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Abstract

Process-based models have been used to simulate and forecast a number of nonlinear

dynamical systems, including influenza and other infectious diseases. In this work, we eval-

uate the effects of model initial condition error and stochastic fluctuation on forecast accu-

racy in a compartmental model of influenza transmission. These two types of errors are

found to have qualitatively similar growth patterns during model integration, indicating that

dynamic error growth, regardless of source, is a dominant component of forecast inaccu-

racy. We therefore examine the nonlinear growth of model initial error and compute the fast-

est growing directions using singular vector analysis. Using this information, we generate

perturbations in an ensemble forecast system of influenza to obtain more optimal ensemble

spread. In retrospective forecasts of historical outbreaks for 95 US cities from 2003 to 2014,

this approach improves short-term forecast of incidence over the next one to four weeks.

Author summary

Mathematical models are now used to forecast infectious disease incidence at the popula-

tion scale. By better understanding how errors in prediction systems are introduced, grow

and impact the predictability of infectious disease, forecast accuracy could be improved.

Here we explore the growth pattern of errors introduced from two major sources–model

initial conditions and stochastic fluctuation–in a simple, compartmental model describing

influenza transmission. We find that model initial error typically undergoes faster growth

due to nonlinear amplification during model evolution. Adopting techniques used in

numerical weather prediction, we leverage this growth of uncertainty and modify an

ensemble forecast system to generate optimal perturbations along the fastest growing

direction of initial error. This perturbation procedure increases ensemble spread, which

better captures observations with large uncertainties. In retrospective forecasts for 95 US

cities during the 2003 through 2014 flu seasons, this procedure leads to a substantial

improvement of short-term forecast quality.
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Introduction

Influenza imposes a tremendous toll on global public health due to its recurrent worldwide

spread and associated heavy morbidity and mortality burden [1]. To better prepare for and

mitigate future outbreaks, accurate forecasts of influenza transmission are needed. Over the

last few years, a number of forecasting systems have been developed and operationalized in the

hopes of informing real-time policy-making during an influenza outbreak [2–11]. Although

forecast skill has advanced significantly, the predictability of nonlinear influenza transmission

dynamics is limited by the errors in model forecast systems [12]. These errors derive from

three major sources: errors in model initial conditions, stochasticity in model dynamics, and

model misspecification. To further improve influenza forecast accuracy, a better understand-

ing of these errors and their impact on forecast uncertainty is needed. In this work, we focus

on the first two error sources (i.e., initial condition error and stochasticity) and do not investi-

gate model misspecification.

While prediction uncertainty and error growth in weather and climate forecasting has been

well studied [13–23], few works have examined this phenomenon in forecast models of infec-

tious disease. In this work, we perform an analysis of prediction uncertainty and error growth in

a compartmental model of influenza transmission. We compare growth patterns of errors

derived from both initial condition error and stochastic fluctuation during different stages of an

influenza outbreak. We find these error sources have similar effects on influenza incidence

predictability; however, initial error leads to a faster increase in ensemble spread and therefore

appears more responsible for the degradation of predictability. We then derive the linear propa-

gator of the transmission model and calculate the unstable direction of initial error growth using

singular vector analysis [14–17]. The flow-dependent singular vectors obtained can then be used

to generate optimal perturbations during the ensemble forecast of influenza, an adaptation of

methods used in operational numerical weather prediction [21–23]. We optimize this perturba-

tion procedure in a model-data assimilation forecast framework and validate it using historical

outbreaks from 95 cities in the United States from 2003 to 2014. Compared with the baseline

method without optimal perturbations, the properly perturbed system substantially improves

short-term forecast quality around and after the peak of an outbreak, when observed incidence

levels are most uncertain. This procedure of diagnosing and optimally perturbing ensemble fore-

casts of influenza can be applied to ensemble forecast systems for other infectious diseases.

Materials and methods

Data

We combine Google Flu Trends (GFT) data and concurrent laboratory-confirmed influenza

positivity rates to generate observational estimates of influenza incidence. Using internet

search query activity, GFT provided real-time estimates of weekly influenza-like illness (ILI)

per 100,000 people seeking medical treatment for major cities in the United States during

2003–2015 [24]. ILI is a medical diagnosis of possible influenza or other illness defined by

symptoms of a fever above 37.8 ˚C plus cough and/or sore throat. These symptoms are not

exclusively caused by influenza, as other respiratory viruses, e.g., respiratory syncytial virus,

rhinovirus, may produce similar symptoms. Therefore, to capture a more specific signal of

influenza infection incidence, we multiply weekly municipal GFT ILI with the percentage of

laboratory-confirmed influenza infections among patients presenting with ILI, compiled

regionally through the National Respiratory and Enteric Virus Surveillance System and US-

based World Health Organization collaborating laboratories [25]. This combined metric,

termed ILI+, better tracks influenza incidence and thus provides a more specific target for
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inference and forecast [5,25]. Excluding the pandemic seasons of 2008–2009 and 2009–2010,

locations without absolute humidity data, and seasons with incomplete observations, we used

790 ILI+ outbreak time series from 95 cities in the US during the 2003–2004 through 2013–

2014 seasons in this study.

Humidity-driven SIRS model

A parsimonious SIRS (susceptible-infected-recovered-susceptible) model forced by absolute

humidity (AH) conditions is used to simulate influenza activity. This SIRS model with envi-

ronmental forcing, previously validated against historical outbreaks in the United States

[26,27], provides a concise mathematical description of influenza transmission dynamics.

Within an assumed uniformly mixed population, transmission proceeds according to the fol-

lowing equations:

dS
dt
¼

N � S � I
L

�
bðtÞIS
N

; ð1Þ

dI
dt
¼
bðtÞIS
N
�

I
D
; ð2Þ

where N, S and I are the total, susceptible and infected populations, respectively; β(t) is the

contact rate at time t; D is the mean infectious period; and L is the average duration of immu-

nity. As population size is constant, the recovered population is N − S − I. The contact rate β(t)
is modulated by local AH conditions via

R0ðtÞ ¼ bðtÞD ¼ ea�qðtÞþb þ R0min: ð3Þ

Here, R0(t) is the basic reproductive number (the expected number of secondary infections

generated by a single infection in a fully susceptible population), and q(t) is specific humidity

(a measure of AH). The coefficients in the exponential term are estimated from laboratory

experiments on influenza virus survival: a = −180 and b = log(R0max − R0min), where R0max and

R0min are the maximum and minimum basic reproductive numbers [27]. Local AH conditions,

i.e., daily climatological humidity data averaged from 1979 through 2002, are derived from the

North American Land Data Assimilation System [28].

The SIRS model can be integrated forward in time either deterministically or stochastically.

When inspecting the growth of initial error, the model was run deterministically using a

fourth-order Runge-Kutta stepping scheme. A stochastic version was used to examine the

impact of stochastic fluctuation. There exist a number of approaches for introducing stochasti-

city into model dynamics [29–35]. Here we used an event-driven approach that interprets the

transitions between individuals’ states as Markov chains [31]. In particular, the rate for each

type of transition event, defined in Eqs 1 and 2 (e.g., susceptible to infected, infected to recov-

ered, and recovered to susceptible), in a short time step δt = 1 was perturbed through multipli-

cation with a Gamma distributed parameter g � Gð1=s2
p; s

2
pÞ (mean 1 and standard deviation

σp). Mathematically, the model equations are modified to

dS
dt
¼

N � S � I
L

gR!S �
bðtÞIS
N

gS!I; ð4Þ

dI
dt
¼
bðtÞIS
N

gS!I �
I
D
gI!R; ð5Þ

where γS!I, γI!R and γR!S represent the stochastic forcing on the transition events from
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susceptible to infected, infected to recovered, and recovered to susceptible, respectively. The

exact number of individuals transitioning from one state to another during a time step δt = 1

was generated from a Poisson distribution with the mean value set equal to the value in the

deterministic process. This approach has been widely used to model the stochastic dynamics

of infectious disease [30–35].

In all model simulations, the total population was set as N = 1 × 105 uniformly. Because ILI

+ (i.e., influenza infection per 100,000 patient visits) is reported as a rate not a magnitude, the

total population size, N, is arbitrary. To generate synthetic outbreaks, initial conditions (S,I)
and epidemiological parameters (R0max, R0min, D,L) were drawn randomly using a Latin hyper-

cube sampling strategy [36] from the following ranges: 3,000� S� 8,000, 0� I� 1,000, 1.3�

R0max� 4, 0.8� R0min� 1.3, 2 days� D� 7 days, 1 year� L� 10 years. [In the two-dimen-

sional case, Latin hypercube sampling generates n samples in two steps: 1) divide the state-

space into n × n uniform squares and 2) select sample positions such that there is only one

sample in each row and each column. High-dimensional Latin hypercube sampling is a gener-

alization of this process.] The humidity-driven SIRS model was integrated from October 1st

for 40 consecutive weeks to generate synthetic outbreaks. Weekly observations of local influ-

enza incidence are the number of new infections, Ot, which are calculated during model inte-

gration. To mimic real-world observational error, random Gaussian noise with mean 0 and

observation error variance OEVt ¼ 5� 103 þ ð
Pt� 1

j¼t� 3
Oj=3Þ

2
=50 at week t was added to the

simulated weekly incidence.

The ensemble adjustment kalman filter

Data assimilation methods were used to infer unobserved variables and parameters in the

humidity-driven SIRS model from observations. Specifically, we employed a sequential ensem-

ble filtering algorithm called the Ensemble Adjustment Kalman Filter (EAKF) [37] to itera-

tively optimize the distribution of variables (S,I) and parameters (R0max, R0min, D,L) with each

successive observation. While the EAKF is optimal for linear systems, it also exhibits satisfac-

tory performance in practice for weakly nonlinear dynamical models such as the SIRS model

we study here. To date, the EAKF has been used for the inference and forecast of a number of

infectious diseases, such as influenza [4–6,38–40], West Nile Virus [41–42], dengue [43], respi-

ratory syncytial virus [44], Ebola [45] and antibiotic-resistant pathogens [46].

To represent the state-space distribution, the EAKF maintains an ensemble of system state

vectors acting as samples from the distribution. The EAKF assumes that both the prior distri-

bution and likelihood are Gaussian and can be fully characterized by the first two moments,

i.e., mean and covariance. Unobserved variables and parameters are updated through their

covariability with the observed state variable, which can be computed directly from the ensem-

ble. In the EAKF, the variables and parameters are updated deterministically so that higher

moments of the prior distribution are preserved in the posterior [37].

The SIRS model-EAKF system can simulate the behavior of realistic epidemic curves due to

the iterative adjustment of the system state by the EAKF. In S1 Text, we fit historical outbreaks

from New York, Denver, Los Angeles and Houston for the 2010–2011 to 2013–2014 seasons. In

general, the posterior estimate captures the ILI+ curves in these outbreaks (see S1 Text, Fig A).

Results

Analytical and numerical investigation of error growth

Roles of model initial error and stochastic forcing. The predictability of a dynamical

system can be measured by the variance of an ensemble of perturbed trajectories [13]. For n
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model trajectories perturbed at time t, we denote fi(t,k) (i = 1,� � �,n) as the observation of the

ith trajectory after time k. The ensemble spread is defined as

s2 t; kð Þ �
1

n

Xn

i¼1

½fiðt; kÞ � �f ðt; kÞ�2; ð6Þ

where �f ðt; kÞ is the ensemble mean over all trajectories, i.e., the mean of fi(t,k) (i = 1,� � �,n).

The humidity-driven SIRS model was perturbed in two different ways. For the first, at time

t we perturbed the initial condition of variables (St,It) through multiplication with scaling

parameters (ε1,ε2), where both ε1 and ε2 were generated from a Gaussian distribution

N ð1; s2
pÞ: For each synthetic outbreak and each day of perturbation, we generated n = 100 per-

turbed trajectories and tracked the evolution of the ensemble spread for time k. For the second,

at each perturbation time t, we simulated n = 100 realizations of the stochastic model (Eqs 3

and 4) using a Gamma distribution Gð1=s2
p; s

2
pÞ with the same variance s2

p, starting from the

same initial condition (St,It). Note that the first perturbation method produces errors in initial

conditions and integrates the model deterministically; the second perturbation method inte-

grates the model from the same initial condition but introduces errors through continuous

stochastic forcing of model dynamics. Because the above two perturbation methods operate in

different ways, it is challenging to design a completely controlled, fair comparison. Here, we

impose perturbations with the same variance s2
p in order to control the strength of the initial

condition perturbation and the intensity of stochastic forcing.

We generated 1,000 synthetic outbreaks using Latin hypercube sampling of initial condi-

tions and parameters, with transmission rate forced by daily absolute humidity for New York

City, and then imposed perturbations on these trajectories each day from 10 weeks (70 days)

prior to the peak until 6 weeks (42 days) after. We measured the log-transformed ensemble

spread log(σ2(t,k)) averaged over all trajectories for 6 weeks (42 days) following the perturba-

tion. In Fig 1A and 1B, we show the evolution of ensemble spread after perturbations with σp =

10% at different times with respect to the outbreak peak.

In general, the growth of uncertainty introduced from stochastic forcing and initial error

exhibit qualitatively similar patterns (Fig 1). This finding indicates that the impact of stochastic

fluctuation is largely manifested by the nonlinear growth of error it introduces into the model.

The stochasticity-induced uncertainty is not static, but will propagate following the nonlinear

model dynamics, just as the introduced initial error propagates dynamically. This implies, in

generating variability within an ensemble of model trajectories used for influenza forecast,

using a stochastic model is equivalent in effect to perturbing initial conditions, but differs in

that perturbations from initial conditions (Fig 1B) result in a larger ensemble spread than sto-

chastic fluctuations, which appear to partially damp dynamic error growth (Fig 1A). The

impact of these errors depends heavily on both the perturbation time and forecast horizon.

Errors introduced before the peak amplify exponentially during the early phase of outbreaks,

whereas perturbations after the peak generally remain stable. Other perturbations for σp = 5%

and 15% were tested (see S1 Text, Figs B-C), but no significant change in the results was

observed. Further, we performed the same analysis as in Fig 1 for three other cities with differ-

ent climate conditions–Denver, Los Angeles and Houston (see S1 Text, Figs D-G). The error

growth patterns were robust across these different regions of the US.

Around the peak of an outbreak, a forecast with a large ensemble spread may still have util-

ity because the forecast target also increases. To account for the increased target, we use

another measure of predictability, potential prediction utility (PPU) [47,48], to quantify the

forecast uncertainty relative to the target. PPU for a prediction made at time t with a forecast

Predictability in process-based ensemble forecast of influenza
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length k is expressed as

PPU t; kð Þ �
1

1þ sðt; kÞ=�f ðt; kÞ
: ð7Þ

Recall that σ(t,k) and �f ðt; kÞ are the ensemble standard deviation and ensemble mean. The

term sðt; kÞ=�f ðt; kÞmeasures the “noise-to-signal” ratio. PPU can vary from one to zero, with

a value of one indicating a perfect prediction. In Fig 1C and 1D, the evolution of PPU after per-

turbation is compared between stochastic fluctuation and initial error. PPU for stochastic forc-

ing remains almost constant at around 0.9, indicating a stable relative uncertainty with respect

to the true signal for all perturbations. PPU for initial error, however, has more complex fea-

tures. Generally, PPU rapidly drops below 0.85 at 7 days after the perturbation, and then con-

tinues to decrease at a rate that depends on t, the time of perturbation. In Fig 1D, we observe

Fig 1. Log-transformed ensemble spread and potential prediction utility (PPU) for stochastic forcing and initial error. We generated 1,000

synthetic outbreaks forced by daily absolute humidity for New York City. Perturbations were imposed at a given time relative to the outbreak peak

(-70 days to 42 days); the evolution of log-transformed ensemble spread (base e) for the following 6 weeks (42 days) is displayed. A negative/

positive perturbation time indicates the model is perturbed before/after the peak. Perturbations were generated from a gamma distribution

Gð1=s2
p; s

2
pÞ for stochastic forcing (A) and a Gaussian distribution N ð1;s2

pÞ for initial error with a standard deviation of σp = 10% (B). Stochastic

forcing and initial error lead to similar growth patterns, but initial error exhibits faster growth. The same analysis for PPU is displayed in (C-D).

The log-transformed ensemble spread and PPU are averaged over the results from 1,000 synthetic outbreaks. In general, PPU decreases much

faster for initial error than stochastic forcing.

https://doi.org/10.1371/journal.pcbi.1006783.g001
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two blue areas with extremely low PPU. The one in the upper-left corner is attributed to the

large ensemble spread σ(t,k) produced during the exponential growth of epidemics, while the

one in the upper-right corner is due to low signal �f ðt; kÞ at the end of outbreaks. For days -20

to 0, the large signal, �f ðt; kÞ, near the peak leads to increased PPU values. The same pattern

was also observed in experiments for other cities and perturbations with σp = 5% and 15%.

From above analyses we conclude that the predictability loss in the SIRS model due to ini-

tial error is more pronounced than that from stochastic fluctuation, which is in agreement

with findings from climate models [13]. In the next section, we examine the rate and direction

of initial error growth.

Nonlinear growth of initial error. For this parsimonious 2-dimension ordinary-differen-

tial-equation model of influenza transmission, we employ singular vector analysis to estimate

the speed and direction of initial error expansion. This method has been applied with great

success in numerical weather prediction [49–51].

For the humidity-driven SIRS model (Eqs 1 and 2), we assume that model parameters

R0max, R0min, L and D do not change and define the variable vector x = (S,I)T. We then write

Eqs 1 and 2 in the form

dx
dt
¼ A xð Þ: ð8Þ

Here A(x) is the function describing the nonlinear evolution of the variable vector x. We

examine how small perturbations evolve following these nonlinear dynamics. Instantaneous

error growth for a small perturbation, δx = (δS, δI)T, at time t is given by the linear system

ddx
dt
¼ Aldx; ð9Þ

where Al ¼
dA
dx jxðtÞ is the Jacobian of the system at time t:

Al ¼

�
1

L
�
bðtÞI
N

�
1

L
�
bðtÞS
N

bðtÞI
N

bðtÞS
N
�

1

D

0

B
B
@

1

C
C
A ¼

1

D
� 1=L0 � I0 � 1=L0 � S0

I0 S0 � 1

 !

: ð10Þ

In the last expression, S0 = R0(t)S(t)/N, I0 = R0(t)I(t)/N, L0 = L/D. Recall that R0(t) = β(t)D
and note that the last matrix in Eq 10 is non-dimensional. Epidemiologically, S0 is the rescaled

effective reproductive number, i.e., the average number of infections caused by one infection

in D days in a population with S(t) susceptible people; I0 is the rescaled force of infection, i.e.,

the hazard (or rate) of a susceptible individual acquiring influenza in D days.

In a population of size N = 105, the typical error (or uncertainty) in S is of order O(103),

whereas for I it is usually of order O(102). To give the two errors approximately equal weight

we normalize the absolute errors δS and δI by their typical uncertainties η(S) and η(I): d�x¼

Wdx ¼ ðdS=ZðSÞ; dI=ZðIÞÞT with W = diag(1/η(S), 1/η(I)). For the new variable d�x, the error

growth equation becomes

dd�x
dt
¼W

ddx
dt
¼W Aldx ¼W AlW

� 1Wdx ¼ �A ld�x; ð11Þ
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where, after defining ν = η(S)/η(I),

�A l ¼W AlW
� 1 ¼

1

D
� 1=L0 � I0 � n� 1ð1=L0 þ S0Þ

nI0 S0 � 1

 !

: ð12Þ

The direction d�xðtÞ ¼ e1 that has the fastest instantaneous error growth rate at time t is the

one that maximizes the quantity

dkd�xðtÞk2
=dt

kd�xðtÞk2
: ð13Þ

The norm kxk2 is defined as kxk2 = xTx. In Eq 13, the numerator dkd�xðtÞk2
=dt quantifies

the instantaneous growth rate of kd�xðtÞk2
(square of the Euclid length of d�xðtÞ). The denomi-

nator normalizes this growth rate by kd�xðtÞk2
. Therefore, Eq 13 represents the relative instan-

taneous growth rate of a perturbation d�xðtÞ. If we consider unit perturbations with

kd�xðtÞk2
¼ 1, the growth rate is solely determined by dkd�xðtÞk2

=dt.
Because, by Eq 11

dðd�xTd�xÞ
dt

¼ d�xT dd�x
dt
þ

dd�xT

dt
d�x ¼ d�xT �A l þ

�A l
T

� �
d�x; ð14Þ

the direction e1 that grows the fastest is the solution of the eigenvalue problem

ð�A l þ
�A l

T
Þe1 ¼ l1e1: ð15Þ

The largest eigenvalue (the fastest growth rate) λ1 may be found analytically:

Dl1 ¼ S0 � I0 � 1 � 1=L0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðI0 þ S0 � 1þ 1=L0Þ2 þ ðn� 1=L0 þ n� 1S0 � n I0Þ2
q

: ð16Þ

The principal eigenvector e1 is called the singular vector of the system [48]. It is an approxi-

mation of the local Lyapunov vector [52–54]. Note that the singular vector is different from

the principal eigenvector of the Jacobian �A l. The impact of each variable or parameter on the

(non-dimensional) error growth rate Dλ1 can be calculated from Eq 16. Since L 2 [1,10] years

� D 2 [2,7] days, we will omit the term 1/L0 = D/L hereafter.

To validate Eq 16, we calculated the maximal error growth rate numerically and then com-

pared it with the theoretical value. At each day t after the beginning of an outbreak, we

imposed an ensemble of perturbations on x along different directions in the (S,I) plane: δx =

(cos(2kπ)η(S), sin(2kπ)η(I))T (k = 1/360,� � �, 1, η(S) = 103, η(I) = 102) ðd�x ¼ ðcosð2kpÞ; sinð2kpÞÞT

in the normalized space). Both the unperturbed and perturbed trajectories were evolved forward

for δt = 0.1. We then calculated the error at t + δt and the maximal error growth rate among all per-

turbations according to Eq 13. In Fig 2, we compare the numerically calculated maximal error

growth rate r(t) with that predicted by Eq 16 for the SIRS models with or without humidity forcing.

In both cases, the maximal error growth rate is well predicted by Eq 16. Further, according to the

overlaid epidemic curves, error growth is most pronounced at the early stage of outbreaks, indicat-

ing that model dynamics are more sensitive to the errors introduced early in the season. We

repeated this analysis for 1,000 synthetic outbreaks, and display the distribution of discrepancy

between theoretical and simulated error growth rate in S1 Text and Fig H. Results indicate a satis-

factory performance from the theoretical prediction of Eq 16.

To identify realistic combinations of (S0,I0), we generated 1,000 synthetic outbreaks using

the SIRS model forced by humidity conditions for New York City starting from October 1st.

The distribution of S0 and I0 in the (S0,I0) plane, calculated from these synthetic outbreaks over

Predictability in process-based ensemble forecast of influenza
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280 days (40 weeks), is shown in Fig 3A. We display the contour of Dλ1 as a function of S0 and

I0 in Fig 3B (η(S) = 103, η(I) = 102). The area contained by the black dashed line marks the

region of (S0,I0) in Fig 3A with probability of occurrence higher than 10−5. In this feasible

region, Dλ1 is quite sensitive to S0 but less sensitive to I0 such that the error growth rate

depends primarily on the size of the susceptible population. Epidemiologically, this indicates

that the uncertainty of future, predicted incidence is more strongly linked to the proportion of

susceptible people in the population than to the proportion of infected individuals. For each

particular outbreak, we can draw its trajectory in the S0 − I0 plane and observe how the growth

rate changes over time (see the red trajectory in Fig 3B for an example).

The fastest error growth direction can be estimated by the eigenvector e1 = (e11,e12)T corre-

sponding to λ1. We quantify the direction of e1 by θ1 = arctan (e12/e11) (in degrees from −90˚

to 90˚), and show its contour in Fig 3C. In the middle of the feasible region is a singular point

Fig 2. Comparison of the simulated and theoretical values of the maximal error growth rate. For SIRS models with constant β = 1.2 (A) and humidity

forced β (B), we compare the maximal error growth rate at different phases in an outbreak as predicted by Eq 16 and calculated from simulations. The initial

condition and parameters in A are set as N = 105, S = 0.5 × 105, I = 100, β = 1.2, L = 730 days and D = 5 days. B uses the setting N = 105, S = 0.5 × 105, I = 100,

R0max = 3.5, R0min = 1.2, L = 730 days and D = 5 days, where β is forced by daily absolute humidity for New York City starting from October 1st. The x-axis

shows the time (day) after the beginning of model integration. Errors in S and I are normalized by η(S) = 103 and η(I) = 102. The red line shows the simulated

outbreak as reference. In both cases, the simulated error growth rates are well predicted by their theoretical values.

https://doi.org/10.1371/journal.pcbi.1006783.g002
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where �A l þ
�A l

T
degenerates to diag(0,−0.02). In fact, the singular point is the vertex of the

parabola of Dλ1 = 0 defined by Eq 16 (Fig 3B). At this point, we have e1 = (0,1)T where e12/e11

diverges. An epidemic could reach this singular point. This would lead to the divergence of θ1

around this point but would not affect the epidemic process described by Eqs 1 and 2.

During the epidemic process marked by the red curve in Fig 3C, θ1 first changes from

approximately −40˚ to −90˚, and then from 90˚ to 0˚. Note that e1 and −e1 (the opposite of e1)

are both eigenvectors. Thus, the directions between −90˚ and 0˚ are equivalent to their

Fig 3. Impact of model parameters on the maximal error growth rate. (A) Distribution of S0 = R0(t)S(t)/N and I0 = R0(t)I(t)/N for 1,000 synthetic outbreaks.

The color shows the logarithmic probability (base 10) derived from synthetic outbreaks, forced by humidity conditions for New York City, for 280 days (40

weeks) after October 1st. (B) The contour of Dλ1 as a function of S0 and I0 is generated from Eq 16, in which the parameter L0 is omitted due to its nominal

effect. Errors are normalized by η(S) = 103 and η(I) = 102. Dλ1 quantifies the error growth rate given a certain infectious period D. Contour lines correspond to

Dλ1 values ranging from 0 (blue) to 2 (yellow) with an interval of 0.1. The contour line corresponding to λ1 = 0 is highlighted. The black dashed line marks the

feasible region of (S0,I0) for synthetic outbreaks with probability higher than 10−5 in (A). The red curve shows the trajectory of one particular outbreak in the S0
− I0 plane. As the outbreak unfolds, the error growth rate first increases and then gradually decreases, implying an increased ensemble spread in the forecast

system attributable to the model dynamics near the outbreak peak. (C) The contour of θ1 = arctan(e12/e11) (in degree from −90˚ to 90˚) that represents the

direction of the eigenvector e1 = (e11,e12)T corresponding to λ1. The x-coordinate e11 and y-coordinate e12 represent the projections of e1 on S0 and I0,
respectively. Contour lines indicate values from −90˚ (blue) to 90˚ (yellow) with an interval of 5˚. During the epidemic process marked by the red curve, θ1 first

changes from around −40˚ to −90˚, and then from 90˚ to 0˚. This suggests that the fastest error growth direction moves to align with I0 (e12 > e11) during the

first stage of the outbreak and then gradually turns to S0 (e11 > e12).

https://doi.org/10.1371/journal.pcbi.1006783.g003
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opposite directions between 90˚ and 180˚. In this sense, the fastest error growth direction

evolves continuously from 140˚ to 0˚. Recall that e11 and e12 represent the projections of e1 on

S0 and I0, respectively. This implies, in the normalized space, the error growth direction gradu-

ally moves to align with I0 (e12 > e11) at the early phase and then turns to S0 (e11 > e12) in the

end.

Fig 3 provides a simplified picture to interpret the impact of parameters on error growth.

According to Eq 16, the second eigenvalue λ2 is always negative. Therefore, errors along the

direction of the eigenvector corresponding to λ2 will always contract, and the only concern is

for error growth along e1. The growth rate and direction of these errors are described in Fig 3B

and 3C. Varying D changes the time scale of error growth; changing R0 modifies the position

of (S0,I0) in the (S0,I0) plane by a given scaling parameter. The evolution of error growth for an

outbreak can be tracked in a trajectory in the (S0,I0) plane, as plotted in Fig 3B and 3C.

As the error growth in the dynamical model is intrinsically nonlinear, it may deviate from

the linear approximation characterized by the matrix �A l þ
�A l

T
. By using a linearized system to

study error growth, we assume that the linear approximation generally captures the behavior

of the full nonlinear system within a certain time interval. To verify this assumption, it is

important to quantify the deviation of the linear approximation from the full nonlinear system.

In Fig 4, we compare the error growth in the nonlinear system with approximations at four dif-

ferent phases of an outbreak (t = 5, 10, 15, and 20 weeks). At each time point t, we added an

ensemble of errors δx = (cos(2kπ)η(S), sin(2kπ)η(I))T (k = 1/360,� � �, 1, η(S) = 103, η(I) = 102)

(equivalently, d�x ¼ ðcosð2kpÞ; sinð2kpÞÞT in the normalized space) to the variables and bred

the errors for 7 days. We display the largest error kd�xðt þ dtÞk2
after δt, and compare it with

two approximations: 1) a linear extrapolation ð1þ l1dtÞkd�xðtÞk2
, and 2) an exponential

growth expðl1dtÞ kd�xðtÞk2
for kd�xðtÞk2

¼ 1. Here λ1 is the largest eigenvalue of the linear

propagator �A l þ
�A l

T
. As shown in Fig 4, the exponential approximation provides a good agree-

ment with the full nonlinear growth at the early stage, indicating that the error will grow expo-

nentially with a rate λ1. The linear approximation, however, is only valid for small δt and tends

to underestimate the error growth after 2 days, especially before the outbreak peak. The largest

eigenvalue λ1, although obtained from a linearized system, can reliably quantify the speed of

nonlinear error growth between two successive observations.

Applications in conjunction with the EAKF. The above analyses are performed on the

assumption that model parameters and variables are known. In an operational forecast, unob-

served parameters and variables can be estimated using data assimilation techniques. In this

work, we use the ensemble mean of parameters and variables obtained using the EAKF to cal-

culate the matrix �A l þ
�A l

T
. Error normalization denominators η(S) and η(I) are set as the 95

percentile of ensemble member distance to the ensemble mean so that most errors fall within

the unit circle. Outliers are not considered due to their large variation. In order to inspect the

estimation bias in error growth rate λ1 and direction e1, we ran the SIRS-EAKF system with

n = 300 ensemble members for 1,000 synthetic outbreaks for which the actual λ1 and e1 can be

calculated, and computed the estimated l̂1 and ê1 in 40 consecutive weeks. In Fig 5A, we dis-

play the distribution of estimation bias in error growth rate Dl ¼ l̂1 � l1, grouped by the pre-

dicted lead to peak ranging from -10 weeks to 6 weeks (a negative predicted lead indicates the

peak is predicted to occur in the future; a positive lead indicates the peak is predicted to have

already passed). The boxes and whiskers indicate the interquartile and the minimal and maxi-

mal values. In general, Δλ is distributed around 0 within a small range, suggesting that the

error growth rate λ1 can be well estimated. The bias in e1 is quantified by the angular deviation

from ê1 to e1 (in degree from 0˚ to 90˚) y ¼ arccosðêT
1
e1Þ. The distributions of θ are shown in
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Fig 5B. The estimation bias θ is low for the majority of cases. As a result, the estimated ê1 gen-

erally has a large projection on the actual e1.

Retrospective forecast of historical influenza outbreaks

Optimal perturbation for ensemble forecasts. As in numerical weather and climate pre-

diction, information on error growth can be harnessed to improve the forecast quality of the

model-data assimilation system. In principle, perturbations along the fastest error growth

direction, termed optimal perturbations [4], are imposed when the ensemble spread needs

to be enlarged to account for uncertainty in targets. Specifically, for each ensemble member,

we adjust the component of d�x¼ ðdS=ZðSÞ; dI=ZðIÞÞ
T

along the estimated ê1 by a factor k:

ðd�x
T
ê1Þê1 ! kðd�x

T
ê1Þê1, and use the adjusted variables to project the model ensemble into the

future to make forecast. Model parameters are not adjusted. The deviations δS and δI are

obtained from the difference between the ensemble member and ensemble mean. If k> 1, the

perturbation expands the distribution of variables along ê1 in the normalized space. Since the

variability of incidence and dynamical error growth rate changes over time, we assign different

perturbation intensities at different predicted lead to peak.

To determine the perturbation intensity k needed for each predicted lead, we optimized k
to improve the forecast quality of near-term predictions, here meaning the forecast of

Fig 4. Approximation of the nonlinear error growth at different phases. We inspect whether nonlinear error

growth can be approximated by the linearized system at different stages of the outbreak. Starting from t = 5 weeks, we

display the error kd�xðt þ dtÞk2
in the following week obtained from simulation with full nonlinearity (blue lines), and

compare it with approximations using a linear extrapolation ð1þ l1dtÞkd�xðtÞk2
(red lines) and an exponential growth

expðl1dtÞkd�xðtÞk2
(yellow lines). The initial error is set as kd�xðtÞk2

¼ 1. The growth rate λ is calculated from Eq 20,

where η(S) = 103 and η(I) = 102. The same analyses at t = 10, 15 and 20 weeks are shown in other insets. The epidemic

curve is generated from the SIRS model forced by the humidity condition for New York City starting from October 1st.

The exponential approximation agrees well with the simulated error at 5 and 10 weeks, whereas the linear

approximation is only valid within a short time period. At weeks 15 and 20 (after peak), both the exponential and

linear approximations give satisfactory estimates of the nonlinear simulation.

https://doi.org/10.1371/journal.pcbi.1006783.g004
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incidence in the next one to four weeks ahead. The quality of probabilistic forecasts can be

measured using a reliability plot [55]. We divide the forecast range into 14 categories:

[0,1 × 103),� � �,[1.2 × 104, 1.3 ×104), [1.3 × 104,1) (infections per 105 people). For a large num-

ber of forecasts, we can calculate the probability of falling into each category Ppred(i), averaged

over the full ensemble distribution of multiple forecasts, as well as the actual observed fre-

quency of occurrence in each category Poccur(i). The 14 points (Ppred(i),Poccur(i)) form the reli-

ability plot. A perfect probabilistic forecast satisfies Ppred(i) = Poccur(i) for 1� i� 14. In the

reliability plot, this means all 14 points fall on the diagonal line y = x. Here, we use the devia-

tion of the points from the diagonal line ∑i|Ppred(i) − Poccur(i)| to quantify the forecast quality.

Our objective is to minimize the average deviation for lead times of one to four weeks over pre-

dictions from -8 to 6 weeks relative to the predicted peak.

We optimized the perturbation intensity using simulated annealing [56] (see details in S1

Text, Fig I). To give a fair evaluation of the perturbation procedure, half of historical outbreaks

in 95 US cities during the 2003–2004 through 2013–2014 seasons (excluding the 2008–2009

and 2009–2010 pandemic seasons) were used in the optimization, and the other half were used

in out-of-sample validation. The historical outbreaks selected for training and validation are

reported in S1 Text (Table A). (The Matlab code and data for retrospective forecast are pro-

vided in S1 Code). To understand the baseline behavior of the SIRS-EAKF system, we display

the reliability plots for 1- to 4-week prediction in S1 Text, grouped by the predicted lead to

peak. In general, reliability plots have a greater deviation from the diagonal line at predicted

lead between 0 to 6 weeks (Figs J-M).

In Fig 6A, the reduction of deviation in the reliability plot is shown for different predicted

leads. The deviation in the reliability plot (y-axis) is averaged over 4 targets, i.e., 1- to 4-week

Fig 5. Estimation bias in error growth rate and direction using the EAKF for synthetic outbreaks. We use the EAKF to infer model parameters

and variables for 1,000 different synthetic outbreaks generated using the humidity-driven SIRS model, and calculate the error growth rate l̂ 1 and

direction ê 1. Normalization denominators η(S) and η(I) are set as the 95 percentile of ensemble members’ deviations from ensemble mean.

Distributions of the estimation bias in error growth rate Dl ¼ l̂ 1 � l1 and the angular deviation from ê 1 to e1 (in degree from 0˚ to 90˚) y ¼

arccosðê T
1
e1Þ are reported in (A-B). The boxes and whiskers indicate the interquartile and the minimal and maximal values. The x-axis indicates

the relative forecast time with respect to the predicted peak, i.e., forecast week minus predicted peak week. A negative predicted lead indicates the

peak is predicted to occur in the future, whereas a positive lead indicates the peak is predicted to have already passed. For all predicted leads to

peak, the deviation of the error growth rate, λ1, is distributed around 0, and the angular deviation of e1 is mostly below 10˚. As a result, the error

growth rate and direction estimated using the EAKF can be used to generate perturbations of the forecast system.

https://doi.org/10.1371/journal.pcbi.1006783.g005
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predictions. Figures breakdown for each target are shown in S1 Text (Figs N-O). Improvement

is most pronounced around and after the peak. The inset shows the optimized perturbation

intensity k. According to the optimization, perturbations have roughly three phases: 1) -8 to -5

weeks. Errors have a slow growth at the early stage of an outbreak. Therefore, the ensemble

spread needs to be expanded (k> 1). However, since the targets remain low without too much

variation, this expansion should not be too large. 2) -4 to -1 week. Errors can expand exponen-

tially during the rapid growth of an outbreak. The dynamical expansion alone is enough to

generate ensemble spread. No additional expansion is needed (k� 1). 3) After 0 week. The

error growth rate becomes lower after the peak where targets drop fast from high to low values.

A strong expansion is needed to supplement the ensemble spread and capture the large varia-

tion in targets.

To validate the perturbation procedure, we ran retrospective forecasts for the rest of the his-

torical outbreaks using the optimized perturbation intensity. Weekly forecasts of incidence

during the next one to four weeks were generated. In Fig 6B, we compare the average deviation

in the reliability plot for these 4 targets between the baseline (without perturbation) and the

perturbed system. Forecasts are improved as in the training data set (Fig 6A), indicating there

is no over-fitting issue.

We also used the “log score” to assess the forecast accuracy. For each forecast target, the

n = 300 ensemble trajectories are grouped into 14 bins as defined before. The fraction of trajec-

tories falling in each bin i is the corresponding predicted weight wi. If the observed target falls

in bin h, the log score L for a given forecast is defined as the logarithmic value (base e) of the

weight in bin h: L ¼ logðwhÞ. If the log score is below -10, we use the floor value of -10. Similar

score measures have been used in the US Centers for Disease Control and Prevention’s real-

time influenza forecast challenge [2,3]. (In S1 Data, we provide the forecast results for the base-

line and perturbed EAKF in the format of the influenza forecast challenge.) In Fig 7, we

Fig 6. Reduction of deviation in reliability plot achieved by perturbation in retrospective forecast. We use half of

historical outbreaks in 95 US cities during the 2003–2004 through 2013–2014 seasons (excluding the 2008–2009 and

2009–2010 pandemic seasons) to optimize the perturbation intensity in which the deviation of the reliability plot is

minimized. Inset shows the optimized perturbation strategy. The comparison of average deviation for baseline and

perturbed SIRS-EAKF systems is presented in (A). We validate the perturbation procedure using the other half of

historical outbreaks, and report the comparison of average deviation in (B). For both training and validation data, the

perturbation procedure (red bars) reduces reliability plot deviation, particularly for predicted leads between 0 and 6

weeks.

https://doi.org/10.1371/journal.pcbi.1006783.g006
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compare the log scores of 1- to 4-week forecasts grouped by predicted lead. Comparison of the

log scores obtained from the baseline and perturbed SIRS-EAKF forecasts indicates that the

perturbation procedure improves short-term forecast accuracy for historical outbreaks, partic-

ularly for forecasts generated near and after peak, i.e., after -1 week. This improvement,

observed for both training and out-of-sample seasons, substantially enhances the forecast qual-

ity near the peak, where the prediction task is the most challenging. In S1 Text, we report the

5%, 25%, 50%, 75% and 95% percentiles of log scores at each predicted lead to peak for 1- to

4-week prediction (Table B). In general, the perturbation procedure dramatically improves the

5% percentile scores (i.e., bad predictions) at predicted leads between 0 and 6 weeks.

Discussion

In this work, we show that within a humidity-driven compartmental model used for influenza

forecast, the error introduced from initial conditions grows faster than error derived from sto-

chastic fluctuations when these errors are of roughly the same magnitude. For other infectious

diseases with lower incidence, however, stochastic effects may play a more crucial role deter-

mining the predictability of model dynamics [29–35,57].

In the application of optimal perturbations presented here, we make use of the nonlinear

growth of initial error to expand the ensemble spread. This procedure is demonstrated to be

effective in enhancing short-term forecast quality by inflating the distribution of ensemble

members along the fastest error growth direction. As a consequence, the efficiency of each

Fig 7. Log scores from training and out-of-sample retrospective forecast using the baseline and perturbed

SIRS-EAKF systems. Results are averaged for weekly forecasts for a randomly chosen half (training) and the rest

(validation) of historical outbreaks in 95 US cities during the 2003–2004 through 2013–2014 seasons, excluding the

2008–2009 and 2009–2010 pandemic seasons. The perturbation procedure improves log scores for all four targets,

predominantly at the predicted leads between 0 to 6 weeks.

https://doi.org/10.1371/journal.pcbi.1006783.g007
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ensemble member is improved because the perturbed ensemble can explore a larger region of

state-space. This implies, for a certain level of forecast accuracy, forecast systems with pertur-

bations would require a smaller number of ensembles. For high-dimensional forecast systems

that involve large numbers of localities, such as the system developed in Ref. [6], it should be

possible to generate a similar perturbation procedure that reduces ensemble size and thus

computational burden.

The mechanistic epidemic model employed here is mis-specified–i.e. it does not represent

the full complexity of influenza transmission as it occurs in the real world. For a mis-specified

model, initial conditions must be well constrained or error growth will likely deteriorate long-

term predictions. If too large, such initial condition error in a mis-specified model will pro-

duce unrealistic trajectories that are outside the scope of the real world. (Forecasts generated

using a better-specified model also require well-constrained initial conditions; however, the

issue of improper initial conditions is more problematic for more grossly mis-specified mod-

els, as data assimilation becomes less effective due to the increasing model flaws.) Data assimi-

lation, such as with the EAKF, is a means of partially handling the effects of both model mis-

specification and state space error; however, data assimilation methods do not address dynam-

ical error growth. In a recent related work [58], we explored initial condition error growth

using a numerical technique–the breeding method–and proposed a method to counteract

unrealistic errors growth in the SIRS model. We diagnosed the error structure between unob-

served variables and observations using the breeding method, and then examined the devia-

tion of the prediction from observations to further constrain the system using that error

growth structure [58]. This error correction procedure does not necessarily reduce the spread

of ensemble trajectories or variable/parameter distributions, but does in effect calibrate unreal-

istic trajectories toward realistic regions in the state space under the assumption that the SIRS

model can reasonably well describe the transmission dynamics.

Both optimal perturbation and error correction make use of error growth in the dynamical

model; however, the two approaches employ different techniques and perceive the role of

error growth from opposite perspectives. First, optimal perturbation examines the linearized
system in a short time period and uses an analytical singular vector analysis to find the fastest

error growth direction; whereas in error correction, the error structure is diagnosed using a

numerical method–the breeding method–which fully preserves the nonlinear dynamics. Sec-

ond, in optimal perturbation, the error growth is beneficial to short-term forecast because it

increases the spread of prediction; however, in error correction, the error growth is detrimental
for unrealistic trajectories so that it should be counteracted to calibrate those trajectories

toward reasonable regions in the state space. The latter error correction improves the forecast

of seasonal targets, e.g., peak week, peak intensity and attack rate. A systematic comparison

between optimal perturbation and error correction is needed; however, this task is nontrivial

and goes beyond the scope of this study.

The approach presented here does not address model mis-specification but instead uses sin-

gular vector analysis to develop optimal perturbations of the ensemble that improve forecast

accuracy. The findings indicate that, even for prediction using a simple SIRS model, forecast

accuracy can be heavily impacted by factors such as system initialization, ensemble spread,

model nonlinearity and error structure. Our challenge going forward is to design operational

forecasting systems that optimize and balance all these factors.
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33. Finkenstädt BF, Grenfell BT. Time series modelling of childhood diseases: a dynamical systems

approach. J Royal Stat Soc C. 2000; 49: 187–205.
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