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Abstract

Gaussian graphical models (GGMs) are exploratory methods that can be applied to con-

struct networks of food intake. Such networks were constructed for meal-structured data,

elucidating how foods are consumed in relation to each other at meal level. Meal-specific

networks were compared with habitual dietary networks using data from an EPIC-Potsdam

sub-cohort study. Three 24-hour dietary recalls were collected cross-sectionally from 815

adults in 2010–2012. Food intake was averaged to obtain the habitual intake. GGMs were

applied to four main meals and habitual intakes of 39 food groups to generate meal-specific

and habitual dietary networks, respectively. Communities and centrality were detected in

the dietary networks to facilitate interpretation. The breakfast network revealed five commu-

nities of food groups with other vegetables, sauces, bread, margarine, and sugar & confec-

tionery as central food groups. The lunch and afternoon snacks networks showed higher

variability in food consumption and six communities were detected in each of these meal

networks. Among the central food groups detected in both of these meal networks were

potatoes, red meat, other vegetables, and bread. Two dinner networks were identified with

five communities and other vegetables as a central food group. Partial correlations at meals

were stronger than on the habitual level. The meal-specific dietary networks were only partly

reflected in the habitual dietary network with a decreasing percentage: 64.3% for dinner,

50.0% for breakfast, 36.2% for lunch, and 33.3% for afternoon snack. The method of GGM

yielded dietary networks that describe combinations of foods at the respective meals. Ana-

lysing food consumption on the habitual level did not exactly reflect meal level intake. There-

fore, interpretation of habitual networks should be done carefully. Meal networks can help

understand dietary habits, however, GGMs warrant validation in other populations.
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Introduction

Diet-disease studies frequently evaluate dietary patterns using data reduction techniques

(such as and principal component, PCA, or cluster analysis) based on habitual intake. From

habitual intake, defined as long-term average, we cannot imply which foods are eaten together.

Therefore, our understanding of how dietary patterns arise from food intake is limited. The

composition of meals is influenced by personal beliefs and preferences, by social, cultural, geo-

graphical, and economic factors, among others [1,2]. Such influences may affect meal intakes,

which in turn may affect habitual dietary patterns. Therefore, considering population-specific

meal differences, a healthy and an unhealthy dietary pattern might not be formed in the same

way in different populations. Analysing food consumption and relationships between foods on

the meal level can help to better understand how foods are consumed in relation to each other.

This knowledge can be useful for shaping understandable meal-based dietary advice easily

adaptable by the public.

Exploratory methods can also be applied to meal-specific data. For instance, Woolhead
et al. identified 12 meal types from PCA [3]. However, PCA-derived dietary patterns are diffi-

cult to interpret as the interrelation between foods is not fully elucidated [4]. Probabilistic

Graphical methods such as networks derived through Gaussian Graphical Models (GGMs)

offer an insight into the relation between the dietary components and can help understand

how foods are consumed in relation to each other during meals. These methods construct con-

ditional independence networks between highly correlated variables in a dataset [5]. GGMs

are commonly used in research areas such as omics [6,7] and psychopathology [8,9]. In the

field of nutritional epidemiology, these methods have been previously used to construct and

visualize dietary networks in specific populations [10]. Semiparametric Gaussian Copula

Graphical Models (SGCGMs), a nonparametric extension to GGMs, can be used to analyse

skewed data, as is often the case with dietary data [11]. These methods applied to dietary data

may help to identify conditional intakes of different foods at meal-level and how those foods

appear in habitual dietary patterns.

In this study, we estimated and described meal and habitual dietary networks derived

through SGCGMs in a study sample of German adults and compare the relations found in

meal networks to the ones present in the habitual network. This study will help to better under-

stand the interrelation of foods consumed at meals and provide an insight about information

lost or retained when we perform similar analyses using averaged (habitual) daily dietary data.

Methods

Sample size

Data collected between 2010 and 2012 from a validation sub-study within the European Pro-

spective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort were used for this

study; 815 men and women participated in this sub-study. After exclusion of one participant

due to dementia, a total of 814 participants were included in our analyses (S1 Fig). More details

about this study design are available elsewhere [12]. The Ethics Committee of the Medical

Association of the State of Brandenburg provided ethical approval. All participants gave their

written informed consent.

Dietary assessment

Within a year, participants provided up to three 24-hour dietary recalls (24hDR) (5 partici-

pants had two 24hDRs and 3 participants had only one 24hDR) using EPIC-Soft [13]. A total

of 2,431 24hDRs were collected. During the first visit in the study centre, the first 24hDR was
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recorded. The following 24hDRs were collected via telephone on randomly chosen days. All

recalls were performed by trained interviewers. Food intake data were recorded in 11 eating

occasions throughout one day (S1 Table).

Assessment of other variables

Body weight and height were measured in the study centre during the participants’ first visit.

Body mass index (BMI) was calculated as the ratio of weight in kg to height squared in meters.

Study participants wore a combined heart rate and uniaxial movement sensor (Actiheart,

CamNtech, Cambridge, UK) continuously for one week. Physical activity was then calculated

as the total energy expenditure to resting energy expenditure ratio [14].

Modelling food intake

Food intake was collapsed into 39 food groups previously used in other studies (S2 Table)

[15,16]. For modelling meal-specific food intake, four eating occasions were chosen: breakfast,

lunch, afternoon snack, and dinner, based on four observed peaks in food consumption (S2

Fig). Meal food intakes were analysed separately by meal type to identify foods that were con-

sumed together. For modelling habitual food intake, we averaged all available 24hDRs per par-

ticipant and all 11 eating occasions in the day were taken into account.

Statistical methods and network analysis

GGMs describe conditional independence between variables, i.e., the relationship between two

variables independent of the effect of other variables. They can be used to produce probabilistic

graphs in which nodes represent variables and edges represent a relationship between the vari-

ables. These graphs can be quantified using partial correlations, under the assumption of a

normal distribution. A high-dimensional multivariate data set can have no or few 0 values,

which would form very dense, less informative graphical representations of the networks. For

this reason, regularization methods for covariance estimation are available. Regularization is

achieved by choosing a penalty parameter (λ>0), which reduces the variance and helps avoid

overfitting of the model (avoiding the false inclusion of edges) [11]. Various methods are avail-

able for choosing the penalty parameter λ [17].

In this study, due to highly skewed data, the meal and habitual dietary networks were

derived through SGCGMs, which is a nonparametric extension of GGMs. It performs the non-

paranormal skeptic (Spearman/Kendall estimates preempt transformations to infer correla-

tion) transformation in order to perform semiparametric analyses suited for highly skewed

data [18,19]. This transformation is based on a nonparametric ranking of correlation coeffi-

cient estimators using Spearman’s rho and Kendall’s tau and offers an alternative for estimat-

ing high dimensional undirected graphical models without requiring normal distribution of

the underlying data [20].

For the analyses here presented, skeptic transformed inverse covariance matrices were esti-

mated using the “huge” R package [11,19]. The selection of the optimal penalization λ was per-

formed with a tenfold cross-validated graphical lasso (glasso), which was run in R with the

package “nethet” [21]. Communities, sets of closely related links, were detected within all iden-

tified networks to facilitate interpretation using the R package “linkcomm”, which is able to

detect nested and overlapping communities in networks [22]. For food groups belonging to

more than one community, centrality was assessed as a measure for the importance of a node

based on the number of communities it belongs to [23]. The identified networks and corre-

sponding communities were exported for formatting to CorelDRAW Graphics Suite X3

(Corel GmbH, Munich; www.corel.de). Food groups were considered to form a network
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when three or more groups were related to each other. Partial correlations equal or greater

than ± 0.30 were considered as strong. The proportion of (direction-specific) relations (i.e.

edges) from meal-specific networks present also in the habitual network was used as measure

of the degree of appearance or reflection in the habitual network. All statistical analyses were

performed in SAS (Version 9.4, Enterprise Guide 6.1, SAS Institute Inc., Cary, NC, USA) or

R (Version 3.1.3, R Foundation for Statistical Computing, Vienna, Austria).

Statement of previously published data

Previous publications have presented GGM dietary networks established from food frequency

questionnaire (FFQ) data of the EPIC-Potsdam cohort collected at baseline between 1994 and

1998 (8, 20). In our analysis we used multiple 24hDRs from a subgroup collected in 2010–

2012. Furthermore, the previous publications did not assess communities or centrality of food

groups. Another publication is based on spearman correlation to understand PCA patterns, as

such patterns are also based on correlations [4], while this analysis is based on GGM approach,

i.e., using partial correlations to identify networks. These networks visualize combinations of

food intake consumed at the meal level reflecting the intake patterns.

Results

Baseline characteristics of all 814 participants are shown on Table 1. Participants were on aver-

age 65.5 years old, had a mean BMI of 27.5 kg/m2, and the majority was sedentary. A total of

n = 2,411 breakfast observations (mean time 08:02), n = 2,236 lunch observations (mean time

12:37), n = 2,119 afternoon snack observations (mean time 15:31), and n = 2,346 dinner obser-

vations (mean time 18:45) were available. Mean intakes of the food groups per meal type and

mean habitual intakes are shown on Table 2.

Table 1. Participants’ characteristics at the time of the first visit.

Characteristics N = 814

Age, y 65.5 ± 8.4

Sex (%)

Men 411 (50.5)

Women 403 (49.5)

BMI, kg/m2 27.5 ± 4.4

Physical activity level (ratio TEE/REE) (%)1

Extremely inactive (< 1.4) 136 (19.9)

Sedentary (1.4 to < 1.7) 363 (53.0)

Moderately active (1.7 to < 2.0) 159 (23.2)

Vigorously active (2.0 to < 2.4) 25 (3.6)

Extremely active (� 2.4) 2 (0.3)

Education attainment (%)

Currently in training/no certificate or skill 267 (32.8)

Professional school 187 (23.0)

� University 360 (44.2)

Smoking status (%)

Never 377 (46.3)

Former 353 (43.4)

Smoker 84 (10.3)

Values are means ± SDs unless otherwise indicated.
1 n = 685; BMI, body mass index; TEE, total energy expenditure; REE, resting energy expenditure.

https://doi.org/10.1371/journal.pone.0202936.t001
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Breakfast networks

The SGCGM analysis identified one major breakfast network (Fig 1) where foods are grouped

into five communities. Starting in the lower left, a community is made up of fresh fruits, nuts,

legumes, and other cereals, linked by positive correlations, among which the strongest is nuts

Table 2. Mean meal and habitual intake by food group.

Food group Breakfast (g/meal)

(n = 2,411)

Lunch (g/meal)

(n = 2,236)

Afternoon snack (g/meal)

(n = 2,119)

Dinner (g/meal)

(n = 2,346)

Habitual (g/day)

(n = 814)

Potatoes 0.01±0.40 72.53±92.30 1.48±16.39 12.46±44.80 81.7±66.5

Leafy vegetables 0.22±4.85 5.62±25.98 0.16±4.51 5.52±24.42 11.6±22.3

Fruiting & root vegetables 7.58±30.00 33.93±72.49 2.25±18.45 56.17±84.38 103±83.7

Cabbages 0.01±0.61 17.86±47.91 0.41±7.86 5.40±31.11 22.5±33.7

Other vegetables 0.32±4.55 23.91±58.39 0.58±6.80 9.74±34.98 32.9±38.6

Legumes 1.22±14.56 3.56±25.37 0.70±15.09 0.96±10.57 6.64±27.2

Fresh fruits 36.73±72.05 52.68±94.40 19.93±67.53 38.41±93.10 231±154

Nuts 0.69±4.60 0.23±2.64 0.27±5.24 0.24±2.74 3.95±10.2

Other fruits 1.22±18.03 3.99±28.93 0.72±14.16 2.21±25.07 10.2±33.2

Milk & dairy products 58.88±97.18 32.37±75.63 20.27±52.55 26.29±78.47 167±153

Cheese 13.08±20.13 3.28±12.82 0.67±5.92 18.27±26.56 37.4±27.1

Desserts 0.06±2.80 9.23±39.27 3.73±23.74 1.85±17.46 17.6±33.8

Pasta & rice 0.31±5.75 17.84±55.32 0.54±10.86 4.81±31.07 23.1±39.4

Bread 52.09±33.41 10.47±24.39 3.51±13.66 41.16±35.54 113±48.4

Breakfast cereals 2.53±11.73 0.26±3.78 0.13±3.06 0.22±4.40 3.40±12.1

Other cereals 1.27±7.24 1.06±7.49 0.19±2.54 1.31±10.88 5.30±11.9

Red meat 0.89±10.47 27.46±56.58 1.42±16.90 11.19±39.99 39.5±46.3

Poultry 0.18±4.68 9.15±35.84 0.35±7.52 5.67±29.96 14.8±27.4

Processed meat 9.78±18.12 20.96±44.27 2.32±15.96 25.08±37.36 60.8±46.1

Fish 1.69±10.66 11.37±43.05 0.57±9.68 11.25±40.82 24.1±37.9

Eggs 10.16±24.14 4.79±19.53 0.37±5.76 2.98±15.40 18.7±22.3

Margarine 5.20±9.87 2.18±5.94 0.33±2.43 4.95±9.43 13.2±16.9

Vegetable oils 0.22±2.07 2.84±7.33 0.10±1.42 1.98±6.09 5.06±6.36

Butter & animal fat 7.78±11.32 3.16±7.67 0.50±3.13 5.64±10.99 17.6±18.5

Sugar & confectionery 18.96±22.32 2.16±9.11 3.71±11.78 2.06±8.07 38.0±29.7

Cakes & cookies 1.96±17.19 4.23±30.15 51.31±72.47 1.56±14.50 59.2±55.5

Fruit & vegetable juices 14.69±49.74 16.14±56.78 6.50±36.50 14.58±53.63 94.5±144

Soft drinks 0.57±13.16 7.82±47.78 4.17±35.78 13.14±71.60 48.1±126

Tea 84.94±172.94 24.62±86.50 34.61±103.49 90.52±157.37 355. ±381

Coffee 220.36±170.34 17.99±63.07 152.87±140.45 3.59±31.03 447±230

Water 28.53±71.62 92.74±127.49 59.84±121.59 80.63±130.08 740±477

Wine 0.45±10.53 5.89±40.38 3.15±25.82 12.10±56.78 57.3±101

Beer 0±0 14.76±78.08 7.35±60.70 56.62±164.54 173. ±316

Spirits 0±0 0.02±0.67 0.12±2.08 0.13±2.40 1.59±6.99

Other alcoholic beverages 0±0 0.65±12.34 0.80±13.99 0.64±9.78 4.99±20.1

Sauces 0.40±2.67 17.26±37.74 0.45±4.69 6.72±19.74 24.2±25.1

Condiments 0.33±1.47 0.91±3.47 0.17±1.46 1.10±3.80 2.79±4.60

Soups 2.29±24.40 36.20±93.40 1.51±19.88 11.99±57.41 51.8±74.8

Snacks 0.18±2.66 0.59±9.94 0.12±2.72 0.68±9.12 1.60±8.71

Values are means ± SDs.

https://doi.org/10.1371/journal.pone.0202936.t002
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and other cereals (partial correlation = 0.47). Next, two partly overlapping communities can

be observed; one composed of bread consumed together either with margarine (partial correla-

tion = 0.25), or with butter and sugar & confectionery (partial correlations = 0.30 and 0.34,

respectively) and the other composed of bread consumed with processed meat and cheese

(partial correlations = 0.38 and 0.34, respectively). Processed meat in turn is consumed with

margarine (partial correlation = 0.20) but not with sugar & confectionery (partial correlation =

-0.17). The fourth and fifth communities found are also overlapping and they describe the

dependency structure of intake of sauces, fish, fruiting & root vegetables, other vegetables, and

poultry. Central food groups were in decreasing importance as follows: other vegetables,

sauces, bread, margarine, and sugar & confectionery. Not all food groups that are part of this

network were represented in the communities; tea and coffee, for instance, are strongly corre-

lated with each other (partial correlation = -0.64), but were not part of a community, suggest-

ing that these food groups are less closely linked to other food groups in the network (Fig 1).

Lunch networks

Our analysis identified one major lunch network for this meal characterized by six communi-

ties (Fig 2). Overall, with a more complex structure, this network reflects a variable

Fig 1. Dietary meal network and communities derived from breakfast intakes (n = 2,411) by Gaussian graphical models. Nodes

represent food groups. Edges represent conditional dependencies between food groups revealed by partial correlation coefficients.

The absence of an edge between 2 food groups indicates conditional independence between them. Continuous edges show positive

partial correlations while broken edges show negative partial correlations. Line thickness is proportional to the strength of the

correlations between food groups. Communities are represented by matching node and edge colours. Black nodes correspond to

food groups not assigned to a community. Centrality indicates importance of a food group based on the number of communities it

belongs to.

https://doi.org/10.1371/journal.pone.0202936.g001
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consumption of foods. The community on the left describes the dependency structure between

other cereals, condiments, legumes, and soups. In the centre of the network, there is a commu-

nity composed by other cereals, other vegetables, vegetable oils, margarine, and red meat, with

a strong positive correlation between red meat and other vegetables (partial correlation = 0.33)

and with a negative correlation between margarine and vegetable oils (partial correlation =

-0.22). A partially overlapping community describes the dependency structure between other

vegetables, vegetable oils, bread, and potatoes. Next, on the right side of the network a commu-

nity was detected where bread correlates strongly positively with cheese (partial correla-

tion = 0.30) and negatively with potatoes and pasta & rice (partial correlations = -0.32 and

-0.16, respectively), and potatoes correlate negatively with cheese and pasta & rice (partial cor-

relations = -0.25 and -0.34, respectively). At the bottom of the lunch network, a community

with only positive correlations including potatoes, cabbages, red meat, sauces, butter, and

pasta & rice is shown. The edges linking cabbages–potatoes–red meat–cabbages show strong

correlations (partial correlations = 0.34, 0.33, 0.30, respectively). Finally, the top right of the

network shows a community of sweet foods composed of coffee consumed together with either

cakes & cookies, milk & dairy, or sugar & confectionery (partial correlations = 0.32, 0.21, 0.18,

respectively). Foods with central roles (pertaining to more than one community) were in

decreasing importance as follows: potatoes, red meat, other cereals, pasta & rice, other vegeta-

bles, vegetable oils, and bread. A few food groups were represented in the lunch network but

were not part of any community, such as soft drinks, fruiting & root vegetables, processed

meat, fish, eggs, and leafy vegetables (Fig 2).

Afternoon snack networks

There was one afternoon snack network identified with six communities (Fig 3). Similar to the

lunch network, this network reflects a variable food intake, though it revealed stronger partial

correlations among intakes. At the bottom of the network, a community was identified where

coffee, cakes & cookies, and milk & dairy correlate strongly positively with each other (partial

correlations = 0.46, 0.30, 0.45, respectively) and water correlates negatively with coffee and

cakes & cookies (partial correlations = -0.32, -0.25, respectively). This community is linked

with the two following communities through a negative correlation between cakes & cookies

and bread. Bread, on one side, belongs to a community where bread is consumed with marga-

rine, processed meat, and cheese and where fruiting & root vegetables are consumed with pro-

cessed meat, margarine, and cheese. On the other side, bread belongs as well to a community

where it is consumed with butter (partial correlation = 0.56) and butter consumed with cab-

bages and with fruiting & root vegetables. The largest community within this network involved

potatoes, vegetable oils, other vegetables, fruiting & root vegetables, red meat, cabbages, and

soups. Central food groups were, with decreasing order of importance: fruiting & root vegeta-

ble (part of five different communities), other vegetables, processed meat, cabbages, cheese,

bread, and potatoes. Only tea, fish, leafy vegetables, other cereals, and poultry were part of the

network but did not belong to any community (Fig 3).

Dinner networks

The SGCGM analysis identified one major dinner network and a smaller network (Fig 4). The

major network shows a complex meal composition with four communities and one central

food group, other vegetables, belonging to three communities. On the top right, a community

shows that bread is consumed with processed meat and with either margarine or butter. Bread

correlated strongly positive with processed meat and margarine (partial correlations = 0.41

and 0.37, respectively) and butter and margarine correlated strongly negatively (partial

Meal and habitual dietary networks
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correlation = -0.37). Another community shows the concomitant consumption of potatoes

with cabbages, red meat, and other vegetables. On the upper right, an independent community

was found in a smaller dinner network. This final community is composed by beer, tea, and

water, which all correlate negatively with each other, indicating that only one of these bever-

ages is chosen in this meal. Sugar & confectionery was also part of this network, correlating

positively with tea, but it was not present in any community. Other food groups such as cheese,

soups, pasta & rice, leafy vegetables, and fruiting & root vegetables were also part of the larger

dinner network but did not form part of a community, suggesting these links are less closely

linked to other food groups in the network (Fig 4).

Habitual diet network

One habitual network was identified by SGCGMs (Fig 5). This network is formed by a com-

plex structure of interrelated food groups, where beer, red meat, fresh fruits, bread, butter,

fruiting & root vegetables, potatoes, sauces, and processed meat play central roles, with

decreasing importance. Overall, the ten communities identified within this network show: i)

positive correlations between legumes, other cereals, and soups; ii) positive correlations

between nuts, fruiting & root vegetables, and fresh fruits; iii) positive correlations between

fish, fruiting & root vegetables, and vegetable oils; iv) positive correlations between sauces and

Fig 2. Dietary meal network and communities derived from lunch intakes (n = 2,236) by Gaussian graphical models. Nodes

represent food groups. Edges represent conditional dependencies between food groups revealed by partial correlation coefficients.

The absence of an edge between 2 food groups indicates conditional independence between them. Continuous edges show positive

partial correlations while broken edges show negative partial correlations. Line thickness is proportional to the strength of the

correlations between food groups. Communities are represented by matching node and edge colours. Black nodes correspond to

food groups not assigned to a community. Centrality indicates importance of a food group based on the number of communities it

belongs to.

https://doi.org/10.1371/journal.pone.0202936.g002
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pasta & rice and with potatoes but a negative correlation between potatoes and pasta & rice; v)

positive correlations between cabbages, potatoes, red meat, and sauces; vi) a positive correla-

tion between fresh fruits and milk & dairy as well as between red meat and beer, while fresh

fruits and milk & dairy correlated negatively with red meat and beer; vii) positive correlations

of beer with bread, processed meat, and butter; viii) negative correlations between beer, water,

and tea; ix) positive correlations between bread, butter, and sugar & confectionery; and x) pos-

itive correlations between bread, margarine, and processed meat, and a negative correlation

between margarine and butter. Out of the 39 food groups, 33 of them were part of this complex

network and 22 of them formed part of at least one community. Soft drinks and wine formed

part of this network but did not show in any of the meal networks.

Fig 3. Dietary meal network and communities derived from afternoon snack intakes (n = 2,119) by Gaussian graphical models.

Nodes represent food groups. Edges represent conditional dependencies between food groups revealed by partial correlation

coefficients. The absence of an edge between 2 food groups indicates conditional independence between them. Continuous edges

show positive partial correlations while broken edges show negative partial correlations. Line thickness is proportional to the

strength of the correlations between food groups. Communities are represented by matching node and edge colours. Black nodes

correspond to food groups not assigned to a community. Centrality indicates importance of a food group based on the number of

communities it belongs to.

https://doi.org/10.1371/journal.pone.0202936.g003
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Comparison of meal and habitual dietary networks

In general, partial correlations were stronger on the meal-specific dietary networks than on the

habitual dietary network, especially in the case of the afternoon snacks. Some food groups that

had central roles in meal networks were also central food groups in the habitual network, such

as bread and potatoes. Four of the ten communities in the habitual network resembled com-

munities found in the meals: the community formed by beer, water, and tea was also found in

dinner; the community formed by bread, processed meat, margarine, and butter was similar to

one seen in dinner; the community formed by soups, legumes, and other cereals was similar to

one observed in lunch; and the community formed by red meat, cabbages, potatoes, and sauces

was part of a larger community found in lunch. A few food groups that showed strong partial

correlations only in a specific meal persisted on the habitual network, such as the relationship

between milk & dairy and breakfast cereals seen in the breakfast network. In general, correla-

tions between food groups were in the same direction (positive or negative) in meal and habit-

ual networks, with the exception of soups and potatoes, which was positive in the afternoon

snack and dinner networks and negative in the habitual network. By estimating the percentage

of connections between foods in the meal-specific networks that were also present in the habit-

ual dietary network we found that the dinner network was best reflected in the habitual net-

work. Specifically, we found 50.0% of the breakfast, 36.2% of the lunch, 33.3% of the afternoon

snack, and 64.3% of the dinner networks relations between food groups were present in the

Fig 4. Dietary meal networks and communities derived from dinner intakes (n = 2,346) by Gaussian graphical models. Nodes

represent food groups. Edges represent conditional dependencies between food groups revealed by partial correlation coefficients.

The absence of an edge between 2 food groups indicates conditional independence between them. Continuous edges show positive

partial correlations while broken edges show negative partial correlations. Line thickness is proportional to the strength of the

correlations between food groups. Communities are represented by matching node and edge colours. Black nodes correspond to

food groups not assigned to a community. Centrality indicates importance of a food group based on the number of communities it

belongs to.

https://doi.org/10.1371/journal.pone.0202936.g004
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habitual network (Figures A-D in S3 File). On the other hand, 34% of the relations seen in the

habitual network were not present in any of the meal-specific networks (Figure E in S3 File).

Discussion

This study identified meal dietary networks through SGCGMs, an extension of GGMs suited

for non-normal distributed data [20]. Communities and centrality of food groups were

detected to assist interpretation. GGMs had not yet been used for meal-specific analyses. The

meal-specific networks showed clear differences in composition and strength of correlations.

The combination of bread, cheese, processed meat, and margarine or butter was present in

most networks (all meals except for lunch). Afternoon snack, which is a smaller but a culturally

important eating occasion in Germany (equivalent to the British tea time) showed the stron-

gest correlations, where the communities including bread correlated negatively with coffee,

milk & dairy, and cakes & cookies, suggesting that either one or other combination is con-

sumed during this meal. The networks for lunch and afternoon snack showed a complex

structure, indicating a more variable food intake. Potatoes, red meat, other vegetables, and

bread were often central food groups in the dietary networks but differences for each meal

were evident. Out of the four main meals, dinner networks were best reflected in the habitual

dietary network and the afternoon network was the least reflected despite the strong partial

Fig 5. Dietary meal network and communities derived from participants’ habitual daily intake (n = 814) by Gaussian graphical

models. Nodes represent food groups. Edges represent conditional dependencies between food groups revealed by partial

correlation coefficients. The absence of an edge between 2 food groups indicates conditional independence between them.

Continuous edges show positive partial correlations while broken edges show negative partial correlations. Line thickness is

proportional to the strength of the correlations between food groups. Communities are represented by matching node and edge

colours. Black nodes correspond to food groups not assigned to a community. Centrality indicates importance of a food group based

on the number of communities it belongs to.

https://doi.org/10.1371/journal.pone.0202936.g005
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correlations. Despite a variable food intake in dinner, this network was among the least dense.

The variable and substantial intake in this meal may have contributed to the better representa-

tion in the habitual dietary network. This analysis revealed different strengths of correlation

and combinations of food intake at meal and habitual intake levels. As food is consumed at

meal level, habitual level intake may not reflect the clear picture of food intake patterns in a

population.

The interrelation between intakes of different food groups is complex and when analysed

using meal-aggregated data such as FFQs, weaker correlation structures are observed, which

may arise due to an increased intra-subject variability [24]. This is usually a phenomenon

seen in building exploratory dietary patterns, such as PCA-patterns. In our study, habitual diet

takes into account some day-to-day variation within study participants, while the meal intakes

were analysed independently from participant to accurately reflect foods eaten together. This

resulted in stronger partial correlations in the meal networks. However, some characteristics

of the habitual diet that were not traceable to the meal networks might come from other fac-

tors, such as individual characteristics and preferences and eating occasions not considered in

this analysis such as smaller snacks [25,26]. Further investigations are required to understand

why some of the relationships among food groups at the habitual level did not appear at the

meal level.

GGMs were previously applied to dietary data from the EPIC-Potsdam cohort [10], a

population of which our participants are a sub-cohort. In this study data from FFQs were

used. Therefore, although the results highlight an overall-diet structure, they do not repre-

sent meal level intake-specific relationships. Despite numerous methodological differences

in the dietary intake assessment and pattern analysis (food networks) between this and our

study, we could observe certain similarities between their dietary networks and our habitual

dietary network; for example, potatoes and red meat, which often played central roles in

our meal networks, were simultaneously linked to multiple food groups in the principal net-

works. Nevertheless, in order to understand dietary habits, which in turn are the drivers of

dietary patterns, food consumption should be analysed in a timing-, or meal-specific man-

ner [27].

Established meal-specific habits are known to be present in the human diet. For instance, a

few studies have observed a more homogeneous and simple composition of early meals and a

more complex and varied composition of later meals [28,29]. Meal setting is an important fac-

tor affecting meal composition. For example, breakfast is more likely to be consumed at home

and dinner outside of home [30]. Although we did not explore meal setting in our study, we

did see a more simple structure of the breakfast network and a dinner network that was closest

to the habitual network. In line with these observations, our recent study comparing meal and

day level food intake to habitual diet using the same study sample revealed a consistent compo-

sition of the breakfast meal and a more variable intake at dinner, which was the meal that con-

tributed the most to the formation of PCA-habitual dietary patterns [4]. Such differences

across meals and similarities within them are not visible in day-aggregated data such as data

commonly used to derive dietary patterns.

Commonly, the method of choice for deriving dietary patterns is PCA. This method (PCA)

was previously applied to this study sample to derive breakfast patterns [31]. As PCA is also

based on correlations, two PCA patterns, i.e., processed food pattern and dairy & cereal pattern,

shared considerable similarity with our breakfast network. However, GGMs identify sparse

networks reflecting patterns of intake and visualize the identified combinations of intakes in

relation to each other. Smaller sub-networks (communities) are easier to interpret as com-

pared to PCA patterns, which comprise of all the food variables [22], and GGM networks

(specifically residualized, or conditional independence networks) have the ability of showing
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conditional independence between food groups [9] which PCAs or simple correlation analyses

do not.

Furthermore, consistent intakes are underrepresented in PCA patterns [4] but this was not

the case in GGM dietary networks. Therefore, GGMs are a valuable tool for the analysis and

interpretation of the complex data structure of food intakes often seen in the field of nutri-

tional epidemiology. To our knowledge, these tools had not yet been applied to dietary net-

works in the context of meals. Other exploratory methods have been used to explore meal

patterns. For example, Hearty et al. [32] used artificial neural networks and decision trees with

the purpose of predicting dietary quality in terms of the Healthy Eating Index. These are com-

plicated but interesting applications of predictive machine learning models that may provide a

better understanding of how hypothesis-based dietary patterns (i.e., dietary quality indices)

[33] arise in a population but not directly comparable to the here presented data-driven GGM

dietary networks, which are not intended to identify meal patterns predictive of or meeting

dietary guidelines, but are rather describing the intake of the studied population in detail. Nev-

ertheless, GGM dietary networks can also be combined with methods to predict disease or

adherence to dietary guidelines similar to how is done with PCA patterns [33]. Such procedure

is exemplified in the recent publication by Iqbal et al. [34] using habitual (non-meal specific)

GGM dietary networks. Overall, hypothesis-based or data-driven methods should be consid-

ered based on the research question of interest [1].

Other studies estimated habitual diet with more sophisticated statistical methods such as

the National Cancer Institute (NCI) method [35–37]. This method adjusted out day-to-day

variation by accounting for food intake in the analysed population. In the present study we

could not apply the NCI method due to a very high proportion of zeros at meals resulting

in convergence problems of the statistical algorithms. Furthermore, our methods remain

consistent with our previous work on meal, day, and habitual intake analyses [4]. Working

with non-normal data implies some limitations; in order to circumvent the Gaussian

assumption, SGCGMs perform a rank-based transformation of the original variables. Esti-

mates, power, and Type I error can be dependent of the transformation method, sample size,

and degree of non-normality [38,39]. Nevertheless, our sample size was large, with at least

2,119 observations per meal; also, for the descriptive purpose of this study, potential alter-

ations in power and Type I error play a less important role. Nevertheless, this should be kept

in mind for studies intending to find diet-disease associations. The stability of the resulting

networks depends also from the approach used, which could be threshold- or model-based.

Threshold-based networks, also called relevance networks, remove correlations weaker than

a pre-determined correlation strength [40]. However, this threshold is typically arbitrary

and may result in inclusion of false edges or exclusion of true edges [41]. In this study, we

preferred a model-based approach (lasso using cross-validation), which seeks to identify a

sparse model (identifying only important variables) by maximizing log-likelihood of the

data [42,43].

In conclusion, SGCGMs identified meal-specific dietary networks describing combinations

of foods that are eaten together. Clear differences were seen across meals. The habitual dietary

network retained some but not all information from the meal-specific dietary networks and

additionally showed relations not present at the meal level. As a result, interpretation of such

habitual networks needs to be done carefully. Analysing food intake using both meal-based

and habitual intake data can provide a broader picture about eating behaviour than using one

approach only. GGMs and SGCGMs can be used as tools to obtain meal-specific insights of

diet, which may be used as a foundation for meal-based recommendations. Nevertheless, these

are methods that have not been applied often in the field of nutritional epidemiology and war-

rant further applications in other populations due to their specific features.
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