urine of the BC patients with or
without hematuria. As shown in Figure S2, there was a significant
difference between metabolites in subjects with and without
hematuria. Because the control samples were without hematuria,
the subjects without hematuria were used for NMIBC and low-
gradeNMIBC biomarker discovery. Differences between the low-
and high-grade NMIBC samples were explored in two groups of
samples divided based on the presence or absence of hematuria.

Analysis of NMIBC vs. the Control Group
First, unsupervised PCA analysis was performed to visualize
metabolic profiling differences between the control and NMIBC
subjects (Figure S3A). The score plot suggested an apparent
discrimination between the two groups with AUC > 0.8. Then,
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TABLE 1 | Clinical information for the subjects enrolled in exploration for early detection of NMIBC.

NMIBC vs. control Low-grade NMIBC vs. control Low-grade NMIBC vs. High-grade NMIBC

Discovery set External validation

set

Low-grade

NMIBC

Control Low-grade NMIBC High-grade NMIBC

NMIBC Control NMIBC Control With/without hematuria With/without hematuria

Cases 54 78 26 39 43 43 18/43 69/37

Age 62.2 ± 13.2 59.5 ± 11.2 64.0 ± 11.3 59.7 ± 11.3 59.7 ± 13.5 59.8 ± 12.8 65.4 ± 10.7/59.7 ± 13.5 68.9 ± 10.8/66.5 ± 10.4

Sex (male/female) 42/12 61/17 21/5 30/9 33/10 33/10 (12/6)/(33/10) (55/14)/(30/7)

Grade (low/high) 29/25 14/12 42/0 (18/0)/(43/0) (0/69)/(0/37)

a supervised OPLS-DA model was established (Figure 2A) and
differential metabolites were selected according to the value
importance plot (VIP) value (VIP > 1). Finally, 21 significantly
differential metabolites were identified (Table S2). The data
indicate that metabolites involved in fatty acid metabolism were
upregulated in NMIBC patients, whereas metabolites involved
in the amino acid degradation pathway, carbofuran metabolism,
and fatty acid oxidation were downregulated.

The ROC curves were used to evaluate the diagnostic
accuracy of the differential metabolites for NMIBC. The
results showed that 15 metabolites have potential clinical
diagnostic value with AUC values above 0.7, and 2 metabolites
have good diagnostic value with AUC values above 0.8
(Table S3). Metabolite panels are known to have more predictive
power than single metabolites (18). Multivariate ROC curve-
based exploratory analysis was used (http://www.metaboanalyst.
ca/faces/upload/RocUploadView.xhtml). A metabolite panel
consisting of dopamine 4-sulfate, MG00/1846Z,9Z,12Z,15Z/00,
aspartyl-histidine, and tyrosyl-methionine was found to have the
best prediction accuracy for NMIBC. The AUC was 0.857 for the
testing dataset and 0.833 for 10-fold cross-validation (Figure 2B).
Then, an external validation was performed to validate themodel.
The AUCwas 0.838. The sensitivity and specificity were 0.807 and
0.818, respectively (Table 2). The model could predict correctly
21 out of 26 NMIBC patients and 31 out of 39 control group
subjects (Figure 2C) with an accuracy of 80% for the prediction
of NMIBC without hematuria.

Analysis of Low-Grade NMIBC vs. the
Control Group
For early detection, additional differences between the low-grade
NMIBC group and the healthy group had to be explored. A PCA
was performed, and the analysis showed apparent discrimination
between the control samples and the low-grade NMIBC samples
with AUC values above 0.8 (Figure S3B). Furthermore, an
OPLS-DA model was established for differential metabolite
selection (Figure 3A). As a result, a total of 51 significantly
differential metabolites were identified (Table S4). The data
showed that metabolites involved in purine biosynthesis and
fatty acid metabolism were upregulated in the low-grade NMIBC
patients, whereas metabolites involved in steroid hormone
biosynthesis and protein digestion were downregulated. Pathway
power analysis indicated that fatty acid biosynthesis, steroid

hormone biosynthesis, glyoxylate and dicarboxylate metabolism,
steroid hormone biosynthesis, and aminoacyl-tRNA biosynthesis
significantly contributed to the low-grade NMIBC distinction
(Figure 3C). A total of 47 metabolites had good diagnostic
value, with AUC above 0.7 and 7 metabolites had their AUC
values above 0.8 (Table S5). A metabolite panel consisting
of 3-hydroxy-cis-5-tetradecenoylcarnitine, 6-ketoestriol, beta-
Cortolone, tetrahydrocorticosterone, and heptylmalonic acid was
used to construct a robust model for distinction between the
healthy group and the low-grade NMIBC group. The AUC of the
panel was 0.938 for the testing dataset and 0.899 for 10-fold cross-
validation (Figure 3B). The sensitivity and specificity were 0.881
and 0.786, respectively (Table 2).

Difference of Urine Metabolomics Between
the High- and Low-Grade NMIBC
Samples Without Hematuria
The PCA between the high-grade and low-grade NMIBC
samples (Figure S3C) did not suggest apparent separation.
An OPLS-DA model suggested apparent discrimination
between the two groups (Figure 4A). Differential metabolites
were selected based on the VIP value of OPLS-DA. Finally,
15 significantly differential metabolites were identified
(Tables S6, S7). The data showed that metabolites involved
in tryptophan metabolism were upregulated in the high-grade
NMIBC patients when compared with the metabolites for
the low-grade NMIBC patients. Using a logistic regression
algorithm, a metabolite panel consisting of N-acetyl-4-O-
acetylneuraminic acid, 4-(2-aminophenyl)-2,4-dioxobutanoic
acid, 6-keto-decanoylcarnitine, 3-hydroxydecanoyl carnitine,
and 2-hydroxylauroylcarnitine was established. The AUC of
this metabolite panel was 0.802 for the testing dataset and 0.755
for 10-fold cross-validation (Figure 4B). The sensitivity and
specificity were 0.762 and 0.757, respectively (Table 2).

Samples With Hematuria
Using the same strategy as above, unsupervised PCA was
performed to visualize the metabolomic differences between
the high-grade and low-grade NMIBC samples with hematuria
(Figure S3D), and discrimination could be observed with
an AUC of approximately 0.8. Then, an OPLS-DA model
was used for differential metabolites selection (Figure 4C).
Ten significantly differential metabolites were identified
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FIGURE 2 | Analysis of metabolic profiling in NMIBC as compared with control group. (A) Score plot of OPLS-DA model based on metabolome between NMIBC and

control group. (B) ROC plot based on model to quantify the discrimination degree of NMIBC and control group. (C) External prediction accuracy of NMIBC prediction

model established by a metabolite panel of Dopamine 4-sulfate, MG00/1846Z,9Z,12Z,15Z/00, Aspartyl-Histidine, Tyrosyl-Methionine.

(Tables S8, S9). The data showed that metabolites involved
in tryptophan metabolism were upregulated in the high-
grade NMIBC patients when compared with the metabolites
for the low-grade patients. A metabolite panel consisting of
indolylacryloylglycine, histidinyl-histidine, indoleacrylic acid,
N-acetyl-5-methoxykynuramine, and L-3-hydroxykynurenine
was found to have good distinction between the high- vs. low-
grade NMIBC. The AUC was 0.878 for the testing dataset and
0.827 for 10-fold cross-validation (Figure 4D). The sensitivity
and specificity were 0.889 and 0.667, respectively (Table 2).

DISCUSSION

The rapid development of high-throughput chemical analysis
techniques such as MS has promoted urine metabolomics as a
promising approach for the early detection of BC. However, few
studies have excluded the influence of hemoglobin metabolites
in urine as well as in age and gender. Furthermore, early
noninvasive detection of BC is still a challenge. In the present
study, subjects with NMIBC were classified depending on the

presence or absence of hematuria to discover a metabolite panel
for differentiation from the gender- and age-matched control
group.

Analysis of NMIBC vs. the Control Group
The results of our study indicated that metabolites involved
in fatty acid metabolism were increased in the urine from
patients with NMIBC when compared with that of the control
group, whereas metabolites involved in fatty acid oxidation
were decreased in agreement with the Warburg hypothesis
(19, 20), proposing aerobic glycolysis as an important factor
in tumor growth. The hypothesis considers the facilitation
of tumor initiation by dysregulation of lipid metabolism
and the increased utilization of glucose for energy as the
hallmarks of many proliferating tumors. Moreover, a mutation
of the mitochondrial cytochrome B gene, thus interrupting the
oxidative phosphorylation system, has been reported in BC (21).

Dopamine 4-sulfate, a metabolite of endogenous dopamine,
was one of the metabolites in the panel. It has been reported that
dopamine influences the behavior of tumor, including ovarian
carcinoma, gastric cancer, breast cancer, and colon cancer (22), by
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TABLE 2 | Performance of Logistic Regression Model for NMIBC discrimination.

AUC Sensitivity Specificity

aNMIBC vs. CONTROL

Training/discovery 0.857 (0.837∼0.878) 0.754 (0.722∼0.787) 0.786 (0.749∼0.823)

10-fold cross-validation 0.833 (0.764∼0.901) 0.737 (0.737∼0.836) 0.792 (0.683∼0.902)

External validation 0.838 (0.769∼0.953) 0.807 (0.730∼0.853) 0.818 (0.769∼0.940)
bLOW-GRADE NMIBC vs. CONTROL

Training/discovery 0.938 (0.923∼0.953) 0.899 (0.869∼0.930) 0.791 (0.750∼0.832)

10-fold cross-validation 0.899 (0.836∼0.963) 0.881 (0.881∼0.979) 0.786 (0.662∼0.910)
cHIGH- AND LOW-GRADE NMIBC WITHOUT HEMATURIA

Training/discovery 0.802 (0.770∼0.834) 0.751 (0.708∼0.795) 0.757 (0.711∼0.803)

10-fold cross-validation 0.755 (0.645∼0.866) 0.762 (0.762∼0.891) 0.757 (0.619∼0.895)
dHIGH- and LOW-GRADE NMIBC WITH HEMATURIA

Training/discovery 0.878 (0.852∼0.904) 0.858 (0.804∼0.912) 0.668 (0.631∼0.705)

10-fold cross-validation 0.827 (0.731∼0.923) 0.889 (0.889∼1.000) 0.667 (0.555∼0.778)

aThe panel: Dopamine 4-sulfate, MG00/1846Z,9Z,12Z,15Z/00, Aspartyl-Histidine, Tyrosyl-Methionine.
bThe panel: 3-Hydroxy-cis-5-tetradecenoylcarnitine, 6-Ketoestriol, Beta-Cortolone, Tetrahydrocorticosterone, Heptylmalonic acid.
cThe panel: N-Acetyl-4-O-acetylneuraminic acid, 4-(2-Aminophenyl)-2,4-dioxobutanoic acid, 6-Keto-decanoylcarnitine, 3-hydroxydecanoyl carnitine, 2-Hydroxylauroylcarnitine.
dThe panel: Indolylacryloylglycine, Histidinyl-Histidine, Indoleacrylic acid, N-acetyl-5-methoxykynuramine, L-3-Hydroxykynurenine.

inhibiting cell proliferation. Thus, the metabolism of dopamine
can be increased in cancer, and this has been reported in
neuroblastoma and Wilms’ tumors (23). Our study is the first to
report high levels of metabolism of dopamine in NMIBC apart
from bladder pheochromocytoma. MG00/1846Z,9Z,12Z,15Z/00,
another metabolite in the panel, is a monoacylglyceride that
can be broken down by monoacylglycerol lipase. In the present
study, the level of monoacylglyceride was low probably due to the
high level of monoacylglycerol lipase, which has been shown to
promote hepatocellular carcinoma and colorectal cancer (24, 25).

Defective xenobiotic metabolism has been reported in BC
patients and has mainly been attributed to the defects in the
genes related to regulation of detoxification processes (26).
The present study demonstrated a decrease in carbofuran
metabolism in NMIBC patients, thus further validating the
defective metabolism of xenobiotics in NMIBC. We measured
lower levels of avocadyne 4-acetate and 1-acetoxy-2-hydroxy-16-
heptadecen-4-one in the urine from patients with NMIBC than
in the urine from healthy controls. Both of these metabolites are
members of the class of compounds known as long-chain fatty
alcohols, which are present in fruits, supporting the impact of
dietary habits on BC (27, 28).

Analysis of Low-Grade NMIBC vs. the
Control Group
A panel of five urinary metabolites was discovered with
high sensitivities at or above 85% that did not compromise
the specificities for distinguishing low-grade NMIBC from
the control group. The significantly differential metabolites
included undecanoylcarnitine, 3-hydroxytetradecanoyl
carnitine, 3-hydroxy-5, 8-tetradecadiencarnitine, 3-hydroxy-
cis-5-tetradecenoylcarnitine, and O-decanoyl-L-carnitine; the
levels of these compounds were decreased in the low-grade
NMIBC group without the elevation of any other carnitines.
Since carnitine and its short-chain derivatives are essential
for the entry of fatty acid into mitochondria for oxidation,

fatty acid oxidation is decreased in the low-grade NMIBC
group compared to the controls. Moreover, acetyl-carnitine
provides a source of acetyl groups for nuclear protein acetylation
by histone acetyl-transferases (29). It was reported that
acetylation of the transcription factor p53 by histone acetyl
transferase p300/CBP is required for p53 activation (30, 31).
Additionally, Pisano et al. also demonstrated that acetyl-
carnitine had a direct anti-tumor effect through the potentiation
of platinum-based therapy (32). In our study, the level of
undecanoylcarnitine, a member of acetyl-carnitine family, was
decreased in the low-grade NMIBC group compared to the
control group.

Myristic acid, an exogenous saturated fatty acid that originates
from dietary uptake and is involved in the biological process
of energy production (33, 34), was increased in the urine of
the low-grade NMIBC patients, further illustrating the lowered
level of fatty acid oxidation in the low-grade NMIBC samples
vs. the controls. Moreover, exogenous myristic acid can increase
the biosynthesis of myristoyl CoA and myristoylated Src and
promote Src kinase-mediated oncogenic signaling in the human
cells (35).

Difference in Urine Metabolomics Between High- and

Low-Grade NMIBC
So far, there is no urine-based metabolomics approach to
differentiate between high-grade and low-grade NMIBC,
although high-grade NMIBC is obviously more aggressive than
low-grade NMIBC. In the current study, we attempted to find
a difference in the metabolome between low-grade NMIBC
and high-grade NMIBC. High levels of L-3-hydroxykynurenine
and 5-hydroxyindoleacetaldehyde were observed in high-grade
NMIBC with hematuria; both metabolites are associated with
tryptophan metabolism. Furthermore, L-3-hydroxykynurenine
is a metabolite in the kynurenine pathway, the major route
of tryptophan metabolism. Increased concentrations of
kynureninic acid have been detected in many cancer types,
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FIGURE 3 | Analysis of metabolic profiling in low-grade NMIBC compared with control group. (A) Score plot of OPLS-DA model based on metabolome between

low-grade NMIBC and control group. (B) ROC plot with 10-fold cross-validation based on model of 3-Hydroxy-cis-5-tetradecenoylcarnitine, 6-Ketoestriol,

Beta-Cortolone, Tetrahydrocorticosterone, and Heptylmalonic acid to quantify the discrimination degree of low-grade NMIBC and control group. (C) Pathway analysis

of differential metabolites.

including colon carcinoma, non-small cell lung cancer, etc
(36–38). Interestingly, kynureninic acid was increased in
patients with metastases that spread to lymph nodes when
compared with nonmetastatic patients (37). Moreover, a
tryptophan catabolic enzyme, indoleamine 2,3-dioxygenase,
has been reported as a central driver of malignant development
and progression (39). Our metabolomic analysis of NMIBC
grades revealed an association between tryptophan metabolism
and the progression of BC. We also observed a decrease in
6-keto-decanoylcarnitine, a member of the acyl carnitine
family, in high-grade NMIBC without hematuria vs. low-grade
NMIBC. A similar reduction in acyl carnitine metabolites was
found in low-grade NMIBC samples compared to the control
group.

According to our study, the prediction accuracy of the
metabolite panel for high-grade NMIBC vs. low-grade NMIBC

was lower for NMIBC without hematuria than for NMIBC with
hematuria. The following reasons may explain this observation:
(1) the subjects in two groups without hematuria were not age-
matched; (2) NMIBC without hematuria may occur in the earlier
period of BC initiation, so the difference may not yet be obvious
in the metabolome.

CONCLUSION

Thus, a comprehensive characterization of NMIBC urine
metabolome was conducted in our study. A pilot study of
NMIBC urine metabolomic profiling was able to distinguish
the NMIBC group from the controls, low-grade NMIBC from
the controls, and high-grade NMIBC from low-grade NMIBC.
Panels of metabolites were discovered to have potential value for
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FIGURE 4 | Analysis of metabolic profiling in low- and high-grade NMIBC. (A) Score plot of OPLS-DA model based on metabolome between low- and high-grade

NMIBC without hematuria. (B) ROC plot based on model to quantify the discrimination degree of NMIBC grading without hematuria. (C) Score plot of OPLS-DA

model based on metabolome between low- and high-grade NMIBC with hematuria. (D) ROC plot based on model to quantify the discrimination degree of NMIBC

grading with hematuria.

high-grade NMIBC and low-grade NMIBC diagnosis as well as
for NMIBC grading distinction. Our data will not only benefit
the application of the urine metabolome in disease biomarker
discovery but also contribute to the exploration of the initiation
of NMIBC. Further studies, including a blood metabolomics
study and a multicenter metabolomic study of BC, are required
to generate and validate a robust method for the detection of
early BC.
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