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Abstract: The effects of Al–Ti–C and La on the fluidity of a ZL205A alloy after separate and combined
addition were studied by conducting a fluidity test. The fluidity of the ZL205A alloy first increased
and then decreased with the increasing addition of Al–Ti–C and La; it peaked at 0.3% and 0.1% for
Al–Ti–C and La, respectively. The combined addition of Al–Ti–C and La led to better fluidity, which
increased by 74% compared with the base alloy. The affecting mechanism was clarified through
microstructure characterization and a DSC test. The heterogeneous nucleation aided by Al–Ti–C and
La, the number of particles in the melt, and the evolution of the solidification range all played a role.
Based on the evolution of the fluidity and grain size, the optimal levels of Al–Ti–C and La leading to
both high fluidity and small grain size were identified.
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1. Introduction

Aluminum alloys are widely used in the aircraft and automobile industry due to their
low density and high strength [1,2]. The development of vehicle components requires
aluminum alloys with higher strength and heat resistance. Al–Cu is a series of high–
strength alloys with an Al–Cu phase precipitated during aging treatment [3]. ZL205A
is an Al–Cu–based alloy and exhibits good mechanical properties; however, its wide
freezing range leads to low fluidity, which may result in incomplete mold filling or casting
defects during the production of its thin–walled components and the deterioration of
its mechanical properties [4,5]. The fluidity of the alloy can be enhanced by optimizing
the casting conditions, such as superheat, mold temperature, and pressure [6,7]; or by
tailoring the solidification characteristics and thermophysical properties of the alloy [8–11].
However, the former approach may bring about other problems, so the latter is preferable.

Many studies reported the correlation between microstructure refinement/modification
and enhanced fluidity [9,12]. Niu et al. [9] reported that Ce improves the fluidity of A356
alloy through the refinement of α–Al and the modification of eutectic Si. The mixed rare–
earth addition of La and Yb refined the microstructure and modified the morphology of
Al8Si6Mg3Fe, which increased its fluidity [13]. However, the addition of Cu to Al–Mg–Si
alloy decreased its fluidity due to the refinement of the second phases, which increased
surface area, leading to high flow resistance [14]. Prukkanon [12] reported the effect of
the addition of Sc on the fluidity of A356 alloy and found a refined microstructure and
increased fluidity after the addition of Sc; however, the alloy with the finest grain does
not correspond to the highest fluidity. Since the alloying elements affect the fluidity of
aluminum alloys by modifying the solidification range, the dendrite coherency tempera-
ture, and phase composition aside from microstructure refinement/modification [15], it is
difficult to analyze the effect of grain refinement on the fluidity of aluminum alloys.
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Al–Ti–C is a potent grain refiner for aluminum alloys, so Al–Ti–C is added to alu-
minum alloy to study the effect of grain refinement on the fluidity of aluminum alloy.
Moreover, Ding et al. [16] found that the refining efficiency of the Al–Ti–C–La composite
materalloy is more effective than without La, and Li et al. [6] found that La increases
the fluidity of aluminum alloy. However, the combined effect of Al–Ti–C and La on the
fluidity of aluminum alloy is not known. This information could aid in the development
and application of grain refiners containing Al–Ti–C and La to achieve both high grain
refinement potential and a positive effect on fluidity.

In this study, Al–Ti–C and La were added to the ZL205A alloy separately and syner-
gistically to study their effect on the fluidity of the alloy. A special melt pouring system
was designed for the fluidity measurement to ensure precise control over the velocity
head and elevation head, which allowed a more accurate evaluation of the effect of al-
loy composition on the fluidity. The experimental results will benefit the optimization
of fluidity of ZL205A alloy and provide insight into the composition design of other
Al–Cu alloys.

2. Materials and Methods

Pure Al, pure Cd, Al–50%Cu, Al–4%V, Al–10%Mn, Al–4%Zr, Al–10%La, Al–4%Ti–
1%B and Al–5%Ti–0.5%C master alloys were used to prepare the experimental alloy
(all compositions in this study were in wt.%). ZL205A has a composition of 4.95% Cu,
0.12% V, 0.49% Mn, 0.13% Zr, 0.25% Ti, 0.14% Cd, 0.01% Fe, 0.02% Si, and is balanced with
Al. The content of Al–Ti–C varies between 0.1% and 0.7% and the La content ranges from
0.01% to 0.2%. Pure Al was melted in a resistance furnace under 730 ◦C. The alloying
elements, Al–Ti–C, and Al–La master alloys were added, followed by mechanical stirring
and degassing with C2Cl6.; the adopted melting process was typical of that used for Al–Cu
alloys [4,17,18]. The melt was then poured into the crucible above the fluidity test mold,
as shown in Figure 1a. After the temperature stabilized at 710 ◦C, the upward movement
of the graphite bar controlled by the displacement controller led to the pouring of the
melt into the sand mold. Figure 1b shows the typical fluidity test specimen; the length
of the spiral fluidity sample was measured after the casting was cooled down to room
temperature. The fluidity reported for each alloy is the average of at least two samples.

Materials 2021, 14, x FOR PEER REVIEW 2 of 8 
 

 

Al−Ti−C is a potent grain refiner for aluminum alloys, so Al−Ti−C is added to alumi-
num alloy to study the effect of grain refinement on the fluidity of aluminum alloy. More-
over, Ding et al. [16] found that the refining efficiency of the Al−Ti−C−La composite ma-
teralloy is more effective than without La, and Li et al. [6] found that La increases the 
fluidity of aluminum alloy. However, the combined effect of Al−Ti−C and La on the flu-
idity of aluminum alloy is not known. This information could aid in the development and 
application of grain refiners containing Al−Ti−C and La to achieve both high grain refine-
ment potential and a positive effect on fluidity. 

In this study, Al−Ti−C and La were added to the ZL205A alloy separately and syner-
gistically to study their effect on the fluidity of the alloy. A special melt pouring system 
was designed for the fluidity measurement to ensure precise control over the velocity 
head and elevation head, which allowed a more accurate evaluation of the effect of alloy 
composition on the fluidity. The experimental results will benefit the optimization of flu-
idity of ZL205A alloy and provide insight into the composition design of other Al−Cu 
alloys. 

2. Materials and Methods 
Pure Al, pure Cd, Al−50%Cu, Al−4%V, Al−10%Mn, Al−4%Zr, Al−10%La, 

Al−4%Ti−1%B and Al−5%Ti−0.5%C master alloys were used to prepare the experimental 
alloy (all compositions in this study were in wt.%). ZL205A has a composition of 4.95% 
Cu, 0.12% V, 0.49% Mn, 0.13% Zr, 0.25% Ti, 0.14% Cd, 0.01% Fe, 0.02% Si, and is balanced 
with Al. The content of Al−Ti−C varies between 0.1% and 0.7% and the La content ranges 
from 0.01% to 0.2%. Pure Al was melted in a resistance furnace under 730 °C. The alloying 
elements, Al−Ti−C, and Al−La master alloys were added, followed by mechanical stirring 
and degassing with C2Cl6.; the adopted melting process was typical of that used for 
Al−Cu alloys [4,17,18]. The melt was then poured into the crucible above the fluidity test 
mold, as shown in Figure 1a. After the temperature stabilized at 710 °C, the upward move-
ment of the graphite bar controlled by the displacement controller led to the pouring of 
the melt into the sand mold. Figure 1b shows the typical fluidity test specimen; the length 
of the spiral fluidity sample was measured after the casting was cooled down to room 
temperature. The fluidity reported for each alloy is the average of at least two samples. 

 
Figure 1. Schematic illustration of the fluidity test apparatus (a) and a typical spiral fluidity sample 
(b). 

The metallographic specimens were cut from the spiral samples, ground, polished, 
and anodized with HFB4 or etched with 0.5% HF solution. An optical microscope (ZEISS, 
Oberkochen, German) and a scanning electron microscope (HITACHI, Tokyo, Japan) 
were used to characterize the microstructure of the alloys. The DSC measurement was 
conducted on the setaramLabsys (SETARAM, Lyon, France) with a temperature range of 

Figure 1. Schematic illustration of the fluidity test apparatus (a) and a typical spiral fluidity sample (b).

The metallographic specimens were cut from the spiral samples, ground, polished,
and anodized with HFB4 or etched with 0.5% HF solution. An optical microscope (ZEISS,
Oberkochen, German) and a scanning electron microscope (HITACHI, Tokyo, Japan) were
used to characterize the microstructure of the alloys. The DSC measurement was conducted
on the setaramLabsys (SETARAM, Lyon, France) with a temperature range of 20–800 ◦C, a
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heating rate of 10 ◦C/min, and a cooing rate of 20 ◦C/min under the protection of flowing
Ar gas.

3. Results and Discussion

The evolution of the fluidity of the ZL205A alloy with the increasing content of Al–Ti–
C is shown in Figure 2a. A non–monotonic relationship between the content of Al–Ti–C
and fluidity can be observed. With the increasing content of the Al–Ti–C, the fluidity first
increased and then decreased; it peaked at 0.3%, with an 18% increase in fluidity compared
with the untreated ZL205A alloy. The effect of the addition of La on the fluidity is shown
in Figure 2b: the fluidity first increased and then decreased with the increasing content
of La. The optimal content was 0.1% within the experimental range in this study, which
corresponded to a sharp increase in the spiral sample’s length from 596 mm of the untreated
alloy to 955 mm, an increase of 60%.

Materials 2021, 14, x FOR PEER REVIEW 3 of 8 
 

 

20−800 °C, a heating rate of 10 °C/min, and a cooing rate of 20 °C/min under the protection 
of flowing Ar gas. 

3. Results and Discussion 
The evolution of the fluidity of the ZL205A alloy with the increasing content of 

Al−Ti−C is shown in Figure 2a. A non−monotonic relationship between the content of 
Al−Ti−C and fluidity can be observed. With the increasing content of the Al−Ti−C, the 
fluidity first increased and then decreased; it peaked at 0.3%, with an 18% increase in flu-
idity compared with the untreated ZL205A alloy. The effect of the addition of La on the 
fluidity is shown in Figure 2b: the fluidity first increased and then decreased with the 
increasing content of La. The optimal content was 0.1% within the experimental range in 
this study, which corresponded to a sharp increase in the spiral sample’s length from 596 
mm of the untreated alloy to 955 mm, an increase of 60%. 

 

Figure 2. The fluidity of the ZL205A alloy with different levels of (a) Al−Ti−C and (b) La. 

Considering the beneficial effects of both Al−Ti−C and La on the fluidity of the 
ZL205A alloy, the effect of the combined addition of Al−Ti−C and La was investigated. 
The content of Al−Ti−C and La was chosen to be 0.3% and 0.1%, respectively, in accord-
ance with their optimal contents when added separately. The results are shown in Figure 
3. The fluidity of the untreated ZL205A and the alloy with the addition of either Al−Ti−C 
or La are also plotted for comparison. The combined addition of Al−Ti−C and La demon-
strated the highest fluidity, with an increase in the spiral sample’s length by 74% com-
pared with the untreated alloy. 

 
Figure 3. Effect of combined addition of Al−Ti−C and La on the fluidity of ZL205A alloy. 

Figure 2. The fluidity of the ZL205A alloy with different levels of (a) Al–Ti–C and (b) La.

Considering the beneficial effects of both Al–Ti–C and La on the fluidity of the ZL205A
alloy, the effect of the combined addition of Al–Ti–C and La was investigated. The content
of Al–Ti–C and La was chosen to be 0.3% and 0.1%, respectively, in accordance with their
optimal contents when added separately. The results are shown in Figure 3. The fluidity
of the untreated ZL205A and the alloy with the addition of either Al–Ti–C or La are also
plotted for comparison. The combined addition of Al–Ti–C and La demonstrated the
highest fluidity, with an increase in the spiral sample’s length by 74% compared with the
untreated alloy.
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To clarify the reason for the evolution of the fluidity with the addition of Al–Ti–C and
La, and the synergistic effect of Al–Ti–C and La in enhancing the fluidity of the ZL205A
alloy, the microstructure of the alloys was studied. ZL205A presented relatively coarse
and inhomogeneous grains around 200 µm, as shown in Figure 4a, which resulted from
the low cooling rate of the alloy in the sand mold. The addition of Al–Ti–C refined the
microstructure, as shown in Figures 4b–d and 5a. A sharp decrease in grain size was
observed after the addition of 0.1% Al–Ti–C, and the grain size decreased gradually with
the increasing content of Al–5Ti–0.5C. This was consistent with the phenomenon that
nucleation is independent of the number of potent particles when its fraction exceeds a
certain value [19]. The grain size first decreased and then increased with the increasing
La content, and 0.1% La demonstrated the highest efficiency for grain refinement, as
shown in Figures 4e–g and 5b. The combined addition of 0.3% Al–5Ti–0.5C and 0.1% La
demonstrated the most potent effect on grain refinement; the grain size decreased to
110 µm, as shown in Figure 4h.
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(h) 0.3% Al–Ti–C + 0.1% La.
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The microstructure of the ZL205A fluidity test sample demonstrated equiaxed dendrite
near the sand mold wall, as opposed to columnar dendrite; therefore, the solidification
progressed not through the advancement of the planar interface, but in a bulk manner [20].
The low density of the nucleation site in the base alloy made a few nuclei grow rapidly and
form grains with large sizes and developed dendrite due to the lack of high–solute nuclei
around them. These large grains with highly developed dendrite structures contacted each
other and hindered the flow of the melt, resulting in low fluidity. After the addition of
Al–Ti–C or La, the Al3Ti and TiC in the Al–5Ti–0.5C acted as heterogeneous nucleation
sites for α–Al; the addition of La also aided the nucleation of the grains by acting as a
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surfactant and decreased the contact angle between the nucleus and the substrate [10]. The
increased number of nuclei led to overlapping solute fields and a reduced growth rate
among the grains, which delayed the choke of the flow channel. This was consistent with
what was found in the solidification of the ZL205A alloy under the traveling magnetic
field, where the second dendritic arm and dendritic overlap were broken and the feeding
channel widened [4], except that the formation of the large microstructure and dendritic
overlap were restricted in the first place with the addition of Al–Ti–C and La. Based on the
above analysis, smaller grains should have corresponded to high fluidity; however, this
was not the case, as shown in Figure 2. To clarify the phenomenon, the evolution of the
second phases in the alloy after the addition of Al–Ti–C and La were analyzed.

Needle–shaped or blocky Al3Ti and dotted TiC were observed after the addition of
Al–Ti–C, and their fraction increased with increasing content of Al–Ti–C, as represented
by the arrows in Figure 6b–d. No new phase was observed in the La–containing alloy
when the concentration of La was below 0.1%, as shown in Figure 6e,f. A new phase
with bright contrast was observed when the La concentration was 0.15% as highlighted by
the arrows in Figure 6g. The EDS results indicated that the phase contained La elements,
which are thought to be Al11La3, according to the phase diagram. The Al11La3 phase
formed through the Al–La eutectic reaction at a temperature higher than that of the Al–Cu
eutectic transformation [21]. The Al11La3 phase, TiC, and Al3Ti hindered the melt flow
due to the stagnant boundary layer around these particles [22]. The detrimental effect of
these particles on the fluidity was compensated by the grain refinement effect of Al3Ti,
TiC and the La elements when the concentration of the particles was low and the grain
refinement effect was clear, i.e., when the Al–Ti–C was below 0.3% and the concentration of
La was lower than 0.1%. With a further increase of Al–Ti–C or La, the number of particles
increased, as shown in Figure 6d,g, but without an apparent further decrease in grain size;
therefore, the hindrance to the fluid flow increased and resulted in decreased fluidity. This
explains the peaks in the fluidity–content curves of the ZL205A alloy, shown in Figure 2a,b.
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Figure 6. Microstructure of ZL205A alloy with different levels of Al–Ti–C or La: (a) ZL205A, (b) 0.1% Al–Ti–C, (c) 0.3%
Al–Ti–C, (d) 0.7% Al–Ti–C, (e) 0.05% La, (f) 0.1% La, (g) 0.15% La, (h) 0.3% Al–Ti–C+0.1% La. The inset in (c,g) is the EDS
mapping of the highlighted region.

Since the solidification range had a significant effect on the fluidity of the aluminum
alloys, the effect of Al–Ti–C and La on the solidification range was studied. Figure 7
shows the DSC curves of the ZL205A alloy with the addition of Al–Ti–C and La. Two
exothermic peaks were observed during cooling. The first resulted from the formation of
α–Al and the second represents eutectic transformation; no additional peak was detected
between these two peaks. The temperature difference between the two peaks, i.e., the
solidification range, is plotted in Figure 7. It decreased by 5 ◦C after the addition of 0.1% La
and fluctuated within ~2 ◦C with the increasing La content. This was consistent with
the results obtained by Yang et al. [21], in which La decreased the solidification range
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of the Al–Cu alloy by increasing the eutectic temperature. The solidification range first
decreased and then increased with the increasing content of Al–Ti–C, and the addition of
Al–Ti–C within the range of 0.1% to 0.3% apparently decreased the solidification range;
however, with further increases in the Al–Ti–C content, the solidification range increased.
It is postulated that the decrease of the solidification range with a low content of Al–Ti–C
resulted from the nucleation of the eutectic phase in the pre–existing Al3Ti and TiC phase,
which decreased the eutectic temperature. However, with the increasing content of Al–Ti–C,
the concentration of the Al3Ti and the TiC became oversaturated and their effect became
less important; an increased number of Ti elements in the liquid just before the eutectic
transformation decreased the eutectic transformation temperature, so the solidification
range increased. This was consistent with the decrease in the Al–Cu’s eutectic temperature
after the addition of 0.01% TiC [23]. The combined addition of Al–Ti–C and La resulted in
a solidification range of 117 ◦C, a reduction of 7 ◦C compared with the ZL205A alloy. Since
the size of the mushy zone was dependent on the solidification range and the temperature
gradient and the narrow solidification range led to a smaller mushy zone and better fluidity
under a similar temperature distribution [18], the reduced range of the crystallization
temperature of the ZL205A alloy with the addition of La and Al–Ti–C resulted in higher
fluidity.
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The Al–Ti–C and La imposed their effect on fluidity by changing the solidification
characteristics. Heterogeneous nucleation aided by Al–Ti–C and La elements delayed the
formation of grains that were large enough to interconnect and choke the flow channel.
The suppression of large grains with developed dendrite with the addition of Al–Ti–C and
La came at a cost: excessive TiC, Al3Ti and La particles led to a higher solid–liquid surface
area, which increased the resistance of melt flow. Therefore, the beneficial effect of fluidity
resulting from grain refinement was first counteracted and then overcome by the adverse
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effect of the excessive solid phase, which was due to the increased levels of Al–Ti–C and
La. This effect combined with the evolution of the solidification range with the addition
of the Al–Ti–C and La and made the ZL205A with 0.3% Al–Ti–C and 0.1% La exhibit the
highest fluidity.

Although the grain size decreased with the increasing content of Al–Ti–C within the
experimental range in this study, the concentration–grain size curve flattened and the
fluidity dropped sharply when its content exceeded 0.3%. For the La element, 0.1% corre-
sponded to both the highest fluidity and the smallest grain size within the experimental
range. Therefore, the optimal levels of Al–Ti–C and La that lead to high fluidity and small
grain size are 0.3% and 0.1% respectively.

4. Conclusions

The effect of Al–Ti–C and La on the fluidity of a ZL205A alloy was studied by con-
ducting a fluidity test. DSC and microstructure characterization were carried out to clarify
the mechanism through which they influenced the fluidity under separate and combined
addition. The following conclusions are drawn.

The fluidity of the ZL205A alloy first increased and then decreased with the increasing
addition of Al–Ti–C and La; it peaked at 0.3% and 0.1% for the Al–Ti–C and the La,
respectively. The combined addition of Al–Ti–C and La led to better fluidity.

The optimal levels of Al–Ti–C and La that led to both high fluidity and small grain
size were 0.3% and 0.1%, respectively, which corresponded to an increase of 74% in fluidity
compared with the untreated ZL205A alloy.

The suppression of the formation of large grains with developed dendrite struc-
tures and the decrease in the solidification range by Al–Ti–C and La contributed to the
enhanced fluidity.
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