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Abstract: The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) shows a
promising therapeutic potential in cancer treatment as it exclusively causes apoptosis in a broad
spectrum of cancer cells through triggering the extrinsic apoptosis pathway via binding to cognate
death receptors, with negligible toxicity in normal cells. However, most cancers, including glioblas-
toma multiforme (GBM), display TRAIL resistance, hindering its application in clinical practice.
Recent studies have unraveled novel mechanisms in regulating TRAIL-induced apoptosis in GBM
and sought effective combinatorial modalities to sensitize GBM to TRAIL treatment, establishing pre-
clinical foundations and the reasonable expectation that the TRAIL/TRAIL death receptor axis could
be harnessed to treat GBM. In this review, we will revisit the status quo of the mechanisms of TRAIL
resistance and emerging strategies for sensitizing GBM to TRAIL-induced apoptosis and also discuss
opportunities of TRAIL-based combinatorial therapies in future clinical use for GBM treatment.
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1. Introduction

Programed cell death via apoptosis is an integral part of normal physiological mech-
anisms to eradicate unwanted or damaged cells and also functions as a natural barrier
against cancer development and progression [1]. However, tumor cells resist cell death
through evolving multiple strategies to attenuate or circumvent apoptosis, including short-
circuiting the extrinsic apoptosis pathway which is activated by cell death receptors upon
binding to cognate ligands [2], such as the Fas ligand (FasL/Apo1L/CD95L), Apo 3 lig-
and (Apo3L), TNF-alpha (TNFα), and TNF-related apoptosis-inducing ligand (TRAIL,
also designated as TNFSF10 and APO2L) [3]. Among them, TRAIL appears to be the
most promising candidate therapeutic for targeted therapy for cancer in clinic since it
preferentially initiates apoptosis in a broad variety of tumor cells without overt cytotoxicity
to normal cells both in vitro and in vivo [4,5]. TRAIL is a pro-apoptotic cytokine acting as
an extracellular signal to trigger apoptosis via binding to death receptors TRAIL-R1 (TRAIL
receptor 1) [6] and TRAIL-R2 [7–9], which transmit death signals through a cytoplasmic
“death domain” motif, thereby inducing the formation of the pro-apoptotic death-inducing
signaling complex (DISC) and the downstream activation of apoptotic cascade to execute
cell apoptosis [10]. However, the clinical response to TRAIL and TRAIL-based therapeutics
is unsatisfactory in most cancers, with glioblastoma multiforme (GBM) being particularly
resistant [11,12], defining an imperious need to thoroughly resolving the mechanisms
of TRAIL resistance. Recent studies have revealed novel regulators of TRAIL-induced
apoptosis in GBM and focused on seeking more efficient TRAIL delivery systems and com-
bination therapies with appropriate sensitizing drugs. This review attempts to summarize
the updated understanding of TRAIL resistance mechanisms in GBM and strategies to
overcome them and also discusses the promising future prospects of translating TRAIL
into clinical use for treating GBM.
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2. Targeting the TRAIL Receptor/Ligand System: An Emerging Opportunity for
GBM Treatment
2.1. GBM Treatment Is a Formidable Challenge in Clinical Oncology

GBM is a highly malignant primary brain tumor and the most aggressive type of
gliomas arising from the central nervous system (CNS) [13]. Despite being one of the most
studied tumors, the therapeutic modalities for GBM have changed little in the past decade,
mainly including neurosurgical debulking aiming for maximal tumor resection, followed
by concurrent fractionated local radiation and adjuvant temozolomide chemotherapy to
combat the residual tumors [14–16]. However, as a predominant adult brain tumor and one
of the most lethal human malignancies, GBM is an incurable disease with a poor prognosis
and nearly universal relapse. Patients diagnosed with GBM have a median overall survival
(mOS) of 16–21 months, with only 43% of them surviving for 2 years [17–19].

Apart from tumor-treating fields, no other therapeutic interventions used in the new
diagnosis or at recurrence exhibit possibilities to prolong overall survival in random-
ized trials [20]. Several disadvantages impede the development of novel therapies for
GBM, such as GBM’s infiltrative nature, the blood–brain barrier, tumor heterogeneity,
unique tumor microenvironments, and the high metastatic and angiogenic potential of the
tumors [14]. Currently, the effective treatment options for treating GBM are still lacking, ren-
dering the treatment of GBM as one of the most difficult challenges in clinic oncology [21].
Although thousands of GBM-related studies are published each year, more translational
studies on developing innovative therapeutic strategies are urgently needed for improving
the poor outcome of GBM treatment.

2.2. TRAIL-Induced Apoptotic Signaling

Tumor cells including GBM have evolved multiple strategies to escape programmed
cell death, underscoring that the reactivation of cell death programs, which are frequently
inactivated in GBM, is a reasonable avenue to overcome this Achilles′ heel of GBM [22].
Among the forms of programmed cell death, the most extensively studied is apoptosis.
Two known major signaling pathways, i.e., the death receptor (extrinsic) pathway and
the mitochondrial (intrinsic) pathway, have been delineated to regulate the apoptotic pro-
cess [23]. The activation of the mitochondrial (intrinsic) pathway requires a mitochondrial-
to-cytosol release of proteins such as cytochrome c or Smac to initiate apoptosis through
engaging caspase activation. Although the eventual caspase activation is a shared apoptotic
mechanism, the death receptor (extrinsic) pathway differs in part by launching apoptosis
via cell surface death receptors bound to cognate death receptor ligands [24]. Death recep-
tors belong to the tumor necrosis factor (TNF) receptor superfamily, such as TNF-receptor
1 (TNFR1), Fas/APO-1/CD95, death receptor 4/TRAIL-R1, and death receptor 5/TRAIL-
R2, which are ligated by the corresponding death receptor ligands, namely, TNFα, FasL,
and TRAIL, when the death receptor-mediated apoptosis is activated [25].

TRAIL was identified independently by two groups in 1995 and 1996 as a 281-amino
acid type II transmembrane protein in the human form or 291-amino acid protein in
the murine form and found to rapidly induce extensive apoptosis in a variety of trans-
formed cell lines [26,27]. One year later, two TRAIL receptors, TRAIL-R1 and TRAIL-R2,
were defined to mediate the pro-apoptotic effect of TRAIL on tumor cells [28]. In 1999,
the tumoricidal activity and safety of recombinant TRAIL on normal cells was demon-
strated in vivo [4,5]. These serial groundbreaking discoveries have aroused great interest
in ascertaining the molecular mechanisms of TRAIL/TRAIL-R1/R2 axis-induced apoptosis
and developing TRAIL-R agonists for cancer therapy.

The signal transduction of TRAIL-induced apoptosis is becoming increasingly clear
with extensive investigations. It is now known that upon stimulation by TRAIL, trimeric
TRAIL-crosslinked TRAIL-R1/R2 undergo homotrimerization and employ their intracellu-
lar death domains (DDs) to recruit the FAS-associated death domain protein (FADD), which
subsequently recruits pro-caspase-8 through the death effector domains (DEDs), collec-
tively forming the death-inducing signaling complex (DISC) to activate the pro-caspase-8.
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The activated dimeric caspase-8 is released to cleave and activate the effector caspase-3
that is sufficient to trigger extrinsic apoptosis in some cells (type I). Whereas in other cells
(type II), the activation of the mitochondrial pathway is also required for apoptosis induc-
tion. Under this circumstance, caspase-8 cleaves the Bid (BH3 interacting-domain death
agonist), and then BAK (BCL2 antagonist/killer) and BAX (BCL2 associated X) oligomer-
ize in the outer mitochondrial membrane to form lipid-containing pores. Consequently,
cytochrome c is released, together with Apaf-1 (apoptotic peptidase activating factor 1)
and pro-caspase-9, assembling an apoptosome, which in turn enhances caspase-3 cleavage
and the activation of other effector caspases, resulting in cleavage of a plethora of cellular
proteins and ultimately the execution of apoptosis [29–31]. Hence, both branches of the
apoptosis pathway can be activated by TRAIL, dependent on caspase-8-mediated cleavage,
highlighting a central role of caspase-8 in transducing TRAIL-induced apoptotic signaling.
This crosstalk of apoptotic signaling pathways generates a complex network of TRAIL-
induced apoptosis programs. Whereas, unlike the pro-apoptotic receptors TRAIL-R1/R2,
both TRAIL-R3 and TRAIL-R4 act as “decoys” to negatively regulate TRAIL-induced
apoptosis by competing with TRAIL-R1/R2 [32,33], further complicating the regulation of
TRAIL-induced apoptosis.

In addition to apoptotic signaling, it is well characterized that TRAIL can trigger
various non-apoptotic signaling pathways to induce a plethora of biological responses.
A typical example is that TRAIL activates the receptor-interacting serine/threonine protein
kinase 1 (RIPK1) and RIPK3 signaling to induce necroptosis [34], another form of cell death.
Other pathways that can be activated by TRAIL, such as the nuclear factor-κB (NF-κB),
JUN N-terminal kinase (JNK), p38 MAPK pathways and oncogenic KRAS signaling, and the
physiological functions have been thoroughly reviewed elsewhere [30]. The intricate link
between these TRAIL-induced molecular events and apoptosis programs is not fully clear
and warrants further interrogations, which would help the development of TRAIL-based
cancer therapies.

2.3. TRAIL Receptor/Ligand System Is a Promising Therapeutic Target for GBM

Among the death receptor-ligand systems, the TNFR1-TNFα and CD95-FasL axes are
excluded from further therapeutic exploitations, owing largely to the lethal toxicity of TNF
or CD95 agonists [30]. On the other hand, however, pre-clinical studies have shown that
TRAIL administration has preferential tumoricidal activity on GBM without detectable
toxicity to normal brain tissue [11,35]. Bortezomib is a proteasome inhibitor proven well
tolerated and safe in combination with temozolomide and radiation in GBM treatment in
early clinical trials [36,37]. Remarkably, TRAIL was found to cooperate with bortezomib
to augment apoptosis in cultured GBM cells and patient-derived GBM stem cells and
retard tumor growth in vivo [38]. This potential clinical relevance is reinforced by studies
demonstrating that the combined administration of TRAIL and systemic temozolomide
has a synergistic antitumor effect against GBM cells in vitro [39] and also prolongs survival
in an intracranial GBM xenograft model [40]. Importantly, ONC201, a TRAIL-inducing
compound, has proven well tolerated, capable of passing the blood–brain barrier, and has
shown preliminary signs of efficacy in 17 patients with aggressive and recurrent GBM in
a phase 2 clinical trial [41]. These results are very encouraging and tests in an expanded
cohort of GBM patients are ongoing [42,43]. Given this promising therapeutic impact of
the TRAIL receptor/ligand system for GBM treatment, more clinical trials are expected to
launch in the future to test TRAIL-based combinatory modalities for treating GBM.

For other solid tumors, however, dissatisfactory results from clinical trials of recom-
binant TRAIL and agonist antibodies against TRAIL-R1/2 have been obtained, and the
drug’s short half-life, poor pharmacokinetics, and resistance are thought to be the major
contributors [44]. Regardless of the failure of past endeavors, the recent development of
novel methods, such as protein modification, combinatorial therapy, and TRAIL-based gene
delivery, paves a new avenue to improve the efficacy of TRAIL-based therapy for generat-
ing robust anticancer activities [45]. Currently, combinatory therapies consisting of novel
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recombinant TRAIL or agonist antibodies against TRAIL-R1/2 are being actively tested in
several clinical trials, which are summarized in a recent review [44]. These progresses will
provide valuable lessons for future clinical trials in GBM therapy.

2.4. The Expression Patterns of TRAIL/TRAIL Death Receptors and Implications in GBM Treatment

Studies using different analyses have shown that TRAIL receptors, including TRAIL-
R1 and TRAIL-R2, as well as “decoy” receptors TRAIL-R3 and TRAIL-R4 that lack the
cytoplasmic “death domain” to induce the apoptotic pathway, are all expressed with vary-
ing degrees in several GBM cell lines [39,46,47]. A constant transcriptional co-expression
of TRAIL, TRAIL-R1, TRAIL-R2, and TRAIL-R3 was also confirmed in human primary
GBM [48]. In addition, slightly diffused cytoplasmic and a stronger membranous staining
of TRAIL-R1, TRAIL-R2, and TRAIL were visualized on GBM tumor specimens, and the
expression of TRAIL-R1 and TRAIL-R2 was reported as an independent prognostic factor
for the survival of patients with primary GBM, implicating both of them as possible tar-
gets for TRAIL therapy [49]. It is also proposed that TRAIL-R2 appears more important
as a druggable target due to its higher level than TRAIL-R1 [49]. Noteworthily, both a
homotrimeric type II transmembrane TRAIL (memTRAIL) and a soluble form of TRAIL
(sTRAIL) efficiently activate TRAIL-R1 to induce apoptosis even at low concentrations,
but only very high levels of them are able to activate TRAIL-R2 [50–52]; therefore, the rela-
tively lower expression of TRAIL-R1 might help GBM tumors to evade apoptosis upon
TRAIL/TRAIL-R1 binding. From this perspective, TRAIL-R1 may also be a significant
target for TRAIL-based therapy of GBM.

Yet, some in vitro observations in GBM cell lines have shown that the levels of TRAIL
receptors are not necessarily correlated with TRAIL sensitivity [53,54], suggesting TRAIL
receptor expression alone is not adequate to determine TRAIL sensitivity, but rather,
alterations in the pathway that links TRAIL receptor activation to the apoptotic machinery
also play an indispensable role. Nevertheless, it is tempting to assess whether a correlation
exists between TRAIL receptor expression and TRAIL sensitivity in GBM tumors in clinical
scenarios. It is also established that FasL expressed on the surface of GBM tumors binds
to Fas and leads to apoptosis of invading immune cells, therefore enabling GBM cells to
maintain immune privilege and elude immune attacks [55]. It is plausible that analogous
to FasL, the membranous expression of TRAIL in GBM tumors represents a possible
tumor defense mechanism against killing by immune cells. Therefore, circumventing
TRAIL-mediated immunosuppressive hurdles is presumably another strategy to optimize
TRAIL-based therapeutics for GBM patients.

3. Aberrations in TRAIL-Induced Apoptotic Signaling in GBM

Cancer cells, including GBM, have evolved multiple strategies to rewire TRAIL-
induced apoptotic signaling in order to evade apoptosis. For example, GBM cells display
very low level of caspase-8, which is correlated with resistance to TRAIL-induced apoptosis.
Additionally, in tumors obtained from GBM patients, caspase-8 expression is also very
low, suggesting that the TRAIL pathway may not be functional in GBM due to insufficient
caspase-8 activation [56]. Moreover, the cellular FLICE ((Fas-associated death domain–like
IL-1β–converting enzyme)) inhibitory protein (c-FLIP) competes with caspase-8 for binding
to FADD and therefore suppresses DISC activation, and in human GBM, c-FLIP expression
is upregulated to resist TRAIL-induced apoptosis [57]. In addition, the anti-apoptotic
proteins, such as Bcl-2 and Bcl-xL, are frequently overexpressed in GBM [58,59]. Studies
have demonstrated that Bcl-2 ectopic overexpression inhibits TRAIL-induced apoptosis in
GBM cell lines [60]. In contrast, specific Bcl-2 inhibitor and Bcl-2/Bcl-xL inhibitor potently
reactivate TRAIL-induced apoptosis in GBM cells [54]. Moreover, Apaf-1 participates in
the assembly of a functional apoptosome, but Apaf-1 is inactivated by high frequency
of loss of heterozygosity at chromosome 12q22–23 in GBM [61]. In human GBM cell
lines, multiple simultaneous genomic alterations in TRAIL-R1, TRAIL-R2, caspase-8, Bid,
and Smac loci were found to contribute to TRAIL resistance [62]. These aberrations and
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others (summarized in Table 1) in TRAIL-induced apoptotic signaling should be taken into
consideration and can be regarded as targets in the development of therapeutic approaches
to reactivate apoptosis signaling networks for eradicating GBM.

Table 1. Aberrations in TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptotic signaling in GBM.

Genes Encoded
Proteins Aberrations Confirmed Resources Effects Ref

CASP8 Caspase-8 Gene promoter methylation Clinic samples; cell lines Inhibition of TRAIL-induced apoptosis [56,63–65]
APAF1 Apaf-1 Loss of heterozygosity Clinic samples Inhibition of apoptosome assembly [61]

TNFRSF10A TRAIL-R1 Gene promoter methylation Clinic samples; cell lines Inhibition of TRAIL-induced apoptosis [56,63]
TNFRSF10B TRAIL-R2 Loss or structural aberration of gene Cell lines Inhibition of TRAIL-induced apoptosis [62]

DIABLO Smac Loss or structural aberration of gene Cell lines Inhibition of TRAIL-induced apoptosis [11,62]
BID Bid Loss or structural aberration of gene Cell lines Inhibition of TRAIL-induced apoptosis [62]

PEA15 PEA-15 Possible altered protein stability Clinic samples; cell lines Blockage of death receptor activation [56,66,67]
CFLAR c-FLIP Translational dysregulation Cell lines Inhibition of caspase-8 [57]
BCL2 Bcl-2 Transcriptional dysregulation Clinic samples; cell lines Inhibition of TRAIL-induced apoptosis [58,59,68]

BCL2L1 Bcl-xL Transcriptional dysregulation Cell lines Inhibition of TRAIL-induced apoptosis [69]
MCL1 Mcl-1 Transcriptional dysregulation Cell lines Inhibition of TRAIL-induced apoptosis [70,71]
XIAP XIAP Transcriptional dysregulation Clinic samples Inhibition of TRAIL-induced apoptosis [72,73]

4. Advances in Mechanisms of TRAIL-Induced Apoptotic Signaling in GBM

In addition to well-established TRAIL-induced apoptotic signaling, increasing evidence
has unraveled novel mechanisms that either promote or inhibit TRAIL-induced apoptosis
in GBM (Figure 1), offering potential therapeutic targets for overcoming TRAIL resistance.
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Figure 1. Updated mechanisms that regulate TRAIL-induced apoptotic signaling in glioblastoma multiforme (GBM).
Proteins depicted in deep blue are negative regulators of TRAIL-induced apoptosis, whereas proteins depicted in pink are
positive regulators of TRAIL-induced apoptosis in GBM. TRAIL, tumor necrosis factor-related apoptosis-inducing ligand;
TRAIL-R1/R2, TRAIL receptor1/recptor2; DD, death domain; FADD, FAS-associated death domain protein; DED, death
effector domain; PED, phosphoprotein enriched in diabetes; c-FLIP, cellular FLICE inhibitory protein; DISC, death-inducing
signaling complex; RIP1, receptor interacting protein kinase 1; A20, E3 ubiquitin ligase A20/TNFAIP3; AIP4, atrophin-
interacting protein 4; PIM, proviral integration site in Moloney murine leukemia virus; NF-κB, nuclear factor-κB; SMAC,
second mitochondria-derived activator of caspase; Apaf-1, apoptotic peptidase activating factor 1; KDM2B, lysine-specific
demethylase 2B; Cyto c, cytochrome c.
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4.1. Mechanisms That Promote TRAIL-Induced Apoptosis in GBM
4.1.1. NF-κB

Since resisting apoptosis is a hallmark of human cancers, it may not be so sur-
prising that few mechanisms are dedicated to promoting TRAIL-induced apoptosis in
GBM. One study has reported that nuclear factor-κB (NF-κB) activation via overexpres-
sion of constitutively active IκB kinase complex (IKK) β (IKK-EE) significantly increases
TRAIL-mediated apoptosis. Conversely, the inhibition of NF-κB by overexpression of
the dominant-negative IκBα superrepressor (IκBα-SR) decreases TRAIL-induced apop-
tosis in GBM cells [74]. Mechanistically, the inhibition of NF-κB reduces the recruitment
of FADD and caspase-8 and formation of DISC upon stimulation of TRAIL receptors,
which restrains the TRAIL-mediated activation of caspases, loss of mitochondrial poten-
tial, and cytochrome c release, resulting in decreased TRAIL-induced apoptosis in GBM
cells [74]. These findings reveal a pro-apoptotic role of NF-κB in TRAIL-induced apoptosis
in GBM cells by facilitating DISC formation. Similarly, NF-κB has also been noticed to
exert a pro-apoptotic role in DNA damage-triggered apoptosis in GBM cells [75]. Paradoxi-
cally, however, NF-κB inhibition enhances TRAIL-induced apoptosis in mouse embryonic
fibroblasts and neuroblastoma cells [74,76] and is also implicated in lovastatin-sensitized
TRAIL-induced apoptosis in resistant GBM cells via upregulation of TRAIL-R2 level [77].
Nevertheless, an early study showed that specific inhibition of NF-κB by overexpression of
IκBα-SR had no significant impact on GBM cell apoptosis induced by TRAIL, implying that
the characteristic anti-apoptotic function of NF-κB in many cancers is not a primary feature
for GBM [78]. These cell type-dependent findings in GBM cells have implications for
designing strategies of manipulating NF-κB activity to overcome TRAIL-induced apoptosis
resistance in GBM.

4.1.2. miR-7

The X-linked inhibitor of apoptosis (XIAP) exerts anti-apoptotic functions via inhibit-
ing the activation of caspases. As expected, inhibition of XIAP with Embelin enhances
TRAIL-mediated apoptosis in GBM cells [79]. A genome-wide analysis has identified that
miR-7 critically promotes TRAIL-induced apoptosis in GBM cells through targeting XIAP,
and combining miR-7 overexpression with TRAIL leads to a synergistic tumor suppression
effect both in vitro and in vivo [80]. Consistent with this study, another investigation has
demonstrated that miR-7 expression in GBM cells results in an upregulation of TRAIL-R2
via activating NF-κB, ultimately priming resistant GBM cells to TRAIL-induced apoptosis.
Further, miR-7 overexpression significantly decreases tumor growth and potentiates TRAIL
activity to eradicate GBM xenografts formed by patient-derived primary GBM stem cell
(GSC) lines and improves mouse survival [81]. These observations together identify miR-7
as a novel positive regulator of TRAIL-induced apoptosis and provide miR-7 as a promising
therapeutic candidate for reducing TRAIL resistance in GBM.

4.2. Mechanisms That Inhibit TRAIL-Induced Apoptosis in GBM
4.2.1. c-FLIP

Similar to most tumors, GBM tumors display a range of TRAIL sensitivity, but the
majority harbor innate resistance to TRAIL-induced apoptosis, which prevents the clinical
application of TRAIL [82]. The mechanisms underlying GBM resistance to TRAIL are still
not completely understood, but many progresses in this field have been witnessed over
the past two decades. One study has shown that the Akt-mTOR-S6K1 pathway enhances
translation of c-FLIP that blocks caspase-8 activation, thereby conferring TRAIL resistance
to GBM cells. Reversely, inhibition of mTOR or S6K1 decreases c-FLIP protein level and
suppresses TRAIL resistance. Moreover, in xenografted human GBM, the activation status
of the PTEN-Akt-mTOR pathway distinguishes the inherent TRAIL-sensitive tumors from
those sensitized by rapamycin, an mTOR inhibitor [57]. Although further studies are
needed to examine the correlation between mTOR pathway status and clinical response to
TRAIL, this study suggests that the mTOR pathway is an important mediator of TRAIL
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resistance in GBM. This also provides a rationale for a combinatorial therapy of TRAIL
with mTOR inhibitors in GBM treatment, such as CCI-779, which is widely used clini-
cally and possesses activity against PTEN-deficient GBM tumors [83]. Further studies
have demonstrated that the PTEN-Akt pathway also controls c-FLIP ubiquitination via
the ubiquitin-specific protease 8 (USP8) and an E3 ubiquitin ligase atrophin-interacting
protein 4 (AIP4), leading to prolonged c-FLIP half-life and increased TRAIL resistance in
GBM cells [84,85]. The ubiquitin control pathway described in these works broadens the
regulatory mechanisms of TRAIL resistance.

A recent study reveals that genetic or pharmacological inhibition of karyopherin β1
(KPNB1) potentiates TRAIL-induced apoptosis selectively in GBM cells partially through
accelerating caspase-8 cleavage via downregulating c-FLIP [86], proposing that the com-
bination of KPNB1 inhibitor and TRAIL could rewire the TRAIL receptor signaling and
abrogate TRAIL resistance. Since KPNB1 inhibitor ivermectin has been proven safe at a
high-dose [87], its combination with TRAIL may be a promising candidate for anti-GBM
clinical trials. Together, these researches uncover diverse mechanisms of upregulating
levels of c-FLIP for conferring TRAIL resistance to GBM cells. Accordingly, techniques such
as targeted c-FLIP degradation via proteolysis-targeting chimera (PROTAC) may represent
a potential strategy to override TRAIL resistance in GBM [88].

4.2.2. Caspase-8 Inhibitors

As described, caspase-8 is a master regulator in TRAIL-induced apoptosis. Under-
standably, genomic alterations in CASP8 contribute to TRAIL resistance in GBM cells [62].
In GBM-derived CSCs, the loss of the CASP8 locus in the 2q33–34 region causes the lack
of caspase-8 expression and TRAIL resistance [89]. These findings not only shed light
on genomic mechanisms in GBM resistance to TRAIL-induced apoptosis, but also advise
future clinical trials to consider genomic analysis of GBM tumors for identifying CASP8
gene status and utilize it as a genomic marker to predict the responsiveness of GBM to
TRAIL therapies.

Except canonical regulators of caspase-8 activation during TRAIL-induced apoptotic
signaling, recent studies have unveiled some previously unprecedented regulators of
caspase-8 activation in GBM and inspired new insights for designing TRAIL-based therapy.
For example, it has been proven that the knockdown of PIM kinases decreases phosphory-
lation of p62 and sensitizes TRAIL-induced apoptosis via enhanced caspase-8 recruitment
to and activation at the DISC; in line with this, p62 ablation facilitates TRAIL-induced
caspase-8 activation, revealing an inhibitory role of p62 in TRAIL-mediated apoptosis in
GBM [90]. Thus, PIM kinases mediate resistance of GBM cells to TRAIL by a p62-dependent
mechanism, suggesting that targeting PIM kinases in combination with TRAIL may repre-
sent new therapeutic strategies against GBM. Although the first PIM inhibitor SGI-1776
is withdrawn from clinical trials due to cardiac toxicity [91], it has helped in accelerating
the discovery of novel PIM inhibitors in recent years, and several other candidates are
currently tested in clinical trials for the treatment of cancers, including GBM [92].

Another example is A20 ubiquitin ligase, which was illustrated to mediate ubiq-
uitination of RIP1, through which it inhibits caspase-8 dimerization and cleavage and
TRAIL-induced apoptosis in tumor-initiating cells isolated from GBM patients [93]. A20 is
highly expressed in GBM and forms an assembly complex together with TRAIL-R2 and
RIP1; thus, A20 may serve as another potential therapeutic target to overcome TRAIL
resistance in GBM through enhancing caspase-8 activation.

4.2.3. DISC Modification

DISC formation is a key upstream event in TRAIL-induced apoptotic signaling.
A recent insight into this mechanism is provided by a study manifesting that in TRAIL-
sensitive GBM cells, TRAIL-R2 is the only consistently expressed functional receptor that,
upon TRAIL binding, homotrimerizes and recruits FADD and caspase-8 for assembling
the DISC in the lipid rafts of plasma membrane, wherein caspase-8 is cleaved and initiates
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apoptosis. However, in non-raft fractions of plasma membrane of TRAIL-resistant GBM
cells, TRAIL-R2-mediated DISC is modified by RIP, c-FLIP, and PED/PEA-15, resulting
in caspase-8 cleavage inhibition. On the contrary, silencing RIP, c-FLIP, or PED/PEA-15
redistributes the DISC from non-rafts to lipid rafts, thereby eliminating caspase-8 cleavage
inhibition and TRAIL resistance [94]. Given this line of evidence, targeting these intracel-
lular adaptors from the upstream event of DISC modification could therefore represent a
novel tactic to eliminate TRAIL resistance in human GBM.

4.2.4. miRNAs

miRNAs also attract attention as candidates to lower TRAIL resistance. miR-21 is
elevated in GBM and its knockdown increases apoptotic activity. It has been found that the
combined suppression of miR-21 with a secretable TRAIL causes an increase in synergistic
apoptosis in human GBM cells in vitro and in vivo [95]. In spite of unknown effector targets,
this study implicates miR-21 as a target for TRAIL-based therapies in GBM. Additionally,
high expression levels of miR-21 and miR-30b/c were shown to be required to maintain
a TRAIL-resistant phenotype in GBM cells. These miRs perform this role partially by
modulating caspase-3 expression and the TRAIL-induced apoptotic program, making them
promising therapeutic targets for antagonizing TRAIL resistance in GBM [96]. Another
study has discovered that miR-133a dramatically promotes TRAIL resistance in vitro and
in vivo by suppressing TRAIL-R2 expression, implying that silencing of this miRNA
may sensitize GBM cells to TRAIL-induced apoptosis [97]. In view of these encouraging
findings showing that selective miRNA antagonism sensitizes GBM tumors to TRAIL
administration, more potential miRNAs involved in regulation of TRAIL resistance should
be identified in future studies to increase the therapeutic response of TRAIL.

4.2.5. Others

The alteration of tumor suppressor p53 is the most common molecular abnormality in
GBM, which has been demonstrated in 60–70% cases of GBM patients [98]. The relationship
between TRAIL sensitivity and p53 status in GBM has been partly clarified by a study using
endogenous and inducible wild-type p53 GBM cell lines, which argues for a protective role
of p53 against TRAIL-induced apoptosis [99]. This exploration suggests that p53 functions
to confer TRAIL resistance to GBM, implying that TRAIL administration may possess more
potent antitumoral activity toward p53-deficient GBM tumors.

An interaction was reported between Beclin 1, a key regulator of autophagy, and sur-
vivin that belongs to a member of the anti-apoptotic protein family. Further, Beclin 1
knockdown sensitized GBM cells to TRAIL-induced apoptosis, which was antagonized
in the presence of survivin introduction, suggesting that Beclin 1 enhances TRAIL resis-
tance in GBM cells through maintaining the level of survivin [100]. These results point to
a possible mechanism of a crosstalk between autophagy and TRAIL-induced apoptosis.
It has been demonstrated that TRAIL can induce cytoprotective autophagy, and blocking
autophagy via silencing Beclin 1 effectively increases TRAIL-induced apoptotic cytotoxicity
in different human cancer cells [101]. Supposedly, Beclin 1-mediated autophagy serves
as another positive regulator for developing TRAIL resistance in GBM. Upregulating the
anti-apoptotic proteins to help GBM cells survive the TRAIL insults is not limited to the
action of Beclin 1. One study has shown that the Notch1 receptor promotes the survival of
GBM cells by upregulating the anti-apoptotic Mcl-1 protein, and conversely, the inhibition
of Notch1 pathway sensitizes GBM cells to TRAIL-induced apoptosis. Therefore, targeting
Notch1 might represent a promising novel strategy in GBM treatment [102].

Most chemotherapies are designed to destroy cancer cells by inducing DNA damage,
which may be repaired by the intrinsic DNA damage response machinery, and as a result,
cancer cells will survive [103]. Remarkable differences have been observed in levels of
proteins pivotal for DNA damage response between TRAIL-sensitive and -resistant GBM
cells, such as ATM and CHK2. Therapies that inhibit CHK2 levels in GBM may enhance
the efficacy of TRAIL treatment, hinting that DNA damage signaling pathways might
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contribute to TRAIL resistance and that targeting DNA repair factors is a strategy to
overcome TRAIL resistance of GBM [104].

TRAIL pro-apoptotic signaling is subjected to epigenetic regulation [105]. In GBM
cells, one study has described that silencing of KDM2B, an H3K36-specific demethylase, sig-
nificantly enhances TRAIL-induced apoptosis under in vitro and in vivo settings. The un-
derlying molecular mechanisms are multidimensional, which include the derepression of
pro-apoptotic genes Harakiri, caspase-7, and TRAIL-R1 and the repression of anti-apoptotic
genes. These findings identify KDM2B as a novel regulator in TRAIL resistance in GBM
and show that the key TRAIL-induced apoptotic components are under epigenetic control
of KDM2B [106]. Another study has reported that the loss of caspase-8 due to methylation
of promoter reaches more than 50% within 76 patients with GBM. Moreover, similar to
CASP8, more than 40% of GBM cell lines display significant methylation in TRAIL-R1 gene
promoter [63], possibly revealing an extensive epigenetic regulation in TRAIL resistance
in GBM. These observations may inspire further investigations to elucidate how TRAIL
resistance is regulated by epigenetic regulation and exploit the findings to improve the
effectiveness of TRAIL therapy.

During cellular stress, the eukaryotic initiation factor 5B (eIF5B) promotes the transla-
tion of mRNA encoding the anti-apoptotic factor XIAP [107]. A recent study has shown
that the depletion of eIF5B sensitizes GBM cells to TRAIL-induced apoptosis by inhibiting
the translation of several mRNAs encoding the anti-apoptotic proteins XIAP, Bcl-xL, cIAP1,
and c-FLIPS, indicating that eIF5B allows GBM cells to evade TRAIL-induced apoptosis
by promoting the translation of pro-survival proteins [108]. Therefore, eIF5B represents a
novel target to sensitize GBM cells to pro-apoptotic TRAIL treatment.

5. Sensitizing GBM to TRAIL-Induced Apoptosis

To maximize the potential of TRAIL in treating GBM, most research has focused on
developing methods to sensitize GBM to TRAIL treatment through two major directions:
increasing TRAIL bioavailability via constructing efficient TRAIL delivery system and
enhancing TRAIL tumoricidal activity through combining sensitizing drugs (Figure 2).
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5.1. Nanoparticle Delivery

The clinical application of TRAIL is largely hindered by its short serum half-life and
lack of efficient delivery approaches. In recent years, developing nanoparticles as carriers
in gene therapy has been considered as an effective approach to increase TRAIL delivery to
tumors as transfected cells will specifically secrete TRAIL into the tumor microenvironment.
However, another huge obstacle for gene delivery to GBM in the brain is to cross the
blood–brain barrier, and most delivery vehicles fail to generate high gene transfection
efficiency in vivo [109]. By developing a targeted iron oxide nanoparticle coated with
chitosan-polyethylene glycol-polyethyleneimine copolymer and chlorotoxin, one study
has found that this delivery system successfully delivers TRAIL into human GBM cells and
induces secretion of TRAIL in vitro and in vivo, resulting in near-zero tumor growth and
induces apoptosis in tumor tissue [110]. This study suggests that nanoparticle-mediated
TRAIL delivery can serve as a potential targeted therapeutic for more efficient TRAIL
delivery to GBM. A similar concept has been applied to human adipose-derived stem
cells (hADSCs), in which polymeric nanoparticles, as a drug-delivery vehicle, mediate
the overexpression of TRAIL for targeting and eradicating GBM cells in vivo and prolong
animal survival [111]. A recent study also reveals that TRAIL sensitivity in GBM cells
can be enhanced by conjugation of TRAIL with silver nanoparticles, further supporting
nanoparticle delivery to be a promising therapeutic approach to bypass consumption of
TRAIL in circulation and effectively increase the TRAIL dose in tumor lesions for sensitizing
TRAIL resistance [112].

5.2. Combination with Chemotherapeutic Drugs

Most chemotherapeutic drugs kill cancer cells predominantly by triggering the apop-
totic program. Increasing evidence has shown that several chemotherapeutic drugs treated
in combination with TRAIL can result in the reversal of GBM resistance to TRAIL-mediated
apoptosis. For example, combined TRAIL plus paclitaxel have cooperative anti-GBM effi-
cacy in vivo, particularly with no discernable toxicity to normal tissue [113]. Analogically,
co-delivery of the TRAIL gene also enhances the antitumor activity of paclitaxel against
GBM cells in vitro and in vivo [114]. Except paclitaxel, a synergistic anti-GBM effect has
been validated between TRAIL and cisplatin, as evidenced by cisplatin-enhanced sensi-
tivity of GBM cells to adenovirus-delivered TRAIL [115], and cisplatin-restored activation
of the TRAIL apoptotic pathway in GBM-derived stem cells [116]. Moreover, doxorubicin
and mitoxantrone were also identified as TRAIL-sensitizing agents for GBM [117,118].
Interestingly, L-asparaginase, a metabolic enzyme used in the treatment of acute lymphatic
leukaemia by hydrolyzing asparagine, potently overcomes GBM cell resistance to TRAIL-
induced extrinsic apoptosis [119]. Together, these preclinical observations suggest the
therapeutic potential of combining TRAIL plus chemotherapeutic drugs in GBM treatment
and encourage further preclinical and future clinical tests.

5.3. Combination with Non-Chemotherapeutic Drugs

Compared with chemotherapeutic drugs, efficacious synergistic effects of non-chemo-
therapeutic agents and TRAIL may be uncommon. However, evidence has indicated that
lovastatin, a lipid-reducing drug, enhances TRAIL-induced GBM cell apoptosis synergisti-
cally [120]. Another example is salinomycin, an antibiotic used in the poultry industries
to eliminate coccidiosis, which potentiates the cytotoxic effects of TRAIL on GBM cell
lines [121]. Moreover, quinacrine is a small molecule antimalarial agent that was recently
recognized with anticancer potentials [122], and it has been demonstrated that quinacrine
is able to mediate the sensitization of GBM cells to TRAIL treatment [123], suggesting a
combination treatment for GBM therapy. Other non-chemotherapeutic drugs exhibiting
TRAIL-sensitizing activity include nelfinavir [124], troglitazone [125], digitoxin [126], mela-
tonin [127], and Lanatoside C [128]. One of the limitations of these studies is a shortage of
clarity regarding the molecular mechanisms accounting for the synergistic effects of these
non-chemotherapeutic drugs and TRAIL, which require further investigations.
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5.4. Combination with Other Inhibitors

Aside from the abovementioned inhibitors of the Akt-mTOR-S6K1 pathway, KPNB1,
and PIM kinases, a large growing body of studies have also shown that a variety of in-
hibitors that do not belong to therapeutic drugs but sensitize GBM to TRAIL-induced
apoptosis. For instance, histone deacetylase inhibitors (HDACIs), such as MS275, suberoy-
lanilide hydroxamic acid and valproic acid, sensitize GBM cells to TRAIL-induced apopto-
sis in vitro and in vivo through c-myc-downregulated c-FLIP [129], suggesting the use of
HDACIs in order to prime GBM for TRAIL-induced apoptosis by targeting c-FLIP. Since the
anti-apoptotic Bcl-2 family members play a critical role in determining GBM sensitivity to
TRAIL-induced apoptosis, inhibitors of this family members (BH3-mimetics), such as ABT-
737 [130] and ABT-199 [131], were found to cooperate with TRAIL to induce apoptosis in
several GBM cell lines in a highly synergistic manner. These results outline the antagonism
of surviving machinery as a highly potent intervention to sensitize GBM cells to TRAIL
combination treatment. Protein synthesis inhibitors, such as cycloheximide, can reverse the
resistance of some cancer cells to TRAIL [132]. Two studies have revealed that the protea-
some inhibitor bortezomib primes GBM, including GBM stem cells, for TRAIL sensitization,
which is dependent on increased tBid stability, mitochondrial apoptosis, and modulation of
the NF-κB signaling pathway [38,133]. Consistent with these reports, pretreating GBM with
bortezomib potentiates natural killer cell cytotoxicity to induce TRAIL-mediated apoptosis
and prolongs animal survival [134]. Taken together, these findings provide compelling
evidence that the combination of bortezomib and TRAIL presents a promising strategy to
promote TRAIL sensitization and trigger apoptosis in GBM.

6. Conclusions

Owing to excusive the tumoricidal property revealed by a large amount of pre-clinical
and clinical studies, it is believed that targeting the TRAIL/TRAIL-R1/R2 axis holds
great promise to be harnessed in combinatorial therapies for treating cancers, including
GBM, a deadly cancer without efficacious therapeutic options. However, employing ei-
ther recombinant human TRAIL or agonist antibodies against TRAIL-R1/2 to reactive the
extrinsic apoptosis pathway in cancer cells for cancer therapy has yielded undesirable
outcomes in previous clinical trials, casting a shadow over the future clinical applications
of this strategy. Currently, seeking methods to overcome TRAIL resistance for enhancing
TRAIL efficacy is a research focus. As with many cancers, the majority of GBM tumors
are generally resistant to TRAIL-induced apoptosis largely due to several aberrations in
genetics that result in low or loss of expression of apoptotic genes and simultaneous over-
expression of anti-apoptotic genes, which comprise the TRAIL-induced apoptotic signaling
pathway. Attempts to understand the mechanisms of TRAIL-induced apoptotic signaling
in GBM have unraveled novel regulators in promoting or inhibiting TRAIL resistance,
mainly through modulating the levels or activation of TRAIL-R1/R2, c-FLIP, caspase-8,
and DISC. These studies provide novel therapeutic targets that can potentially interfere the
resistance mechanisms to overcome GBM resistance to TRAIL-based therapies. Another
strategy to improve the therapeutic efficacy of TRAIL and sensitize TRAIL resistance in
GBM is through developing more effective approaches of delivering a sufficient amount
of TRAIL to tumor lesions in the brain. Recent studies have shown the advantages of
nanoparticles in increasing the delivery efficiency of TRAIL to sensitize GBM to TRAIL
treatment. In addition, sensitizing GBM to TRAIL-induced apoptosis has proven effective
by multiple preclinical studies through the combinatorial treatment of TRAIL with other
agents, such as some commonly used chemotherapeutic and non-chemotherapeutic drugs
and synthetic inhibitors. According to these progresses in overcoming TRAIL resistance
in GBM, we expect more clinical trials will participate to test the therapeutic potency
and safety of TRAIL-based combination modalities in GBM treatment. Finally, however,
despite the abovementioned advances, how GBM tumors acquire TRAIL resistance is still
not fully understood, and the mechanisms underlying synergistic effect of TRAIL and
chemotherapeutic or non-chemotherapeutic drugs remain largely unexploited. Addressing
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these challenges is needed to overcome TRAIL resistance for maximizing the therapeutic
potential of TRAIL in treating GBM.
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