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Abstract

Smoker patients with non-small cell lung cancer (NSCLC) have poorer prognosis and survival than those without smoking
history. However, the mechanisms underlying the low response rate of those patients to EGFR tyrosine kinase inhibitors
(TKIs) are not well understood. Here we report that exposure to cigarette smoke extract enhances glycolysis and attenuates
AMP-activated protein kinase (AMPK)-dependent inhibition of mTOR; this in turn reduces the sensitivity of NSCLC cells
with wild-type EGFR (EGFR™T) to EGFR TKI by repressing expression of liver kinase B1 (LKB1), a master kinase of the
AMPK subfamily, via CpG island methylation. In addition, LKB1 expression is correlated positively with sensitivity to TKI
in patients with NSCLC. Moreover, combined treatment of EGFR TKI with AMPK activators synergistically increases
EGFR TKI sensitivity. Collectively, the current study suggests that LKB1 may serve as a marker to predict EGFR TKI
sensitivity in smokers with NSCLC carrying EGFR™" and that the combination of EGFR TKI and AMPK activator may be a

potentially effective therapeutic strategy against NSCLC with EGF

Introduction

The epidermal growth factor receptor (EGFR) is one of the
crucial therapeutic targets in non-small cell lung cancer
(NSCLC). The leucine-to-arginine substitution at residue 858
(L858R) and in-frame exon 19 deletion make up about 90%
of EGFR activating mutations and cause higher binding
affinity of the ATP-binding site of EGFR to tyrosine kinase
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inhibitors (TKIs), thereby increasing the vulnerability of
EGEFR to inhibition of its kinase activity [1, 2]. EGFR TKI
has been approved by the FDA as the standard of care for the
first-line treatment of patients with metastatic NSCLC har-
boring EGFR activating mutations with favorable clinical
response (80%) and better survival outcome compared with
those patients with wild-type EGFR-expressing NSCLC
(EGFRYT NSCLC) [3]. Patients with EGFRYT NSCLC also
demonstrate response to EGFR TKI as second-line therapy
albeit with a lower rate of 20-30% [4, 5]. However, EGFR
activating mutations are detected in only about 29% of
patients with NSCLC worldwide among which the highest
(47%) and lowest (12%) frequencies have been observed in
Asia-Pacific and Oceania regions, respectively [6]. Because
EGFR TKI treatment is frequently overlooked in a large
proportion of patients with EGFR™' NSCLC, it is critical to
identify a biomarker to select those who will better respond to
the therapy.

The changes in the design and manufacture of cigarette
filter have been documented to lead to a shift in the his-
tology from SCC to adenocarcinoma subtypes of lung
cancer due to higher exposure and sensitivity of peripheral


http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-020-01597-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-020-01597-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41388-020-01597-1&domain=pdf
http://orcid.org/0000-0002-8217-1692
http://orcid.org/0000-0002-8217-1692
http://orcid.org/0000-0002-8217-1692
http://orcid.org/0000-0002-8217-1692
http://orcid.org/0000-0002-8217-1692
http://orcid.org/0000-0002-9745-1726
http://orcid.org/0000-0002-9745-1726
http://orcid.org/0000-0002-9745-1726
http://orcid.org/0000-0002-9745-1726
http://orcid.org/0000-0002-9745-1726
http://orcid.org/0000-0003-2461-9150
http://orcid.org/0000-0003-2461-9150
http://orcid.org/0000-0003-2461-9150
http://orcid.org/0000-0003-2461-9150
http://orcid.org/0000-0003-2461-9150
http://orcid.org/0000-0002-8126-6171
http://orcid.org/0000-0002-8126-6171
http://orcid.org/0000-0002-8126-6171
http://orcid.org/0000-0002-8126-6171
http://orcid.org/0000-0002-8126-6171
http://orcid.org/0000-0003-4317-4740
http://orcid.org/0000-0003-4317-4740
http://orcid.org/0000-0003-4317-4740
http://orcid.org/0000-0003-4317-4740
http://orcid.org/0000-0003-4317-4740
http://orcid.org/0000-0001-6467-8716
http://orcid.org/0000-0001-6467-8716
http://orcid.org/0000-0001-6467-8716
http://orcid.org/0000-0001-6467-8716
http://orcid.org/0000-0001-6467-8716
mailto:chesttu@gmail.com
mailto:mhung@cmu.edu.tw
mailto:whuang@mail.cmu.edu.tw
https://doi.org/10.1038/s41388-020-01597-1
https://doi.org/10.1038/s41388-020-01597-1

Cigarette smoke-induced LKB1/AMPK pathway deficiency reduces EGFR TKI sensitivity in NSCLC 1163

lung cells to mutagens and carcinogens [7, 8]. The asso-
ciation between cigarette smoking and development of lung
adenocarcinoma increased gradually, and exposure to
cigarette smoke not only promotes cancer cell progression
and stemness but also reduces the sensitivity of NSCLC
cells to EGFR TKI through several potential mechanisms,
including EGFR hyperactivation, c-MET overexpression,
and ABCG2-depednent drug efflux [9-12]. Up to 70% of
smoker patients with NSCLC express EGFRYT protein [13]
and also had shorter progression-free survival (PFS) than
those with activating mutations or without smoking history
in response to EGFR TKI treatment [10, 14]. These
observations suggest that cigarette smoke may confer TKI
resistance in EGFR™T NSCLC.

Most cancer cells depend on aerobic glycolysis to max-
imize energy production and fuel their rapid growth and pro-
gression by utilizing more glucose as energy and carbon
sources. A growing body of evidence suggests that repro-
gramming of bioenergy production is involved in the cigarette
smoke-induced cancer development [15, 16]. However, it
remains unclear whether reprogramming of aerobic glycolysis
is involved in the cigarette smoke-induced EGFR TKI resis-
tance. In this study, we sought to further our understanding of
the EGFR TKI resistance mechanisms in cigarette smoke
exposure to provide new therapeutic strategy for those patients.

Results

Increased glucose uptake in cigarette smoking-
associated EGFR TKI resistance in NSCLC

To address the mechanism underlying cigarette smoke-
triggered EGFR TKI resistance in EGFRYT NSCLC, H292
NSCLC cells, which express EGFRYT and are sensitive to
EGFR TKI, were subjected to long-term treatments with CSE
or benzo[o]pyrene (B[a]P), a human carcinogen found in
tobacco smoke, for at least 3 months to mimic the behavior of
chronic smokers with NSCLC [12, 17]. As shown in Fig. 1a,
the growth rate was significantly enhanced in CSE- and B[]
P-selected stable cells compared with the parental cells by
colony assay. Erlotinib and gefitinib at 1 uM, the concentra-
tion within the clinically achievable steady-state plasma level
[18, 19], were less effective in inducing cell killing (Fig. 1b),
apoptosis (Fig. 1c), and migration suppression (Supplemen-
tary Fig. 2a) in the CSE- and B[a]P-selected H292 cells than
in the control (parental) cells. The lower cell death of CSE-
treated H322 cells in response to EGFR TKI was also found
in cell viability assay (Supplementary Fig. 2b). These findings
suggested that exposure to cigarette smoke renders EGFR™T
NSCLC cells more proliferative and resistant to EGFR TKIs.

To explore the potential mechanisms involved in
cigarette smoke-induced resistance to EGFR TKI, gene set

enrichment analysis (GSEA) was performed to profile
CSE-related gene expression in 1094 patients with
NSCLC, which did not include the EGFR status using the
published gene sets [20-25]. The results indicated that
pathways related to cell cycle, DNA damage, mTOR sig-
naling, and reactive oxygen species were among the top
twenty known to be enriched in response to cigarette
smoke exposure (Supplementary Fig. 3a). Unexpectedly,
the expression of genes related to glycolysis also increased
significantly in both CSE-exposed lung alveolar cells
(GSE10718) and smokers with NSCLC (GSE31210)
(Fig. 1d). Although alteration in glycolysis is essential for
fueling cancer cell proliferation, there is no evidence
showing the association of dysregulation in glycolysis with
CSE-triggered EGFR TKI resistance. The enhancement of
glycolysis by CSE was further supported by the increase in
basic ECAR in CSE- and B[a]P-selected H292 (Fig. le)
and H322 (TKI-sensitive EGFR™T; Supplementary Fig. 3b)
cells. The rate of glycolysis and glycolytic capacity were
both enhanced by the CSE and B[a]P (Supplementary Fig.
3c). Exposure to CSE and B[a]P also increased glucose
uptake (Fig. 1f), using 2-NBDG as an indicator, and ATP
production (Supplementary Fig. 3d) in H292 cells. The
CSE- and B[a]P-enhanced glycolytic flux (Fig. 1g and
Supplementary Fig. 3e) and glucose uptake (Supplemen-
tary Fig. 3f) were not reduced when treated with EGFR
TKI. Tumors developed in severe combined immunodefi-
cient (SCID) mice implanted with CSE-treated H292 cells
were bigger in size and exhibited stronger 18-
fludeoxyglucose (‘*FDG) uptake compared with those
from mice implanted with parental cells (Fig. 1h) as shown
by microPET imaging. The standard uptake value (SUV) in
the tumors (normalized to that in the muscle) [26] implied
that CSE treatment dampened the suppressive effects of
erlotinib on '®FDG uptake (Fig. 1i).

To further determine whether cigarette smoke promotes
EGFR TKI resistance by upregulating glucose metabolism,
parental H292 cells, and the CSE- and B[a]P-selected stable
cells in culture media containing low or high glucose con-
centrations were treated with EGFR TKI. Both erlotinib and
gefitinib suppressed ATP production (Fig. 1j) and cell via-
bility (Fig. 1k) of the parental, and CSE- and B[o]P-selected
cells under low glucose condition. In contrast, the inhibitory
effects were reversed by high glucose concentrations in CSE-
and B[a]P-selected cells but not parental cells. Treatment with
2-DG, a glucose analog which inhibits the glycolytic path-
way, repressed CSE- and B[o]P-induced TKI resistance under
low (Fig. 11) but not high (Supplementary Fig. 3g) glucose
conditions, suggesting that high glucose levels dampen the
suppressive effects of 2-DG on TKI resistance. Together,
these results indicated that cigarette smoke-induced cell pro-
liferation and resistance to EGFR TKI are dependent on
upregulation of glucose metabolism.

SPRINGER NATURE



1164 F.-J. Cheng et al.

b d Glycolysis-related genes
parental s CSE Bl[a]P GSE10718

NES: 1.2682
p-value<0.001
FDR g-value=0.1723

0.05
200 a 0.00
£0.05
150 010
045

i
o
S

@
S

>
S=
S ®
St
o

5§
5
'§°
58
=z

LA

CSE ‘ Non-CSE
GSE31210

5 NES: 1.6566
- p-value=0.0158
e FDR g-value=0.0996

A
A
/\

P 0.00
Gefitinib
Py ..,_~_,,,a‘,,_._. e i ran
-lO3 o lO3 1 -lO 0

e
>
The population of Annexin V Smoker Non-smoker
j O Lowgl H High
e —parental —CSE —B[a]P f . S0 s a R
= ) [ — £
% 140 Glutlsose Ollgollnycln ZITG 3 4r o §100
; 120 | | o ® ~ °\°= 80
1 | @ O3k <
T 100 _ c
& 1 | 1 g = 2 60
I 80 1 J 1 S c B
E’ 1 1 ®2}F g 40
E 60 { | 05 I
£ Qg S 20
g 40 I ! [+« [ e
= 1 | 1 Zo1}f )
20 1 | Glycolytic | .
g | Glycolysis | capacity | ~N % & 6‘&0 &@ ‘\0{0 é‘éo &‘o °\\§° ‘&é@
w 0 - f N & L & L& ¥ ¢
1 10 20 30 40 50 60 70 80 90 100110120 -0 L @ o @ S
Time (minute) parental CSE B[a]P parental CSE BlalP
a5 parental 350 Bla]P 56
[ o =
£ s o g0 o o ® o
S 20 * M"‘“ “ TN Z100
- | i | Y . S
[ ' ! ! I i 1 I o 85
w4 . | I s
b , , , i N £ w0
oM™ 1 A S R | z
< i T T i o 3 40
o s 1 ! ! ! | | I | ‘E
s ~control =Ertinib ! ! —control —Erotinb | i 5 20
L L I’ i 1 1
W "-eensesugazzzasaiig TeeN8ReYRERYE88S3Y ® o
Time (minute)
I parental CSE B[a]P
E 5 parental CSE I
> _120 @® parental B CSE A B[a]P
54 s i . ” .
= € 100 — — T
c3 8 — M — —
‘s 80
]
=P £
5 < 60
s =
g1 3 40
> 8
= >
»n 0 P < P < 3 20
o
q‘,\é ‘&e éo« é@ o
parental A 0 con. erl. gef. con. erl. gef.
L Treatment with erlotinib 2DG

SPRINGER NATURE



Cigarette smoke-induced LKB1/AMPK pathway deficiency reduces EGFR TKI sensitivity in NSCLC 1165

<« Fig. 1 Exposure to CSE and B[«x]P upregulated glucose metabo-

lism to promote cell proliferation and EGFR TKI resistance.
a—c CSE- and -B[a]P-selected H292 cells were subjected to colony
formation assays followed by staining with 1% crystal violet (top) and
quantitation (bottom) (a). The cell growth of H292 CSE- and B[a]P-
selected cells treated with 1 uM of erlobinib and gefitinib for 3 days
were measured by MTT assays (b) and FACS analysis (c), respec-
tively. d The changes in the expression of glycolytic-related genes by
CSE exposure (GSE10718 (top) or in smokers (GSE31210 (bottom))
were analyzed in GSEA. e—g CSE- and B[a]P-selected H292 cells was
analyzed the glycolytic flux (e) and 2-NBDG uptake (f). The inhibitory
effects of erlotinib treatment for 4 h on the glycolytic flux in CSE- and
Bla]P-selected H292 cells were measured in Seahorse Analyzer (g). h,
i The parental and CSE-selected H292 cells were injected into SCID
mice followed by BEDG uptake of tumor by microPET/CT analysis
(h), and the inhibitory effect of erlotinib treatment (50 mg/kg) for
3 day on the maximum SUV in tumor (T) was measured and nor-
malized to that in muscle (M) (i). j, k The ATP level (j) and cell
viability (k) of CSE- and -B[a]P-selected H292 cells were treated with
1 uM of erlotinib and gefitinib under the conditions with different
glucose concentrations for 3 days. 1 The cell viability of CSE- and B[a]
P-selected H292 cells treated with 1uM of erlotinib/gefitinib in
the presence or absence of 5mM 2DG were measured under 1 mM
glucose culture condition for 2 day. Data are shown as mean + SEM
from experiments performed in triplicate. *p <0.05; **p <0.01; ***p
<0.001.

Activation of AMPK by reducing glucose uptake and
intracellular ATP contributes to sensitivity to EGFR
TKI in NSCLC

Given that dysregulation of glucose metabolism contributes to
CSE-mediated resistance of EGFR™T NSCLC to EGFR TKI
(Fig. 1), we further expanded on the role of suppressing
glucose metabolism on the antiproliferative activities of these
drugs. First, we examined the effects of erlotinib and gefitinib
on cell growth of various NSCLC cell lines harboring
EGFRW™T (H292, H322, A549, H460, and H23) or EGFR
activating mutations (HCC827 and H3255) by colony for-
mation assay (Fig. 2a). As expected, EGFR mutant-
expressing HCC827 and H3255 cells were highly sensitive
to EGFR TKI (ICso<0.1uM). Interestingly, EGFR™'-
expressing cells can be divided into those sensitive (H292 and
H322; IC59 < 3 uM) or resistant (A549, H460, and H23; 1Cs
> 10 uM) lines to erlotinib and gefitinib [27] (Fig. 2a). Both
erlotinib and gefitinib attenuated 2-NBDG uptake (Fig. 2b),
glycolytic flux (Fig. 2c), and ATP levels (Fig. 2d) in TKI-
sensitive (H292 and H322) but not in TKI-resistant (A549
and H460) EGFR " T-expressing cells, suggesting an essential
role of glycolysis inhibition in the sensitivity to EGFR TKI in
EGFR™" NSCLC cells.

Because EGFR TKI inhibited intracellular energy level by
ATP depletion by blocking glucose uptake (Fig. 1), we thus
examined the activation of AMP-activated protein kinase
(AMPK), which is upregulated in response to ATP depletion
and subsequently negatively regulates mTOR complex 1 to
inhibit protein translation and tumor growth, in the presence
of EGFR TKI. Treatment with gefitinib suppressed the kinase

activity of EGFR after 6h of treatment; suppressions of
mTOR and mTORCI1 substrate (p70S6K and 4EBP1) activ-
ities were observed after 24 h with simultaneous AMPK and
AMPK substrate (Raptor and ACC) activations in TKI-
sensitive H292 and H322 cells (Fig. 2e, f). However, neither
erlotinib nor gefitinib diminished mTOR pathway or activated
AMPK pathway in TKI-resistant A549, H23, and H460 cells
even after 72 h of treatment (Supplementary Fig. 4a). These
findings suggested that the increased AMPK activation as a
result of reduced levels of intracellular glucose uptake and
ATP contributes to EGFR TKI-induced mTOR suppression.

To determine whether dysregulation of glucose metabolism
causes resistance to EGFR TKIs, lung cancer cells were cul-
tured at high and low glucose conditions with or without TKI
treatment. High glucose condition reversed EGFR TKI-induced
ATP depletion (Fig. 2g) and cell growth suppression (Fig. 2h)
in TKI-sensitive H292 and H322 cells. In contrast, no changes
were observed in ATP level (Supplementary Fig. 4b) or cell
growth (Supplementary Fig. 4c) by EGFR TKI in TKI-resistant
A549 and H460 cells under either low or high glucose con-
dition. These results suggested that reduction of intracellular
ATP production and activation of AMPK due to inhibition of
glycolysis have significant role in the sensitivity to EGFR TKI
in NSCLC.

LKB1 is required for EGFR TKI sensitivity in NSCLC

Liver kinase B1 (LKB1), the upstream kinase of AMPK and a
tumor suppressor gene, regulates intracellular energy home-
ostasis and activation of AMPK in the presence of high levels
of intracellular AMP [28]. Next, we asked whether LKB1
expression is involved in determining EGFR TKI sensitivity in
EGFRYT NSCLC cell lines. Among the cell lines examined,
LKB1 expression was detected in TKI-sensitive H226, H292,
H322, H441, H520, H661, and Calu3 cells but absent in TKI-
resistant A549, H460, and H23 cells (Supplementary Fig. 5a).
LKBI level is inversely correlated with the IC50 to erlotinib
(Fig. 3a) and gefitinib (Supplementary Fig. 5b) in these cells.
Next, to determine the role of LKB1 in TKI-induced AMPK
activation and mTOR suppression, we knocked down LKB1 in
H292 and H322 cells by using LKB1-specific siRNAs fol-
lowed by treatment with gefitinib or erlotinib. Transient
knockdown of LKB1 reduced AMPK and Raptor phosphor-
ylation and reversed mTOR and 4EBP1 suppression without
affecting EGFR inhibition by gefitinib and erlotinib in H292
(Fig. 3b) and H322 cells (Supplementary Fig. 6a). In contrast,
overexpression of LKBI™T but not its kinase-dead (KD)
mutant enhanced the activations of AMPK and Raptor and
inhibition of mTOR and 4EBP1 phosphorylation in A549
(Fig. 3c) and H460 (Supplementary Fig. 6b) cells in response
to EGFR TKIs. Since both gefitinib and erlotinib induced
AMPK activation by inhibiting glucose uptake and ATP level
(Fig. 2), and phosphorylation of AMPK at T172 by LKB1 is

SPRINGER NATURE
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<« Fig. 3 LKBI1 expression positively correlates with clinical outcome

of patients with NSCLC who received EGFR TKI. a The correla-
tion between LKB1 protein level and IC50 of erlotinib in 10 EGFR™"-
expressing lung cancer cell lines was analyzed. b Western blot analysis
of H292 cells treated with 1 uM gefitinib or erlotinib for 3 days after
transfection with LKB1 siRNA. ¢ Western blot analysis of A549 cells
transient transfected with WT or KD LKB1 cDNA and then treated
with 1 uM erlotinib for 3 days. d, e H292 cells were treated with
indicated concentrations of gefitinib (d) and erlotinib (e) for 3 days
after transfection with LKB1 siRNA, and then subjected to MTT cell
viability assay. f-h The cell viability (f), colony formation (g), and
proliferation (h) of A549 stable transfectants expressing Flag-LKB1
WT or KD mutant in response to treatments with 1 uM gefitinib or
erlotinib were determined by MTT, clonogenic, and cell counting
assays, respectively. i, j The protein expression of LKB1 in tumor
tissues from NSCLC patients was examined by IHC staining.
Kaplan—Meier analysis of LKB1 expression and its correlation with
progression-free survival (i) and overall survival (j). Data are shown as
mean + SEM from experiments performed in triplicate. *P < 0.05; **P
<0.01; ***P <0.001.

assays. Silencing LKB1 attenuated gefitinib- and erlotinib-
mediated growth inhibition of H292 cells (Fig. 3d, e). We
further examined whether exogenous expression of LKB1 can
resensitize A549 cells to EGFR TKI. As shown in Fig. 3f,
erlotinib treatment suppressed the viability of LKB1-deficient
A549 cells reexpressing WT LKB1 but not the KD LKBI
mutant or control (pcDNA). Similarly, gefitinib and erlotinib
also suppressed the colony formation of LKB1-deficent A549
cells reexpressing LKB1 WT but not LKB1 KD or control
(Fig. 3g). The rate of cell growth of A549 cells was also
attenuated by gefitinib and erlotinib when cells were re-
introduced with LKB1 WT but not the KD mutant (Fig. 3h).
Taken together, these results demonstrated that the
LKBI1-AMPK axis is essential for the sensitivity to EGFR TKI
in EGFR™" NSCLC cells.

Next, we asked whether LKB1 protein expression in tumor
tissues correlates with the clinical outcome of patients with
EGFR™!T NSCLC who received EGFR TKI treatments.
Compared with patients with low expression of LKB1 (IHC
staining score of 0-2+), those with high expression of LKB1
(THC staining score of 34-) showed better response rates (partial
response, PR; stable disease, SD) to EGFR TKI (Supplemen-
tary Table 1), and had better PFS (Fig. 3i) and overall survival
(OS) (Fig. 3j). These results suggested that the LKB1 expres-
sion is a critical determinant for the sensitivity of EGFR™"
NSCLC to EGFR TKL

Exposure to CSE downregulates LKB1 expression via
promoter DNA methylation and renders NSCLC
resistant to EGFR TKI

The LKBI-null mutation is frequently found in NSCLC
tumors and associated with smoking behavior [30]. Because
our data indicated LKB1 expression is positively associated
with EGFR TKI sensitivity (Fig. 3), we hypothesized that
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cigarette smoke-mediated downregulation of LKB1 con-
tributes to EGFR TKI resistance. Indeed, tumoral LKB1
expression was lower in smokers than in nonsmokers with
NSCLC (Fig. 4a, b; Supplementary Table 1). Exposure to
CSE reduced LKB1 protein expression and activation of
AMPK signals and increased mTORC pathway in a dose-
dependent manner in H292 cells (Fig. 4c). LKB1 mRNA
expression was also suppressed by CSE and B[a]P in H292
cells (Fig. 4d). In former and current smokers with NSCLC,
tumoral LKB1 mRNA expression was lower than that in
never smokers with NSCLC in a published gene sets
(GSE10072) with two probes (Supplementary Fig. 7a).
These findings suggested that the LKB1 may be tran-
scriptionally repressed by cigarette smoking.

Since DNA methyltransferase (DNMT) has been implicated
in tobacco smoking-mediated promoter methylation and gene
silence [31] and CSE dramatically suppressed LKB1 expres-
sion in H1299 cells (Supplementary Fig. 7b) which express
higher DNMT isoforms [32], we next assessed whether
cigarette smoke downregulates LKBI1 transcription through
promoter methylation. Chromatin immunoprecipitation with
anti-5-methylcytosine (5-MC) and anti-methyl-CpG-binding
protein 2 (MeCP2) antibodies, which recognized methylated
DNA and the important reader of methylated DNA respec-
tively, was performed followed by quantitative real-time PCR
with six different primers targeting the CpG island on the LKB]
promoter (illustrated in Supplementary Fig. 7c). Chronic CSE
and B[aP exposure significantly increased the levels of all 6
regions of the LKBI promoter in both anti-MeCP2 (Fig. 4e)
and anti-5-MC (Fig. 4f) immunoprecipitates. These results
suggested that cigarette smoke-downregulated LKB1 expres-
sion likely occurs via promoter DNA methylation and con-
tributes to EGFR TKI resistance in NSCLC.

AMPK activator metformin synergizes the
antiproliferative activities of EGFR TKI in NSCLC

On the basis of the above results showing that inactivation of
the LKB1-AMPK axis contributes to EGFR TKI resistance
in EGFR™T NSCLC, we sought to explore potential
approaches to overcome resistance. To date, there are no
pharmacological activators of LKB1; however, metformin,
an FDA-approved drug for T2DM, is a pharmacological
activator of AMPK, and thus we asked whether metformin
can enhance the antiproliferative activity of EGFR TKI
to overcome resistance. To this end, we co-treated cells
with metformin and showed that it enhanced the inhibitory
effects of erlotinib (Fig. 5a, b) and gefitinib (Supplementary
Fig. 8a—) on cell growth of the sensitive H292 and A549
(expressing LKB1 WT stable cells) cells, but not the resis-
tant A549 control cells. In addition, metformin remains able
to induce AMPK activation in CSE- and B[a]P-selected
clones (Supplementary Fig. 8d), and the suppressive effects
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of metformin plus erlotinib (Fig. 5c) was observed in these
clones (the combination index (CI) shown in Fig. 5d, e).
Combined treatment with mTORCI inhibitor everolimus
also showed similar effect (Supplementary Fig. 8e), sug-
gesting that the enhancement of AMPK activity or inhibition
of mTORCI1 activity are potential strategies to enhance the
antiproliferation of EGFR TKI in EGFR"T NSCLC.

To further validate the inhibitory effects of metformin on
the antiproliferative activity of EGFR TKI in vivo, SCID
mice were implanted with H292 cells. After the tumors
were established, vehicle, erlotinib, metformin, or the

LKB1 primers

combination of erlotinib and metformin was administered to
mice for the indicated days to monitor tumor size and
weight. Compared with erlotinib or metformin alone, their
combination dramatically reduced tumor size (Fig. 5f, g)
and tumor weight (Fig. 5h). The erlotinib and metformin
combination also enhanced AMPK-dependent phosphor-
ylation of acetyl-coA carboxylase (ACC), a major down-
stream effector of AMPK in lipid metabolism, and
attenuated mTOR-mediated 4EBP1 phosphorylation and
Ki67 cell proliferation marker in the tumor tissues (Fig. 5i
and Supplementary Fig. 8f). These results indicated that co-
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treatment with AMPK activator can synergize the anti-
proliferative activity of and overcome resistant to EGFR
TKI in vivo.
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The results above prompted us to compare the clinical
responses from NHIRD of Taiwan of patients who took
metformin with EGFR TKI. To this end, we analyzed the



Cigarette smoke-induced LKB1/AMPK pathway deficiency reduces EGFR TKI sensitivity in NSCLC 1171

<« Fig. 5 AMPK activator synergizes the antiproliferative activity of

EGFR TKI in vitro and in vivo. a, b The cell counting assay of H292
(a) and A549 pcDNA and LKB1 WT (b) treated with erlotinib, met-
formin or their combination for the indicated days. c—e CSE- and B[a]
P-selected stable H292 cells treated with erlotinib and metformin were
subjected to MTT assays (c). The combination index of CSE- and B[«]
P-treated H292 cells in response to erlotinib plus metformin (d) or
gefitinib plus metformin (e) was determined by using CompuSyn.
f—i H292 cells were inoculated subcutaneously into NOD-SCID mice
followed by treatment with erlotinib, metformin, or the combination
for the indicated days. The tumor size (f, g) and weight (h) were
measured. Phosphorylation of ACC and 4EBP1, and expression of
Ki67 in these tissue sections were quantified from IHC staining results
(i). n =7 mice for each group. j Overall survival curve of the met-
formin and non-metformin cohort of patients with NSCLC and T2DM
who received TKI treatment. Data are shown as mean+ SEM
from experiments performed in triplicate. *P<0.05; **P<0.01;
#4P < 0.001.

incidence and hazard ratio for 21,778 patients with NSCLC
and T2DM who received EGFR TKI treatment in a
population-based cohort study using data from 2004 to
2014 (Supplementary Fig. 1). Of these patients, 1000 were
enrolled in the non-metformin cohort and 3181 in the
metformin cohort. In order to reduce bias in patient char-
acteristics between two groups, we performed a propensity
score matching with a ratio of 1:2 between patients with
metformin and those without metformin (Supplementary
Table 2). After we had performed a propensity score
matching, this study conducted Cox proportional hazard
model analyses to compare the relative risk of mortality
between two groups. The results showed that a reduction of
mortality (Supplementary Table 3) and better survival rate
(Fig. 5j) were observed in the metformin cohort (adjusted
OR: 0.78; 95% CI: 0.69-0.88; p<0.001). Together, the
results lent further support to the benefits that the combi-
nation of EGFR TKI with AMPK activators may bring to
patients with NSCLC.

Discussion

The present study demonstrated the importance of the
LKBI1-AMPK axis in the therapeutic efficacy of EGFR TKI
in patients with EGFRYT NSCLC and a history of smoking.
Through inhibition of glucose uptake, EGFR TKI triggered
AMPK activation in an LKB1-dependent manner due to the
reduction of ATP level to suppress mTOR signaling and
tumor growth. Both in vitro and in vivo results revealed that
NSCLC harboring LKBI™T expression exhibited greater
sensitivity and led to better clinical outcome in response to
EGFR TKIL

Cancer cells predominantly utilize glycolysis to support
the biosynthetic demands and fuel their proliferation. Tar-
geting glycolytic enzymes has been shown to improve
therapeutic response to anticancer agents [33], revealing the

critical role of glycolysis in tumor progression and ther-
apeutic resistance. Our results further indicated that expo-
sure to CSE enhanced glucose uptake and aerobic
glycolysis which in turn contributes to the growth of
NSCLC, and this may in part account for the higher risk in
tumor progression, failure to systemic therapy, and mor-
tality for smokers with NSCLC. The expressions of two key
glycolytic enzymes hexokinase II (HK-II) and pyruvate
dehydrogenase kinase 2 (PKM2) are mediated by tran-
scription factors hypoxia-inducible factor 1 (HIF-1) and
tumor suppressor gene pS3, respectively, and dysregulation
of these two transcription factors by cigarette smoke
[34, 35] represents a possible explanation for the enhanced
glycolysis in CSE-treated NSCLC cells. In addition, upre-
gulation of glycolysis also contributed to the CSE-mediated
resistance of EGFRYT NSCLC to EGFR TKI (Fig. 1).
However, exposure to cigarette smoke has no bearing on
TKI sensitivity of NSCLC cells harboring EGFR activating
mutations [36], implying that dysregulation of genes or
pathways particularly affected by CSE in EGFRWT cells
may explain the distinct impact of CSE on TKI sensitivity.

Somatic mutation(s) of LKBI, a tumor suppressor to
upregulate AMPK-related catabolic and anabolic path-
ways, is viewed as an important cause of cancer devel-
opment and poor prognosis in patients with NSCLC,
hepatocarcinoma, and colorectal cancer [30, 37, 38].
Several studies have reported that EGFR mutations and
LKBI deficiency are mutually exclusive in NSCLC
patients [39, 40]. We discover that CSE exposure down-
regulated LKB1 expression via DNA promoter methyla-
tion to confer EGFR TKI resistance of EGFR™" NSCLC.
The enhancement of DNA methylation on gene promoters
by tobacco exposure or nicotine treatment by activating
DNA methyltransferase 1 (DNMT1) has been reported to
cause abnormal target gene expression in bronchial epi-
thelial cells and lung cancer cells [41, 42]. Aberrant CpG
island methylation of LKBI has also been detected in
primary lung tumor tissues and is associated with poor
survival [43]. The expression of LKB1 was relatively
lower in smokers with NSCLC even after cigarette
smoking cessation following diagnosis of the disease
compared with non smokers (Supplementary Fig. 7a). In
addition, patients with NSCLC with loss function of LKB1
demonstrated poor response to EGFR TKI than those with
LKBI1WYT (Supplementary Table 1). Taken together, these
findings supported the notion that cigarette smoke results
in an irreversible dysfunction of LKB1 and confers EGFR
TKI resistance in patients with NSCLC.

Metformin, an FDA-approved therapeutic agent for
T2DM patients, is an AMPK activator that reduces the
activity of complex I of the electron transport chain in the
mitochondria due to decreased ATP generation and
increased AMP and ADP content [44]. In addition to
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Materials and methods
* Preparation of cigarette smoke extract (CSE)
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Fig. 6 A proposed working model. LKB1 activation due to glycolysis
inhibition is essential for the antiproliferative activity of EGFR TKI in
EGFR™T NSCLCs by activating AMPK to suppress mTORC]1 function.
However, cigarette smoke and its ingredient B[a]P represses LKB1
expression by enhancing its promoter CpG island methylation which
renders NSCLC cells resistant to EGFR TKI. The addition of AMPK
activator metformin can overcome EGFR TKI resistance in response to
cigarette smoke exposure in patients with EGFR™T NSCLC.

benefiting patients with diabetes mellitus, metformin also
repressed cancer growth and prolonged the OS of those with
advanced NSCLC [45, 46]. In this study, we further showed
that metformin synergizes the antiproliferation activity of
EGFR TKI in TKI-resistance and/or CSE-treated NSCLC
cells by enhancing AMPK-mediated reduction of mTOR/
4EBP1 and ACC pathways (Fig. 5). The data from NHIRD
of Taiwan also demonstrated better survival rate in patients
with NSCLC/T2DM who received EGFR TKI with met-
formin compared with those who did not receive metformin
(Supplementary Table 3). Metformin has recently been
reported to promote anticancer immunity via AMPK-
dependent programmed death ligand-1 phosphorylation
and degradation [47]. Importantly, NSCLC patients
expressing activating EGFR mutation who were treated
with both EGFR TKI and metformin had acquired good
quality of life and experienced less side effects [46]. All
these studies point to the notion that co-treatment with
AMPK activators may be able to resensitize NSCLC cells
bearing LKBI-nul/EGFR™" to EGFR TKI by suppressing
glycolytic reprograming.

In summary, we demonstrated that EGFR TKI possesses
antiproliferative activity in EGFR™" NSCLC in an LKB1-
dependent manner. By interfering with the glucose con-
sumption, EGFR TKI reduced ATP production to activate
the LKBI-AMPK axis, leading to suppression of mTOR-
mediated cell proliferation. In addition, cigarette smoke
reduced LKB1 expression, impairing its downstream
AMPK signaling from suppressing mTOR activity (Fig. 6).
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pH value of CSE medium was adjusted to 7.4 followed by
filtration with 0.22 um filter to remove large particles. The
stock of CSE medium is defined as 100% (1 cigarette per ml
medium), and final concentration was calculated as following:
[(ml CSE medium) + (total ml medium) x 100].

Measurement of extracellular acidification rate
(ECAR)

NSCLC cells (2 x 10* cells/well) were seeded in Seahorse
XF24-well microplate (Agilent). After incubation for
overnight, cells were cultured in assay medium without
sodium bicarbonate and HEPES in a non-CO, incubator at
37°C for 1h. Glucose oxidation was tested with con-
secutive additions of 1 uM erlotinib for 4 h, 10 mM glucose,
1 uM oligomycin, and 50 mM 2-DG (Seahorse XF Glyco-
lytic Rate Assay Kit). ECAR was analyzed by Seahorse
XF24 Analyzer (Agilent).

2-Deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)
amino]-D-glucose (2-NBDG) utilization

Cells seeded in 6-well plates were treated with or without
1 uM gefitinib or erlotinib. Cell were washed with PBS
three times and then incubated with glucose-free medium
for 4 h. After wash with PBS for three times, the cells were
incubated with PBS containing 2-NBDG (100 pM; Sigma-
Aldrich) for 20 min at 37 °C and then subjected to flow
cytometry analysis (BD Biosciences) or microscope image
processing (ThermoFisher).

Tumor xenograft mouse model

The 5-week-old female SCID mice (seven for each group),
which bought from LASCO were injected with 1x 10°
NCI-H292 cells suspended in 50 pl growth reduced Matri-
gel in right flank via a 22-gauge, 1.5-inch needle. Once
tumor volume reached about 200 mm>, mice were treated
with erlotinib 50 mg/kg/day or metformin 200 mg/kg/day
by oral gavage. Tumor size was measured with calipers and
tumor volume calculated using the formula: volume =
width? x length/2. After 10 weeks, the mice were sacrificed
in a CO, chamber and the tumors were collected. All the
procedures of the animal experiments in study were
approved by Institutional Animal Care and Use Committee
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of China Medical University (102-40-N) in accordance with
NIH guidelines.

Human lung tumor tissue specimens

The treatment naive tissue specimens from 121 patients with
EGFR™" NSCLC who have received EGFR TKI treatments
(Supplementary Table 1) were obtained following the
guidelines approved by Institute of Research Board Com-
mittee at China Medical University Hospital (DMR101-
IRB1-120), and written informed consent was obtained from
patients in all cases.

Data source from Taiwan National Health Insurance
Research Database (NHIRD)

NHIRD is a comprehensive health care database from the
program of Nation Health Insurance that covers nearly the
entire population in Taiwan. Data on the characteristics of
patient, outpatient visit, and medicine administration was
collected following the guidelines approved by Institute of
Research Board Committee at China Medical University
Hospital. The International Classification of Diseases, Ninth
Revision, Clinical Modification (ICD-9-CM) codes were
referred for the diagnosis of diabetes mellitus type 2
(T2DM) and NSCLCs. The patients with T2DM and
NSCLCs diagnosed between 2004 and 2014 were collected
from NHIRD. Patients who received EGFR TKI therapy,
including erlotinib or gefitinib were included, while those
diagnosed with multi- or other type of cancer, aged <20
years, TIDM, and incomplete information were excluded.
Moreover, the patients with metformin usage more than 28
cumulative defined daily doses after suffering NSCLCs with
EGFR TKI therapy were also enrolled (Supplementary Fig. 1).

Statistical analysis

Data are shown as the mean =+ standard error of the mean
(SEM). A two-tailed ¢ test was used for most comparisons,
with p<0.05 considered significant. PFS was calculated for
the time period from the start of EGFR TKI (erlotinib or
gefitinib) treatment to tumor recurrence. PFS and OS was
analyzed by using Kaplan—-Meier method and the statistical
significance was analyzed by using Gehan—Breslow—Wilcoxon
test. Chi-square test was used to determine the association
between two categorical variables. A P value <0.05 was
considered statistically significant.
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