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Periodontal disease results from the inflammatory infiltration by the microbial community
which is marked through tooth mobility and alveolar bone resorption. The inflammation in
periodontal disease is mediated by CD4+ T cells through cytokine secretion and
osteoclastogenetic activity. Historically, the inflammatory model in periodontal disease is
described through disruption of the balance between two subsets of T helper cells which
are T-helper type 1 (Th1) and T-helper type 2 (Th2). However, more andmore studies have
found that apart from subsets of helper T cells, regulatory T-cells and Th17 cells are also
involved in the pathogenesis of periodontal diseases. Growing evidence proves that
helper T cells differentiation, activation, and subset determination are under the strong
impact of mTOR signaling. mTOR signaling could promote Th1 and Th17 cell
differentiation and inhibit Treg commitment through different mTOR complexes,
therefore we anticipate a regulation effect of mTOR signaling on periodontal diseases
by regulating CD4+ T cell subsets. This review aims to integrate the topical researches
about the role of different types of Th cells in the pathogenesis of periodontal diseases, as
well as the regulation of mTOR signaling in the specification and selection of Th
cell commitment.
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INTRODUCTION

A new periodontitis classification scheme has been adopted by the World Workshop in 2018, in
which three forms of periodontitis can be identified: necrotizing periodontitis, periodontitis as a
manifestation of systemic disease, and the disease previously recognized as “chronic” or “aggressive”
are now grouped under a single category, “periodontitis” and are further classified based on a multi-
dimensional staging and grading system (1, 2). Periodontitis is an inflammatory disease that
damages the soft tissue and, without treatment, can result in progressive destruction of the
periodontal ligament and alveolar bone with periodontal pocket formation, gingival recession,
and even tooth loss (3). Periodontal disease does not only affect the gums tissue but also has been
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stated to be a potential risk factor for systemic diseases such as
cardiovascular disorders, low birth weight infants, and several
others due to exposure of bacteria from periodontal tissue to
blood and the resultant production of inflammatory mediators
(4–6). The periodontal disease has been better understood
through the latest findings in the field of microbiology and
immunology. Recent researches in microbiology have shed
better light on the mechanism behind the development of
periodontitis (7), whereas immunobiology studies have
revealed that periodontitis is caused by immune responses
against bacterial infection which eventually results in
periodontal tissue damage (8). It has been established that the
immune responses of the human immune system determine the
susceptibility to periodontitis. However, the exact role of
different subsets of immune cells in periodontitis, the role of
immunity in alveolar bone destruction, and the specific signaling
pathways involved in immune regulation in periodontitis
remain unclear.

Periodontitis is the inflammatory process with a dense
accumulation of immune cells, including neutrophils,
macrophages, lymphocytes, plasma cells, and mast cells (9).
The lesion is initiated by the response of resident leukocytes
and endothelial cells to the bacteria, which produce cytokines
and cause vasodilatation of local blood vessels. Neutrophils
migrate out of blood vessels into the site of infection in
response to chemokines. The numbers of neutrophils increase
and macrophages, lymphocytes, plasma cells, and mast cells also
appear in the connective tissue. The following stage is the
established lesion, which is the period of transition from the
innate immune response to the acquired immune response. At
this stage, plasma cells, macrophages, and T and B lymphocytes
are dominant. The final stage is the advanced lesion, which is
characterized by irreversible attachment loss and bone loss (10).
T cells play an important role in this process of the immune
response, regulating the polyclonal activation of the B cells (11),
inducing osteoclastogenesis via RANKL activation, and
producing several periodontitis-associated cytokines, such as
IFN-g, TNF-a, and interleukin (IL)-17 (12, 13).

It has been reported that human CD4+ T cells are involved in
the immune response against oral microorganisms in
periodontal diseases (14). In general, CD4+ T cells with
regulatory function play a crucial role in controlling the
immune responses during host defense (15). Different subsets
of CD4+ T play role in the chronic inflammatory conditions
distinctively (16), however, their exact contribution towards the
destruction of the periodontal tissue destruction has not been
understood. Although the pathological studies in periodontitis
have made a significant advancement, the overall understanding
of the role of immunity in the pathogenesis of periodontal
diseases is still limited. The understanding of the exact role of
immune cells in periodontitis is crucial for discovering novel
treatment strategies.

In this review, we have summarized the latest researches
describing the role of different subsets of CD4+ T which include
helper T cells type 1 (Th1), Th2, Th17, and regulatory T (Treg)
cells in the induction of immune response in chronic periodontal
Frontiers in Immunology | www.frontiersin.org 2
diseases. Moreover, we focused on the CD4+ T regulation by
mTOR signaling, which is known to control cell differentiation,
activation, and fate determination in CD4+ T cells. T cell
activation is accompanied by a wide variety of changes in
cellular metabolism and is guided by multiple cues derived
from the immune microenvironment (17). The mTOR cascade
is the central integrator of these signals and has an essential role
in driving T cell differentiation and function (17, 18). This way
mTOR pathway impacts the selection and fate of CD4+ T cells
which ratify their role in the pathology of periodontal diseases.
This study not only elucidates the relationship between
immunity and periodontal diseases but also highlights the
potential directions towards the development of novel
therapeutic approaches.
PATHOBIOLOGY OF PERIODONTAL
DISEASES

Periodontitis is characterized by the inflammation caused by
microorganisms in periodontal soft tissues and the gradual loss
of periodontal alveolar bone (19). The progressive destruction of
periodontal tissues results in tooth looseness and eventually loss
of teeth resulting in tremendous social and economic burden for
patients (20, 21). Periodontitis is reported to be one of the most
prevalent chronic inflammatory condition which affects more
than 700 million people worldwide (21).

Historically, it was believed that periodontitis is caused by
specific bacterial infections and that people are unanimously
susceptible to these infections and to the damage caused by them
(13). Chronic inflammatory periodontal diseases are induced by
imbalanced microbial communities which are presented in the
form of subgingival dental plaques. Dental plaque is a typical
biofilm composed of complex microbial flora (22), and the
microbes in the plaque are highly ordered and embedded in an
extracellular matrix. Subgingival biofilms are dental plaques that
locate at the root surface of teeth or dental implants, in which the
external surfaces are exposed to the gingival tissues. The
transition from healthy periodontium to inflammatory
periodontium is not implicated by a single type of organism.
The microbial communities in periodontal diseases exhibit
dysbiosis with unregulated microbial species composition and
abundance, which results in a pathogenic condition (23). Three
Gram-negative organisms, Prophyromonas gingivalis ,
Treponema denticola, and Tannerella forsythia, identified as
“Red Complex”, were the first organism found to be associated
with periodontal disease with their enriched presence in
subgingival plaques within the periodontitis patients (24).
Although these microorganisms are linked with the
pathological condition, they are also normally present at a low
level in healthy patients without periodontal diseases, suggesting
that they are pathobionts rather than pathogens. Other
microorganisms in periodontal tissues which are also found to
be pathobionts include Parvimonas, Fusobacterium, and
Prevotella (25).
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Nowadays, it has been accepted that the pathogenesis of
periodontitis is more complex than the presence of virulent
microorganisms (13). The microbes associated with
periodontitis progressively destroy the periodontal tissues by
producing numerous detrimental cytokines and virulence
factors including exotoxins, endotoxins, fimbriae, capsule, and
metabolic products (26). However, not all individuals with
periodontitis-associated microbes in their gum tissues develop
periodontitis, indicating a complex multifactorial etiology
associated with periodontal diseases. In addition, there are
intractable cases that responded poorly to the comprehensive
periodontal treatment suggesting a disease susceptibility model
(27). At present, it has become apparent that, except for the
microorganisms, the modifiable risk factors (eg. smoking) and
non-modifiable risk factors (eg. genetic inheritance and immune
response) are critical etiologic agents in periodontal disease (13).

Smoking negatively affects periodontal health, which has been
proved by epidemiological, clinical and in vitro studies (28–31).
Compared with nonsmokers, smokers have presented increased
susceptibility, greater severity, and faster progression of
periodontitis (32, 33). Besides, smokers lose more teeth and are
less likely to be successful in periodontal treatment than
nonsmokers (33). It is reported that smoking reduces gingival
bleeding by reducing the number of gingival blood vessels or
altering the caliber of the blood vessels perfusing the gingival
tissues (34). The decreased bleeding indicates an underlying
disruption of the immune response, which may lead to the
increased loss of attachment and alveolar bone (34, 35). More
importantly, smoking cessation seems to be favorable for the
periodontium, which decreases the risk for the incidence and
progression of periodontitis (36, 37).

Another new discovered etiologic agent in periodontal disease
is genetic inheritance. A recent meta-analysis concluded that
up to a third of cases of periodontal diseases are due to the
involvement of causative genetic factors and severe periodontitis
shows higher heritability than moderate periodontitis (38). The
specific genes which are responsible for periodontitis are not
identified yet whereas the heritability of periodontitis has been
found to be regulated by epigenetic mechanisms (26, 39). The
heritability considered to be a relative contribution to
periodontitis denotes that certain other factors might be
increasing the risk, implying that the relative contribution of
genetics would be moderate (38).

Many studies have reported the associations between
periodontal diseases and immunocompromised systemic
diseases, such as diabetes mellitus and rheumatoid arthritis
(40–43). It has been generally accepted that immune system is
pivotal in the etiology of periodontitis and the major cause of
periodontal diseases is an imbalance between host immunity and
microbial virulence (44). The individual susceptibility of the
disease is regulated by the host immunity, which is also
affected by environmental factors (45). Exploring the
inflammatory conditions in periodontal tissues with their
mode of inflammation and tissue destruction holds a
pronounced significance. Understanding the regulatory
Frontiers in Immunology | www.frontiersin.org 3
pathways in inflammatory response causing periodontal tissue
destruction may pave way towards a new therapeutic avenue.

Inflammation is the physiological response to the injury or
the infection. In case an injury persists, the acute immune
response transforms into a chronic immune response which is
accompanied by the activation of adaptive immune responses.
The innate and adaptive immunity must be coordinated to
return the injured tissue to homeostasis, including the repair
and the regeneration of lost or damaged tissues (45). Knowledge
of how immunological mechanisms and inflammatory responses
regulation is critical for understanding the pathogenesis of
periodontitis (45). The innate immune system constitutes cells
of hematopoietic and nonhematopoietic origins, including
myeloid cells of hematopoietic origin (phagocytes) and
epithelial cells (46). Besides these cells, there is an innate
humoral response through the complement cascades. Innate
immunity is a non-specific type of immunity characterized by
phagocytosis in which macrophages and neutrophils digest
microorganisms and foreign substances (47). When infection
does not clear off, it leads to the formation of a chronic lesion,
stimulating the innate immune response which eventually
activates the adaptive immune response. The adaptive immune
response is specific to the pathogen presentation. The cells of the
adaptive immune response are lymphocytes, including B cells
and T cells which are associated with antibody responses and
cell-mediated immune responses, respectively.

In periodontal tissue, the formation of polymicrobial biofilm
(plaques) stimulates a local inflammatory and immune reaction
(Figure 1A). Currently, pathogen-associated molecular patterns
(PAMPs) derived from pathogens and damage-associated
molecular patterns (DAMPs) released from damaged or
necrotic host cells have been considered to be crucial for
inducing innate immune responses in bacterial infection (48).
The recognition of PAMPs and DAMPs by host cells initiates
innate immune response through toll-like receptors (TLRs) (49,
50). TLRs present on periodontal epithelial cells and immune
cells can recognize highly conserved structures of bacteria, such
as lipopolysaccharide (LPS), peptidoglycan, and double-stranded
RNAs (51). LPS and other plaque PAMPs as well as DAMPs
activate the high endothelial venules (HEVs) in the gingival
lamina propria (52, 53) (Figure 1B). The injection of LPS from
various microorganisms into the gingival tissues established
periodontitis model characterized by increased infiltration of
leukocytes, higher levels of proinflammatory cytokines, collagen
degradation and alveolar bone resorption (54). LPS-activated
endothelial cells (ECs) disrupted EC barrier leading to vascular
hyperpermeability, leakage of albumin and polymorphonuclear
(PMN) transmigration (55, 56). When PMNs transmigrate
across the HEVs, they will be further attracted to the crevice
by PAMPs and DAMPs. Enhanced accumulation of PMNs is
associated with the increase of interleukin-8 (IL-8), intercellular
adhesion molecule 1 (ICAM1), IL-1b, and tumor necrosis factor-
a (TNF-a) expression level (57), which maintain EC activation.
The vicious circle of PMN/HEV mutual activation may cause an
exaggerated PMN response and a damage to the periodontal
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tissues (58). Therefore, the innate immune response is
characterized by a dense inflammatory infiltration in the
periodontal tissues, in which PMNs and macrophages are
abundant immune cells.

When inflammation is persistent, macrophages can act as
professional antigen-presenting cells (APCs), and stimulate
CD4+ helper T cell responses (59). PMN can also be activated
to function as accessory cells for T cell activation (60). APCs
interact with naive T helper cells (Th0), driving their
differentiation into several subsets, including Th cells and Treg
cells (61) (Figure 1C). Activated lymphocytes initiate adaptive
immunity and secrete proinflammatory cytokines and
chemokines (62). The intensification of the local immune
response leads to the expansion of inflammation and results in
the progression of periodontal destruction including alveolar
bone loss (63) (Figure 1D). Besides, memory T cells are crucial
part of the immune surveillance in periodontium and important
for maintaining periodontal homeostasis (64). Emphasis has
been placed on the T cell response in controlling local
immunity and causing chronic periodontal tissue destruction,
however, minimal memory B cells also reside in the connective
tissue of clinically healthy gingiva (65). The low levels of memory
B cells in healthy gingiva seem to play an important role in
avoiding bone loss caused by the subclinical inflammation (9).
Although it is well-recognized that periodontal destruction is
caused by the host inflammatory response to bacterial infection,
Frontiers in Immunology | www.frontiersin.org 4
the potential contributions and detailed molecular mechanisms
of T cell differentiation and activation need to be further
explored in future studies to develop effective and safe
therapeutic approaches.
THE FUNCTION OF CD4+ T CELLS IN
PERIODONTAL DISEASES

The phenotype of periodontal diseases is characterized by the
resorption of alveolar bone and tooth mobility. Adaptive
immune responses have a main role in controlling the
remodeling of bone (66, 67). CD4+ T helper cells which are an
important component of the adaptive immune system, regulate
the bone resorption process by producing cytokines (68).
However, the development of CD4+ T cells is extremely
complicated and strictly controlled by multiple signaling. With
the stimulation by bacteria or viruses, naïve CD4+ T cells could
differentiate into various subsets, including Th1, Th2, Th17, and
Treg cells. Different subsets show distinctive function during
immune response whereas the commitment of a specific subset
of CD4+ T cells largely depends on the cytokines produced in the
microenvironment. Th1 cells are characterized by the expression
of interferon‐g (IFN‐g) (69), which are considered to mainly fight
intracellular pathogens like bacteria or viruses (70). Th2 cells are
defined by the expression of IL-4, IL-5, and IL-13 (71), which are
perceived to mainly target extracellular parasites like helminths
and allergic inflammatory responses (72). Th17 cells are
defined by the expression of IL-17 and IL-22, which in
responses to extracellular pathogens including bacteria and
fungi (73). Treg cells exert their function by regulating
immune responses to maintain immune homeostasis and
prevent immunopathology (73).

In periodontitis, traditionally, Th1 cells are considered to be
connected with the primary and stable periodontal lesions,
whereas Th2 cells tend to be linked with progressive
periodontal lesions (74). Specifically, a strong innate immune
response results in the production of IL-12 by dendritic cells. The
naive T cells activated by IL-12 (75) gain IFN‐g producing
capacities, which become so-called Th1 cells. The production
of IFN-g enhances the phagocytosis of both neutrophils and
macrophages and hence restrain the infection (74). However, the
stable lesion persists because of the continual stimulation of the
dental plaque. The naive T cells can undergo a different fate and
become Th2 cells when the innate response is poor and low levels
of IL-12 are produced. Th2 cells produce mainly IL-4 and also
produce IL-5, IL-10, and IL-13, but not IFN-g. The stimulation of
mast cells and the production of IL-4 will lead to B cells
activation and antibody production. When the antibody is
protective, the disease will not deteriorate. When the antibody
is non-protective and cannot clear the infection, the infection
will persist and the continuous activation of B cells will lead to
large amounts of IL-1 and tissue destruction (74). Nevertheless,
the conventional theory about Th1 versus Th2 has been proven
to be unsatisfactory in the explanation of periodontal diseases
since contradictory results were reported (76). In animal models
FIGURE 1 | Pathogenesis of periodontal disease. (A) In periodontal tissue,
the dental plaque stimulates local inflammatory and immune responses.
(B) LPS and other plaque PAMPs as well as DAMPs activate the HEVs
leading to vascular hyperpermeability and leakage PMN transmigration. (C)
APCs interact with naive T helper cells, driving their differentiation into several
subsets. (D) The amplification of local immune response leads to the
development of inflammation and results in the progression of periodontal
destruction and bone resorption.
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of bone disease, IFN-g, which is secreted by Th1 cells, promotes
osteoclastogenesis and hence bone loss (77, 78). However, in
vitro experiment, IFN-g is shown to block RANKL signaling and
thus inhibit osteoclasts differentiation (79), which proves a
negative link between Th1 cells activation and bone resorption.
These results represent the debatable role of IFN-g and Th1 in
osteoclastogenesis and bone resorption. Besides, some cytokines
secreted by Th cells do not fit obviously into either category
which means new Th cell subsets should be involved.

The role of Th1 in periodontitis is debatable, but many studies
have revealed that Th1 cells are involved in the progression of
periodontal diseases, especially induced osteoclastogenesis and
alveolar bone loss (Figure 2). IFN‐g is the signature cytokine of
Th1 cells. Th1 polarization is induced by the IL-12 and IFN-a
produced by the dendritic cells or the natural killer (NK) cells in
the inflammatory milieu (80). Osteoprotegerin ligand (OPG-L)
predominantly expresses in Th1 cells and stimulates osteoclast
differentiation leading to bone resorption by the activated
osteoclasts (81). The involvement of T cells in periodontal bone
resorption largely depends on the recruitment of Th1 cells into the
inflamed periodontal tissues (81). The injection of IFN-g into the
mice with periodontitis further enhanced the alveolar bone loss
(82). Moreover, Th1 cells are found to provide pro-
osteoclastogenic supports, along with pro-inflammatory
cytokines that consequently lead to periodontal lesion
progression (83). Interestingly, the interactions between Th cells
and osteoclasts represent an intriguing aspect in osteoimmunology
research field (84). In the osteoimmunology research, it is reported
Frontiers in Immunology | www.frontiersin.org 5
that T cells may promote osteoclastogenesis in an early stage of
osteolysis, while subsequently osteoclasts may provide negative
feedback: inhibit CD4+ effector T cells, block osteoclastogenesis,
suppress osteoclast activity, and suppress bone resorption by
FoxP3+ CD8+ T cells (85–87). Such negative feedback has also
been found in periodontitis and FoxP3+ CD8+ T cells protect
alveolar bone through reducing osteoclastogenesis and regulating
the local immune response (88).

In contrast, Th2 cells may have protective effects on
periodontal diseases by immunoregulatory and alveolar bone
protection. Th2 development is induced by IL-4 (89) which is
produced by the naive T cells or the mast cells/macrophages.
Activated Th2 cells secrete IL-4, IL-5, IL-6, IL-10, and IL-13 to
mediate the humoral immunity (90) by promoting B cell
proliferation, differentiation, and antibody production, which
has been proved to restrain osteoclastogenesis (91) and
downregulate pro-inflammatory cytokines (45) (Figure 2).
Cavalla et al. found the cooperation between Th2 and Treg
cells which provides an anti-inflammatory and pro-reparative
environment that contributes to periodontal lesion stability (83).
Besides, IL-4 is the only cytokine under-expressed in
periodontitis individuals but elevated after periodontal
treatment (92), indicating that IL-4 and Th2 cells may have
positive effects on periodontal diseases.

Despite the Th1/Th2 paradigm being a dogma to describe the
development of inflammatory diseases for a long period (93),
another subgroup of Th cells producing IL-17 is identified, which
modified Th1/Th2 paradigm (94). Th17 cells are later found to
be an essential mediator for bone destruction in periodontal
diseases (95, 96). Homeostatic oral Th17 cells are commensal-
independent and IL-6-dependent, whereas the development and
maintenance of Th17 cell-associated periodontal diseases is
largely dependent upon the local microbiomes and require a
pro-inflammatory microenvironment (97). Many pro-
inflammatory cytokines, including IL‐1b, IL‐6, IL‐21, IL‐22,
IL‐23, and IL‐17, take part in the pathogenesis of periodontal
diseases (98) (Figure 2). These cytokines are either stimulated or
balanced by the Th17 cell-associated immune responses.
Inhibiting the IL-6 signaling in dendritic cells induces a
significant decrease of the Th17 cells (96). In addition, IL-17
inhibits the expression of osteoprotegerin and promotes the
expression of receptor activator for nuclear factor-kB ligand
(RANKL) in periodontal ligament cells, which are two essential
factors for osteoclastogenesis. Thus, IL-17 may have a destructive
effect on periodontal bone remodeling (99). Besides, patients
with TH17 cell defects presented diminished periodontal
inflammation and alveolar bone loss, despite the increased
recurrence of oral fungal infections (97). It is also clear that
excessive activation of Th17 leads to connective tissue
destruction and bone resorption (96). Pathogenic TH17 cells in
bone resorption are converted from exFoxp3+ T cells (100).
Recently, the bone damage and tooth loss induced by exFoxp3+

TH17 cells are considered to be used for protecting against
bacteria and stopping local infection, which means TH17 cells
function as a two-edged sword by protecting against infection
while inducing bone tissue resorption (100).
FIGURE 2 | The effects of CD4+ T cells in periodontal diseases. A
homeostasis of T helper subsets between pro-inflammation (Th1/Th17) and
anti-inflammation (Th2/Treg) plays a critical role in the pathogenesis and
therapies for periodontal diseases.
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Treg cells play a vital role in maintaining immune
homeostasis (101). Treg cells development is induced in the
presence of TGF-b. Besides, in the absence of IL-6 and IL-1, the
development is promoted by IL-2 and retinoic acid (RA) (93).
Treg cells secrete TGF-b and IL-10 which are critical for the
regulation of inflammatory responses (93) (Figure 2). Nan Ge
et al. found that Treg cells are negatively associated with the
expression levels of RANKL and the number of osteoclasts in
periodontitis patients (102). It has been shown that the
imbalance between Th17 and Treg cells accounts for the major
pathogenesis of chronic periodontal diseases whereas Treg cells
are usually considered to have a protective role (103, 104).
Compared to healthy individuals, periodontitis patients have a
decreased expression level of Treg cell-related gene Foxp3 and
increased levels of Th17 cell-related genes RAR-related orphan
receptor C (Rorc) and IL-17A (103). Moreover, the variation of
the microenvironment can change the inflammatory cytokine
milieu and reshape the adaptive immune response (105). Both
Treg and Th17 cells can transdifferentiate into IFN-g-producing
Th1-like cells (105, 106). Collectively, homeostasis of T helper
subsets between pro-inflammation (Th1/Th17) and anti-
inflammation (Th2/Treg) plays a critical role in the
pathogenesis and therapies for periodontal diseases. Although
a certain understanding of the role of different CD4+ T cell
subsets in periodontal diseases is achieved, further studies are
still in progress for the identification of the core mechanisms that
regulate the differentiation and activation of CD4+ T helper cells.
Discovering the crucial pathways to control the differentiation of
CD4+ T cells may bring a new direction for the treatment of
periodontal diseases through regulating immunity and achieving
a balance between fighting infection and reducing the tissue
destruction in periodontitis.

Th22 and Th9 cells have been identified as new Th cells
subsets which are phenotypically distinct from other Th cells
(107, 108). Th22 cells mainly secrete IL-22 which is also
produced by Th17 cells, but Th22 cells hardly produce IL-17
(109). IL-22 produced by Th22 cells are associated with alveolar
bone resorption and the severity of periodontitis (110). Th9 has a
potential role in tissue healing by downregulating the
differentiation of Th1, Th17, and Th22 cells (111, 112). When
Th9 cells were overexpressed, Th17 cells would decrease with
decreased bone resorption (110). In general, the Th1/Th17/Th22
and Th2/Th9/Treg axis play antagonistic roles in periodontitis:
the Th1/Th17/Th22 axis is related to the periodontal tissue
destruction and alveolar bone loss during active periodontitis
while the Th2/Th9/Treg axis is relevant to periodontitis
remission, which is consistent with the data in other bone
disorders (113).
THE ROLE OF mTOR SIGNALING IN CD4+

T CELL DIFFERENTIATION AND
ACTIVATION

The serine/threonine protein kinase mammalian target of
rapamycin (mTOR) signaling is critical for the modulation of
Frontiers in Immunology | www.frontiersin.org 6
immune responses (114). mTOR is a downstream target of the
phosphatidylinositol 3-kinase-related kinase family (115), in
which mTOR serves as a main component of two protein
complexes, mTOR complex 1 (mTORC1) and mTORC2,
exhibiting different functions and regulating different cellular
processes (116). The mTORC1 is composed of mTOR,
regulatory-associated protein of mTOR (Raptor), mammalian
lethal with SEC13 protein 8 (mLST8, also known as GbL),
PRAS40, and DEP domain-containing mTOR-interacting
protein (DEPTOR) (117, 118). The mTORC2 consists of seven
protein subunits: the mTOR, Rapamycin-insensitive companion
of mTOR (Rictor), mammalian stress-activated protein kinase
interacting protein 1 (mSIN1), protein observed with Rictor 1
and 2 (Protor1/2), DEPTOR, mLST8, and TTI1/TEL2 (119, 120).
It is recognized that mTOR signaling dictates T cell fate through
interaction and balance between mTORC1 and mTORC2 (121).
mTOR signaling controls the function of dendritic cells (DCs),
which are the antigen-presenting cells that encounter and
capture oral microbes and then migrate to lymph nodes to
regulate the differentiation of CD4+ T cells. Specifically, mTOR
inhibition has suppressive effects on DC differentiation and
maturation (114, 122). mTOR pathway also plays a critical role
in regulating T cell activation and differentiation. The blockade
of mTOR signaling leads to significant thymic involution and a
decreased T-cell output (123). In addition, suppression of mTOR
cascades during T cell activation also causes immunosuppression
(114). These findings point out the role of mTOR signaling in
regulating CD4+ T cell activation and differentiation for
periodontal tissue homeostasis.

Both mTORC1 and mTORC2 promote Th1 cel l
differentiation via modulating cytokine signaling (124, 125).
Without the mTORC1 activator Rheb (Ras homolog enriched
in brain), CD4+ T cells are unable to secrete IFN-g under Th1
polarizing condition (126). The mTORC1 could regulate Th1
differentiation by controlling the phosphorylation of canonical
Th1 transcription factor T-bet (T-box expressed in T cells) (126).
With defective mTORC2 signaling, naïve T cells show an
impaired ability to differentiate into Th1 cells (125).
Complementation with active Akt, an upstream kinase of
mTOR complexes, can restore the expression of T-bet and
thus, the Th1 cell differentiation (125). Besides, mTORC1 and
mTORC2 inhibit the suppressor of cytokine signaling (SOCS)
proteins (124). Rheb deficiency reduces mTORC1 activation in T
cells, and Rheb-deficient T cells are unable to develop into Th1
cells (124). Knockdown of SOCS3 in Rheb-deficient T cells
significantly increases Th1 cell differentiation, further
indicating the direct role of mTORC1 cascade in Th1 cell
selection and immune homeostasis (124).

mTORC2, but not mTORC1, signaling is required for Th2
cell differentiation (124, 125). Rictor is a crucial adaptor protein
for mTORC2 whose deletion in CD4+ lineage cells leads to a
deficiency in Th2 cell differentiation (124). Complementation
experiments in the Rictor knockout T cells show the activation of
PKC-q via GATA3 (GATA binding protein 3) transcription
factor and restoration of Th2 differentiation (127). Similarly, the
knockdown of SOCS5 in Rictor-deficient T cells can result in an
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increased Th2 differention (124). As Rheb-deficient T cells retain
the ability to generate Th2 cells (124), consequently, both
mTORC1 and mTORC2 may involve in Th1 differentiation,
while mTORC2 is required to maintain the Th2 cell homeostasis
(Figures 3A, B).

mTORC1 is primary signaling required for Th17 cell
differentiation. The PI3K-Akt-mTORC1-S6K1/2 axis is
required for inducible Th17 cell differentiation (128, 129), in
which depletion of Rheb in CD4+ lineage cells significantly
decreases the differentiation of Th17 cells (124) (Figure 3C).
Furthermore, the mTOR-STAT3 signaling also participates in
Th17 differentiation (130, 131). STAT3 activation promotes the
IL-17 expression by binding to the promoter regions of the IL-17
gene which leads to histone modifications of enhancer element
and the expression of IL-17 increase (131). The Ca2+-CaMK4-
Akt-mTOR axis has also been reported to be involved in Th17
differentiation (132). As the PI3K-Akt-mTOR pathway regulates
multiple subsets of CD4+ T cells, CaMK4 is restricted to Th17 cell
differentiation, indicating that CaMK4 may be a specific target
for Th17 homeostasis (132). Despite it being widely accepted that
mTORC1 is dominant signaling to promote Th17 cell
differentiation, mTORC2 may also be critical for Th17 cell
differentiation under special conditions, such as without
the help of IL-23 (133). While deletion of Rictor in CD4+

lineage cells has no influence on Th17 differentiation (125), the
role of mTORC2 cascade in Th17 cell differentiation is
still controversial.

For Treg cells, both mTORC1 and mTORC2 show inhibitory
effects on the induction of Treg cells through different downstream
mechanisms (121, 134). It has been reported that disruption of
mTORC1 signaling results in preferential differentiation of naive T
cells into Treg cells (121). The PI3K-PDK1-Akt signaling activates
mTORC1 activity through inhibiting the Tsc1/Tsc2 repressor
complex, leading to the activation of mTORC1 downstream
phosphorylation of S6K and 4E-BP1 to regulate Treg cell
proliferation and differentiation (124, 134). Moreover,
Frontiers in Immunology | www.frontiersin.org 7
mTORC2-Akt-FoxO1/3a signaling inhibits the differentiation of
Treg cells (135). These data reveal the roles of mTORC1 and
mTORC2 in Treg cell differentiation via distinctive regulatory
mechanisms (Figure 3D).

In summary, Th1 and Th17 cells are mainly considered to be
associated with periodontal lesion progression and alveolar bone
resorption, while Th2 and Treg cells are found to have roles in
immunoregulatory and alveolar bone protection. Since mTOR
signaling could promote Th1 and Th17 cell differentiation and
inhibit Treg commitment through different mTOR complexes,
we anticipate a disadvantageous effect of mTOR signaling on
periodontal diseases though regulating CD4+ T cell subsets,
though the influence of mTOR signaling on Th22 and Th9 is
not clear yet.
THE POTENTIAL ROLES OF mTOR
SIGNALING IN THE PATHOGENESIS OF
PERIODONTAL DISEASES

Several studies have revealed that mTOR signaling has an
adverse influence on aging-related periodontal disease (136,
137). The elderly have increased susceptibility to periodontal
diseases and the aging periodontal tissue tends to react violently
to periodontal pathogens (138, 139). Aging might cause
increased susceptibility to periodontitis through alteration of
inflammatory status and innate immunity of the host (139), but
the clinical symptoms, pathological changes and pathogenic
factors in aging periodontitis are similar to general
periodontitis. The inhibition of mTOR signaling could relieve
inflammation by down-regulating the expression levels of IL-6
and IL-8 in the aging periodontium (136). Additionally, the
inhibition of mTOR with rapamycin treatment has been
reported to prevent or reverse age-associated alveolar bone loss
(137). Activation of mTOR signaling by ethanol stimulation
FIGURE 3 | mTOR complexes control CD4+ T cell differentiation. (A) Both mTORC1 and mTORC2 pathways are involved in Th1 cell differentiation. (B) mTORC2,
but not mTORC1, cascade regulates Th2 cell differentiation. (C) mTORC1 is critical for Th17 cell differentiation through downstream S6k or STAT3 signaling.
(D) Both mTORC1 and mTORC2 cascades are important to repress Foxp3 expression and Treg cell differentiation.
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could suppress human dental pulp cell differentiation and
mineralization (140), while rapamycin-induced inhibition of
mTOR signaling significantly diminishes odontoblastic
differentiation and mineralization (140). However, whether
mTOR signaling is involved in periodontitis through regulating
CD4+ T cell differentiation remains unknown. Given the
extensive roles of mTOR signaling in regulating CD4+ T subset
differentiation, further studies are required to reveal the role of
mTOR cascades in the pathogenesis of periodontitis, which may
provide a novel therapeutic avenue to treat periodontitis that is
currently lacking effective treatment procedures in the clinic
(Figure 4A). There are medicines targeting the mTOR-signaling
which have already been used in clinical for treating cancers
(141, 142) and may be beneficial for the treatment of
periodontitis in the future.

In addition to directly guiding T cell differentiation, mTOR
signaling also has an important role in regulating cell metabolic
pathways, including glycolysis, fatty acid synthesis, and
inhibition of autophagy (143, 144). mTORC1 and mTORC2
generally promote the anabolic response, such as stimulating
glycolysis, protein synthesis, and lipid metabolism to influence T
cell proliferation and survival, as well as hematopoietic stem cell
maintenance and differentiation (143). Deactivation of the
mTOR pathway maintains T cell homeostasis under immune
activation by optimizing antigen presentation and memory T cell
generation (143). The asymmetric inheritance of mTOR cascades
influences naive CD8+ T cell glycolytic metabolic capacity and
cell fate determination (145). T cells with high mTORC1 activity
are shown to have raised glycolytic flux and generate T cell
populations with augmented effector capacity, whereas T cells
with lower mTORC1 activity exhibit increased lipid metabolism
and generate long-lived memory T cells (146) (Figure 4B).
Although the role of CD8+ T cells in periodontitis is less
obvious, CD8+ T cells of gingival tissues show regulatory/
suppressor properties, which are critical for the gingival tissue
Frontiers in Immunology | www.frontiersin.org 8
integrity as they initiate tissue repair mechanisms under injuries
and down-regulate inflammation for tissue homeostasis (147).

Autophagy is a highly controlled biological process
characterized by the degradation of cellular organelles,
cytoplasm, lipids, or proteins under nutrient deprivation or
stressed situations (148). The mTOR signaling, specifically
mTORC1, is directly involved in the formation of autophagic
vesicles (144). When nutrients are abundant, the mTORC1
phosphorylates inhibitory sites on the Unc-51 like kinase-1
(ULK1) and the adapter protein autophagy-related gene-13
(Atg13), thus restraining the induction of autophagy. In
starvation, mTORC1 dissociates from the ULK1 and releases
ULK1 to directly phosphorylate Atg13 for the induction of
autophagy (148, 149). Deletion of Atg7, a critical autophagic
gene, in mature circulating T cells leads to survival defect (150).
Furthermore, after TCR stimulation, the Atg5-deleted T cells are
not able to proliferate and undergo apoptosis (151), indicating that
autophagy is indispensable for the survival and active homeostasis
of resting immunological naive T cells (150), in which Th2 cells
show a higher level of autophagy than Th1 cells in vitro (152). Since
autophagy is inhibited by mTORC1, the ability of Rheb-deficient
CD4+ T cells to differentiate into Th2 cells might be promoted by
the ability to utilize autophagy (17). More importantly, autophagy
is critical in the pathogenesis and progress of periodontitis, in
which periodontal pathogen invasion is controlled by autophagy.
Autophagy can act through inactivation and elimination of
intracellular pathogens (153), whereas periodontal pathogens
such as P. gingivalis can induce autophagy (154). It is generally
believed that autophagy is a negative controller of inflammasome
activation (155–157) and has a protective role on periodontal
tissues (158). As autophagy is inhibited by mTORC1, the
negative effect of mTOR signaling on periodontitis may go
through autophagic regulation (Figure 4C). The exact roles of
mTOR-autophagy cascades on the initiation and progression of
periodontitis still need to be evaluated through further studies.
FIGURE 4 | The potential roles of mTOR signaling in the pathogenesis of periodontal diseases. (A) mTORC1 signaling may directly activate pro-inflammatory T cell
differentiation in periodontal diseases. (B) High mTORC1 activity elevates glycolytic flux and generates T cell populations with enhanced effector capacity. (C) As
autophagy is inhibited by mTORC1, the negative effect of mTOR signaling on periodontitis may go through autophagic regulation.
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PROSPECTIVE
Periodontal disease is triggered by the microorganisms and the
resulting activation of the host immune responses (159). The
immune responses which are responsible for protection against
infection can also cause periodontal tissue destruction (11).
Adapting the local host immune responses, regulated by CD4+

T cells, is a potential mechanism for interfering with the
pathogenesis of periodontal diseases. Strategies for regulating
CD4+ T cell differentiation and activation might be the potential
therapeutic targets for periodontal bone regeneration. This may
include the regulation of mTOR signaling, which is crucial for
CD4+ T cell differentiation. Since different mTOR complexes
play distinctive roles on CD4+ T cell fate determination, explicit
deletion or activation of mTORC1 and mTORC2 has been
recommended to explore their exact roles on periodontitis.
Current studies exploring the influences of mTOR signaling on
aging periodontium do not distinguish the roles of mTORC1 and
mTORC2, nor do they explain the possible mTOR downstream
targets, such as metabolic pathways and the autophagic
regulations to control T cell differentiation (136, 137). Thus,
further studies are necessary for this field to find the underlying
mechanisms of CD4+ T cell-mediated immune responses. In
Frontiers in Immunology | www.frontiersin.org 9
addition, novel targets are required to be explored for regulating
immunological networks in periodontal diseases. It will provide a
better understanding of the disease and the development of novel
therapeutic strategies for periodontal tissue regeneration and
periodontitis treatment.
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