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Abstract

A cell’s phenotype is the set of observable characteristics resulting from the interaction of the genotype with the
surrounding environment, determining cell behavior. Deciphering genotype-phenotype relationships has been crucial to
understanding normal and disease biology. Analysis of molecular pathways has provided an invaluable tool to such
understanding; however, typically it does not consider the physical microenvironment, which is a key determinant of
phenotype.
In this study, we present a novel modeling framework that enables the study of the link between genotype, signaling
networks, and cell behavior in a three-dimensional microenvironment. To achieve this, we bring together Agent-Based
Modeling, a powerful computational modeling technique, and gene networks. This combination allows biological
hypotheses to be tested in a controlled stepwise fashion, and it lends itself naturally to model a heterogeneous population
of cells acting and evolving in a dynamic microenvironment, which is needed to predict the evolution of complex
multi-cellular dynamics. Importantly, this enables modeling co-occurring intrinsic perturbations, such as mutations, and
extrinsic perturbations, such as nutrient availability, and their interactions.
Using cancer as a model system, we illustrate how this framework delivers a unique opportunity to identify determinants
of single-cell behavior, while uncovering emerging properties of multi-cellular growth.
This framework is freely available at http://www.microc.org.
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Introduction

A comprehensive understanding of living organisms, including
their development and the occurrence and progression of dis-
ease, requires systematic efforts into deciphering the link be-
tween the multitude of different genotypes and phenotypes that
is the set of observable characteristics resulting from the inter-
action of the genotype with the surrounding environment, de-
termining cell morphology and behavior.

Efforts to characterize such relationships have proliferated in
recent years thanks, in part, to the increased capability to effi-
ciently collect the necessary data in an ever increasing number
of organisms and individuals. Such efforts have spanned from
cataloguing genetic variation in thousands of individuals [see,
e.g., 1] and searching for genotype-phenotype associations, to
silencing or inactivating thousands of genes in laboratory high-
throughput screens to study their function [see, e.g., 2]. How-
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ever, efficient instruments to achieve a comprehensive under-
standing of the causal nexus between a given genotype and
the observed phenotype are still lacking, and this is particularly
true when such a nexus is complex and multifactorial [3–5]. One
promising means to achieve such an understanding has been
the characterization and modeling of biological pathways [5].

Several of the key biological pathways regulating cellular
function are increasingly understood, along with their dysreg-
ulation in multiple diseases [6–9]. However, much less is known
about how these pathways interact and determine the behav-
ior of individual cells and multi-cellular systems. This has fu-
eled methodological development of efficient representations of
such interactions in order to facilitate the study of the under-
lying potential mechanisms. A number of different approaches
have been proposed, including modeling by differential equa-
tions and network modeling methods, such as petri nets and
logical networks [10–12]. Such methods have produced encour-
aging results [13–16], but it is becoming increasingly evident that
modeling molecular pathways and signaling, or gene, networks
in isolation, dissociated from the cellular context, does not re-
flect the crucial impact of the microenvironment in determin-
ing the phenotype [17–19]. Additionally, as single-cell sequenc-
ing and imaging technologies are providing new in-depth infor-
mation about the genotype and phenotype of single, or small
groups of, cells [20], modeling approaches that enable consider-
ation of cells both as independent entities and as a population
are becoming increasingly attractive.

To address the above needs, we developed a novel compu-
tational framework that combines Agent-Based Modeling (ABM)
and gene network modeling. This framework tackles the funda-
mental challenge of integrating genotype with phenotype data
while accounting for certain important aspects of the physical
microenvironment, a key determinant of the phenotype. The
most innovative aspect of this framework is that it makes it pos-
sible to build models of the genotype-phenotype relationship in
a three-dimensional (3D) spatially aware microenvironment, in-
cluding aspects such as signaling to and from the microenvi-
ronment and signaling between cells. Importantly, the collec-
tive behavior and evolution of cellular populations emerges from
the properties and behavior of individual cells, which in turn are
governed by the underlying dynamics of specific signaling net-
works and the interactions with the surrounding cells and mi-
croenvironment. This permits to predict the behavior of individ-
ual cells, and the entire population of cells, and it also makes it
possible to study of the causative mechanisms of such behavior.

Here, we introduce this modeling framework, illustrate the
capabilities of microC, a first cloud-based implementation of
the framework, and we illustrate the range of potential appli-
cations that it enables. Specifically, we perform perturbation ex-
periments of increasing complexity in which we monitor over
time the 3D growth and evolution of mixed populations of cells.

To achieve this, we chose the example of cancer: a com-
plex disease where methods to study the link between genotype
and phenotype are particularly and urgently needed [4]. To in-
form our choices for the gene network and the model parame-
ters, we exploited previously acquired data on gene interactions
and cell growth from a number of independent publications. We
then built our initial model in a mechanistic “bottom-up” fash-
ion, progressing from the individual elements to the whole sys-
tem. Following this strategy, we simulated the 3D growth of cell
spheroids focusing on pathways underlying the main hallmarks
of cancer, including sustained proliferative signals, resistance to
cell death, and evasion of growth suppressors [9].

We thus considered a set of alterations among the most fre-
quently observed across all cancer types, namely, epidermal
growth factor receptor (EGFR) activation, p53 loss-of-function,
and phosphatase and tensin homolog (PTEN) loss-of-function
[21]. We then asked to what extent this initial model, which
has been built based on general assumptions and not optimized
for a specific cancer type, could reproduce experimental results
not used for the model construction and obtained in a cancer
that often displays these mutations. For this we chose basal-
like triple-negative breast cancer. This type of breast cancer
lacks receptors for the hormones estrogen, progesterone, and
the Her2 protein, and thus is not responsive to treatments tar-
geting these. Importantly, an immortal though not tumorigenic
mammary tumor cell line exists, MCF10A, which is considered a
suitable pre-malignant model [22], allowing us to assess the ef-
fect of inducing these alterations as single drivers, or together.

With this model, we gradually increased the complexity of
our simulations to investigate the effect that varying genetic and
microenvironmental parameters has on the model predictions
and on the resulting clonal competition, signaling to and from
the microenvironment, and cell-cell interaction.

Methods: the microC Framework
Rationale for the framework

Previous studies have modeled cells as computational agents
and started to consider replacing ABM conditional statements
that drive cellular behavior with gene networks that can more
realistically represent the dynamical features of the intra-
cellular system. In particular, small-scale predefined logical net-
works have been used to model the cell-cycle arrest in a model of
avascular spheroid growth [23] and to study cell differentiation
in a hyper-sensitivity reaction model [24]. However, these net-
works were considered as static entities, providing simple rules
and not fully embedded in the ABM simulation. In another ex-
ample, cells have been equipped with relatively more complex
decision-making models, represented as differential equations
[25], but this approach was also not fully embedded in the ABM
and is further limited by the requirement of prior knowledge for
the many kinetic parameters to represent pathways accurately.

microC fully exploits ABM technology. Specifically, the cel-
lular behavior is determined by a gene network, encapsulated
within the cell, and by the interactions of the gene network with
the surrounding microenvironment (Fig. 1). Both the cells and
the inner networks are simulated using ABM. As a result, cellular
behavior may be studied both at the single-cell level, decoding
the link between a cell genotype and its phenotypic realization
in a given contextual environment, and also at the more global
level, allowing the search for emerging properties of the multi-
cellular system.

Key elements of the framework

To define a specific model in the microC modeling framework,
a number of inputs and parameter values need to be provided.
These define the environment of the simulation, some of the
cell’s characteristics, the number of replicates considered in
each simulation and the length of the simulation, the choice of
the gene network, the cell mutation profiles, and how a cell in-
teracts with the environment and other cells. These parameters
and how they define the specific models are presented below
and discussed further in the microC protocol available via the
Protocol.IO repository [26]. Of note, in this work, we set the pa-
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Figure 1: Conceptual representation of microC environment and simulation components. The microC framework enables multiscale simulations linking genotype to

phenotype, via gene networks, by fully exploiting agent-based modeling. The technical details on the framework and its implementation are provided in the Methods
section. Here, we illustrate a study where four setups of increasing complexity are considered, evaluating the impact of new elements in a controlled fashion. (A) We
simulate the effect of introducing gene network perturbations (activating, +, or inactivating, -, mutations) in single clones. (B) We grow mono-clonal or multi-clonal

populations of cells in a 3D environment (spheres visually represent single cells). (C) We study competition between different clones grown together (colors represent
different mutation profiles; the growth curve demonstrates exponential growth of aggressive clones; 2D simulation shows growth patterns under competition). (D) We
enable interaction with the surrounding microenvironment, e.g., oxygen concentration variation that results to necrotic cells. (E) We enable signaling between cells
(represented here as tiny black spheres produced by activated cells; junctions represent receptors).

rameter values for the individual elements of the model based
on previously published data (see sections below). We then carry
out sensitivity analysis to understand the implications of these
choices for our specific case.

Cells as computational agents

Cells are represented in microC as computational agents acting
and interacting in a 3D space. Cells are arranged in a rectan-
gular 3D grid where each voxel may be occupied by only one
cell. They may interact with the microenvironment by consum-
ing oxygen and with other cells via diffusible substances such
as cytokines, chemokines, and growth factors/hormones, whose
production is defined by the network dynamics. The parame-
ters regulating these aspects of the physical microenvironment,
namely, the grid dimensions, the presence of neighboring cells,
and local chemical concentrations, can be customized based on
specific assumptions suitable for the system to be modeled (the
details for each parameter are discussed in the following sec-
tions). These assumptions give rise to certain aspects of phys-
ical dimension and spatial competition among cells. Further-
more, cells are also meta-agents, namely, each cell is itself pop-
ulated by a community of computational agents, the genes and
molecules, that act and interact as a network inside the cell
agent.

Cell mutation profiles

The microC modeling framework enables to input of mutation
profiles, representing the specific mutations present in each
simulated clone. Thus, it might be used to represent the clonal
make-up of specific samples, such as 3D mixed-population cel-
lular spheroids. Mutation profiles can be defined via an input
file uploaded to microC. Such files define the (sub)population of
cells where specific gene mutations are present. By default, if
no mutation profile is provided, the status of each gene in each
cell is initialized randomly as active/inactive. If a mutation pro-
file has been defined, this random initialization is overwritten
by the specific mutations. The mutations are introduced in the
model as constraints on the gene status, such as a constantly
active/inactive status (e.g., constitutively activating or inactivat-
ing mutations) or they can be introduced as a change in the rules
regulating the gene behavior (e.g., amplified or conditional be-
havior). There is no limitation with respect to the number of
mutation profiles that can be simulated simultaneously or the
number of mutated genes. In the extreme case, each cell can
have a distinct mutation profile, and multiple mutations can oc-
cur in each gene of the encapsulated network.

Subcellular gene networks

Gene networks are encapsulated within cell agents and drive
their decisions. Although any type of network model may be
used in this framework, our current implementation exploits
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logical Boolean networks. The latter have been shown to pre-
serve key dynamic characteristics of the gene network [27], and
they can be designed quickly, without the need for accurate es-
timates for a large number of parameters. Briefly, the (gene)
nodes of such logical networks can be in active or inactive state.
Nodes may be connected with other nodes via links. All nodes
are assigned logical rules that determine the current and future
state of the node. We use asynchronous network update, first
described by Thomas [28] and widely adopted in Boolean gene
networks. We distinguish between four types of nodes: genes,
receptors (input), output nodes, and fate-decision nodes. Genes
have both incoming and outgoing links, receptors have only out-
going links, and output and fate-decision nodes have only in-
coming links. Cell-fate decision nodes have a crucial role in the
simulations as they trigger the actions that determine the cell
behavior.

In the specific model developed here, we considered as a
starting point a previously developed large mitogen-activated
protein kinase (MAPK) network [29]. This is a Boolean net-
work that has been assembled in a knowledge-driven, mecha-
nistic manner by considering gene-gene relations (e.g. activa-
tion/repression) as reported in the published literature. As such,
this network is not specific to a given context, cell line, or geno-
type; however, it is likely to be somewhat biased towards signal-
ing and interactions observed in cancer cell lines, as the path-
ways modeled are key to the hallmarks of cancer. We then ex-
tend this network to introduce a hypoxia responsive module;
this new module and the full network can be explored in Fig. 3
of the Supplementary Protocol File and in the online documen-
tation.

Cell status and cell-fate decision rules

An activated cell-fate decision node is associated with a specific
action. Our current implementation of the framework includes
the following possible actions:

� Proliferation. A copy of the cell is introduced into a neighbor-
ing slot. If all neighboring slots are occupied, the cell enters
the growth arrest state. This may be modified in future ver-
sions of microC in order to allow for different degrees of cel-
lular constraints: from loosely bound cell masses to tightly
bound spheroids. The cell-fate decision node is reset and the
cell may enter another round of network simulation, and pro-
liferate again, or chose another cell-fate decision. Indefinite
proliferation is unlikely to happen due to spatial constrains
(all neighboring slots will be occupied at some point) that will
in turn force the cell into a growth arrest state.

� Apoptosis. The cell dies and is removed from the simulation.
� Necrosis. The cells dies; it remains in the simulation and oc-

cupies space but it does not otherwise actively participate.
� Growth arrest. The subcellular network simulation for a cell

in growth arrest is “paused” for a given period of time. In
the specific model presented here, we choose three rounds
of simulations. Furthermore, the cell interacts with the mi-
croenvironment at a reduced rate. In the specific model pre-
sented here, the consumption rate drops to half of the nor-
mal rate.

� No decision. The cell takes no action; the simulation contin-
ues until a decision is made.

Actions associated with apoptosis and necrosis are executed
immediately after the cell-fate decision has been made, whereas
actions associated with proliferation and growth arrest decision
are executed shortly after the end of a time frame defined by the

user (we name this the decision window). During this time frame,
the network in each cell is simulated, and the activation status
of cell-fate decision nodes may change.

A spatially aware environment

One of the most novel aspects of microC is that cell-
microenvironment and cell-cell interactions are modeled via
exchange of diffusible substances between cells or between a
cell and its microenvironment. Importantly, the environment
in microC is modeled as computational agent patches. Con-
centrations of the diffusible substances are transferred through
step functions and may activate receptor nodes of the network.
Those receptors may in turn trigger an autocrine or paracrine
interaction, influencing cells towards specific cell-fate decisions
or the production of certain substances defined by output nodes.

Of note, in microC each 3D voxel is defined as an agent.
These voxel or “patch” agents are assigned rules which define
their geometry, the interaction with the cells they contain and
how they communicate with other voxel agents. This means
that different parts of the environment could be defined by dif-
ferent patches, hence, different rules. However, in our initial
model and implementation, the rules are set as equal for all vox-
els (e.g. shape, size, number of cell per patch, diffusion). Cell-
microenvironment (cell agent-voxel agent) interactions are as-
sociated with a list of environmental resources (e.g. oxygen and
growth factors), whereas cell-cell interactions may be the re-
sult of user-defined substances, such as cytokines, chemokines,
growth factors, and hormones. Diffusible substances are also
simulated in microC as agents, and their behavior is simulated
following the diffusion—reaction equation:

∂u
∂t

= Du ∇2u + Su (1)

where u is the concentration of the diffusible substance, Du is
the diffusion coefficient of substance u, and Su are sources or
sinks of the diffusible substance. The equation is solved numer-
ically using an explicit forward time central space scheme, with
Dirichlet boundary conditions, on a two-dimensional (2D) or 3D
rectangular lattice. The grid cell size may be adjusted to include
1 (1 × 1 × 1) or 27 (3 × 3 × 3) cells using the “grid sparsity” pa-
rameter.

Cells are modeled as sinks that consume oxygen at a rate pro-
portional to the local oxygen concentration. In particular, oxy-
gen consumption is modeled through the equation:

SO2 = R0 .
C − CN, f

CO2,opt − CN, f
(2)

where R0 is the initial consumption rate, C is the concentration
of oxygen in the specific grid cell, CN,f is a threshold value that
determines the lowest possible oxygen concentration (currently
fixed at 80% of the oxygen activation threshold), and CO2,opt is
an optimal oxygen concentration, currently set to 0.28 mM. The
latter two parameters have predetermined values in microC,
whereas the initial consumption rate (R0) and the oxygen activa-
tion threshold may be set by the user. The latter is a precondition
that triggers the necrotic cell-fate decisions. We set the necro-
sis threshold at 0.02 mM [23]. Cells in growth arrest consume
oxygen at half the initial rate, whereas necrotic cells do not con-
sume oxygen. Parameters such as the diffusion coefficient and
the initial/boundary conditions of oxygen concentration can be
adjusted as required by the specific application.
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Figure 3: Paths of clonal evolution: the order in which mutations occur affects spheroids’ growth. (A) Experimental setup. The experiments start with 50 cells of the

same clone (Clone 1, shown as gray spheres). At time point t = 750, we introduce a mutation to one cell (Clone 2, shown as red spheres), and at time point t = 1,500
we introduce an additional mutation to a cell of type Clone 2 (that we call Clone 3, shown as blue spheres). We extend the experiment up to 4,000 simulation steps. (B)
There are six potential combinations in which the three mutations (p53-, PTEN-, EGFR+) can occur. (C) The total and clonal subpopulations are shown in the stacked
bar chart. Bars are averages of 100 repeats and error bars represent the standard error.

Cell-cell interaction is modeled using the diffusion—reaction
equation (equation 1], with Su representing the sources and
sinks (cells) of hormones, cytokines, and any user-defined dif-
fusible substance.

Sdi f f usables = R0 .I receptor
i jk + P0.I

output
i jk (3)

Both the consumption of diffusible substances (consumption
rate: R0) and the production of these substances by cells (pro-
duction rate: P0) are defined by the user and considered to be
constant. Production/consumption of diffusible substances is
conditional to the activation status of the corresponding recep-
tor/output node, shown here as a Boolean function Iijk = 0/1, with
i, j, and k denoting the position of the cell in the 3D lattice.

Spheroid growth measures

In our growth curve simulations, we use the number of cells as
an indicator of the size of the spheroids at any given time, and

we have used sphericity to assess their degree of roundness:

ψ = π
1
3 (6V)

2
3

A
(4)

where ψ is sphericity, V is the volume of the object, and A its sur-
face area. The radius of a spheroid is determined at each stage of
growth as the average distance between the coordinates of the
initial center point of the simulation and the outermost cells of
the growing spheroids.

Cloud Implementation

The models presented in this study are freely accessible via a
web interface [30]. This interface also enables modification of
the models and input parameters to conduct experiments other
than those discussed here. We have prepared a detailed proto-
col (Supplementary Protocol) that explains how to submit ex-
periments and how to interpret the results. Briefly, the interface
allows a user to upload input parameters to set the model (e.g.,
mutation profiles for the cell populations, inner-cell gene net-
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works, specific values for diffusion, and other kinetic and sim-
ulation parameters). It then makes it possible to monitor ex-
perimental results in time and to perform statistical inference
on the results. Experiments are specified via a web interface
(see Supplementary Protocol), where the user may set a num-
ber of numerical parameters via sliders. Specifications of the
gene network, mutations, and other parameters can also be up-
loaded from the same page. The gene network can be speci-
fied as a Graph eXchange Language (GXL), Graph Markup Lan-
guage (GraphML), or Ginsim Markup Language (GINML) file. GXL
is a widely used XML-based standard exchange format for shar-
ing data; it is a flexible data model that can be used for object-
relational data and a wide variety of graphs [31]. GraphML is an-
other XML-based, widely used, data sharing format for graphs
[32]. GINML is an extension of GXL and can be produced, e.g., by
the logical model editor GINsim [14]. The web server converts
any of the above formats to the GraphML format and then sub-
mits the experiment as a set of jobs to the Advanced Research
Computing Cloud (University of Oxford). Experiments are then
executed exploiting the NetLogo framework [33]. Each node runs
16 repetitions of the experiment on each of its central processing
unit cores. When all the simulation runs have finished, an hy-
pertext markup language (HTML) file containing both the data
and JavaScript interactive data visualizations is assembled, and
a link to the page is sent by email to the user. The URL to the re-
sults is automatically generated and is private to the user who
can choose to share it. Of note, by implementing microC as a
cloud service with a web interface for both submitting exper-
iments and analyzing the results, we have automated a great
deal of technical and tedious work. Files are automatically con-
verted to the necessary formats, pre-defined scripts are used to
run the experiments on the cloud, and JavaScript on the results
page provides interactive visualizations of the data, data analy-
sis, and animations of the cellular model and the gene networks.

Results
In silico growth of a heterogeneous population of cells
communicating within a 3D microenvironment

We present a modeling framework, microC, that enables simu-
lations of individual cells or group of cells, where each cell con-
tains an inner gene network that simulates the cascade of sig-
naling events occurring in each cell upon stimulation and deter-
mines the cell behavior (Fig. 1). To illustrate microC, we report
the different ways in which it can be applied (Fig. 1 A-1E). Choos-
ing cancer spheroids as a model system, we illustrate how a spe-
cific model can be constructed from its individual elements; we
carry out simulations under different perturbations (e.g., mu-
tations, nutrients availability); we discuss how our predictions
agree or disagree with results from wet-lab studies; and we con-
duct sensitivity analyses to assess the impact of the different
parameter choices on the model predictions.

As an initial step, we assessed our ability to import the re-
quired gene networks and confirmed the faithfulness of our
ABM encoding of these networks. We then scaled up the sim-
ulation by increasing the genetic and microenvironmental het-
erogeneity in a stepwise manner. Specifically, we considered a
population of homogenous pre-cancerous cells growing in a 3D
environment; then, we gradually introduced mutations in onco-
and tumor suppressor genes (Fig. 1A) to study how they affect
the multi-cellular growth (Fig. 1B). Subsequently, we allowed
the resulting clones (carrying different single or multiple mu-
tations) to grow in competition (Fig. 1C) and studied the param-

eters affecting their evolution. Finally, we investigated the ad-
ditional effects of introducing extrinsic perturbations, such as
lack of oxygen and presence of growth factors, and enabling cell-
microenvironment (Fig. 1D) and cell-cell interactions (Fig. 1E).
We report the parameter values chosen for each experiment in
Supplementary Table S1, while a more detailed description of
the parameters may be found in the Supplementary Protocol and
in the online documentation file in microc.org.

Evaluation of the dynamics properties of the inner-cell gene networks
While there is a large number of methods, from traditional
statistics to emerging deep-learning approaches, that permit ac-
curate prediction of the behavior of a population of cells given
some initial inputs, such methods often constitute a black box
when it comes to interpreting the results mechanistically. They
emphasize the predictive ability of the model with respect to the
study of the possible causative mechanisms of the predicted be-
havior. In this first example, we show how for each single cell,
microC enables monitoring of the paths that have been followed
to arrive at a given prediction. In particular, we show how mi-
croC enables the study of the dynamical properties of the gene
networks within each cell.

Firstly, we verified that microC could correctly import and ex-
ecute a gene network developed in the GINSim interface [14].
This involves reformatting and recodifying the network so that it
can be executed using our agent-based framework (Fig. 2). As we
have automated this reformatting and recoding in microC, we
needed to check its faithfulness. We asked how intrinsic pertur-
bations, namely, mutations commonly observed in cancer cells
and specifically in breast cancer, affect the functioning of the
network. To this end, we compared the gene activation profiles
across populations of cells carrying different mutations and we
determined the differences in the resulting fate of the cell, focus-
ing on the three possible decisions of proliferation, growth arrest
and apoptosis. This first simulation showed that we could repro-
duce the stable configurations (or stable states) that were pre-
viously reported for this network in the published stable-state
analysis (Fig. 2A and Supplementary Fig. S1A). This illustrates
the ability of microC to execute faithfully a previously defined
logical network using an ABM approach. Since our protocols are
standard, this opens the technical possibility of reusing any such
networks developed using the same standard formats.

In addition to the published results, and thanks to the ABM
approach, we could also evaluate the probability of occurrence
and temporal profile for cell-fate decisions by performing hun-
dreds of replicated simulations (Fig. 2B, Supplementary Figs. S1B,
S2). This reveals that not all stable states are equally likely to
occur, and it uncovers transient states that would remain unde-
tected in a standard stable state analysis. For example, we found
that there was a contained but measurable (7%) probability of
proliferation for cells with a single loss-of-function mutation in
p53 (p53-) (Fig. 2B). Often transient states have been dismissed
as non-biologically relevant. However, if and when they are, or
not, is neither a trivial nor fully answered question. Thus, it is
important to detect such states in a network analysis and high-
light their potential impact on the different fate decisions in or-
der to start to address their relevance.

Effect of mutations on gene network dynamics and multi-cellular
growth
The range of abilities, or hallmarks, that a cell needs to acquire
in order to progress to become a cancer cell has been extensively
described, and the role of somatic mutations in such processes
is well documented [9]. However, the chain of events from a sin-
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Figure 2: microC simulation of 3D tumor multi-cellular spheroids reveals growth advantage provided by co-occurring mutations. (A) Activation status of genes in the
MAPK network for the stable states. The states are labeled with the appropriate color (green: proliferation; red: apoptosis; yellow: growth arrest) depending on the
cell-fate node activated. Cells with no specific decision are not labeled with any color. (B) Detailed activation status for the clone with p53 loss-of-function mutation

(p53-). Columns represent genes and rows represent cells (initial population: 100 cells; repeats: 100; length of simulation: 5,000 steps). Pie charts represent probability
profiles for cell-fate decisions for each clone. (C) Typical examples of spheroids grown in a 3D environment and MAPK network for two of the clones (upper left for
WT cells, which grow very little, and right below for EGFR+p53- cells, one of the most aggressive clones). Circle represents the cell boundary, inside network nodes

represent gene products (color represents activation status; red is inactive and green active); edges carry the information on the gene-gene interaction (here, green is
activation and red is inhibition). (D) Clonal growth curves (initial population: 100 cells; repeats: 100; length of simulation: 2,000 steps).
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gle mutation occurring in a normal cell to the acquisition of such
hallmarks, and then to the occurrence and progression of can-
cer, is extremely complex and not fully understood. Here, we
used microC to dissect such questions by asking how the oc-
currence of single and multiple mutations might impact on the
behavior of signaling networks and how this results in different
patterns of single-cell and multi-cellular growth.

We focused on mutations frequently occurring across cancer
types, namely, loss-of-function/inactivating mutations in the
well-known tumor suppressor genes p53 and PTEN, and the ac-
tivation of the known cancer driver EGFR. We then monitored
the 3D growth patterns of cells where these mutations were in-
troduced as single mutations (EGFR activating mutation, EGFR+;
p53 loss-of-function, P53-; or PTEN inactivation, PTEN-) or in
combination of two or three. We compare the resulting growth
curves with those predicted using wild-type (WT) cells, namely,
cells not carrying any of these mutations. Of note, for these ini-
tial simulations, we consider a media with no growth factors or
other added nutrients, simulating a condition of cell starvation
(see Supplementary Table S1 for all parameter choices).

In these conditions, our model predicts that clones carrying
multiple mutations are characterized by a significantly more ag-
gressive phenotype with faster growth with respect to clones
carrying single mutations in these genes (Fig. 2C and 2D, Sup-
plementary Fig. S3). Furthermore, our model predicts that acti-
vated EGFR signaling is a determinant for rapid growth under
starved conditions. Specifically, in our simulations, all EGFR+
clones (EGFR+, EGFR+PTEN-, EGFR+p53-, EGFR+p53-PTEN-) ex-
hibited initial exponential growth while clones with no activated
EGFR signaling did not grow or grew at a much slower rate (Fig.
2D).

To assess the usefulness and plausibility of our predictions,
we considered experimental data obtained using cells where
mutations in EGFR, p53, and PTEN have been induced either
alone or in combination. We asked how an initial general model,
not specifically built for any cancer types but built in a mecha-
nistic fashion using hundreds of independent publications on
gene interactions, could provide useful predictions with respect
to published studies not used in the model building. Specifically,
we considered results from a study using MCF10A, an immortal
though not tumorigenic mammary tumor cell line. This model
has been shown to express markers that are associated with the
basal-epithelial phenotype, but it does not carry the mutations
frequently observed in this breast cancer type. In these cells,
the effect of PTEN deletion, p53 loss-of-function mutation, and
EGFR activating mutations on growth and colony formation has
been previously measured under conditions of starvation [34,
35]. As shown by Pires et al. [35], these mutations as individ-
ual oncogenes could not stimulate growth in 3D culture in soft
agar, while the double mutants showed increased growth, and
the triple mutant grew significantly more rapidly and formed
significantly more colonies than either of the matched double
mutants. These experimental results agree with our simula-
tions. We also observed a discrepancy between Pires et al. ex-
periments and our predictions as in their hands PTEN as an indi-
vidual oncogene could stimulate 2D growth, but not 3D growth,
of MCF10A cells in the absence of exogenous growth factors. In
our predictions, we did not observe any significant difference
between the 2D and 3D growth of the PTEN clones.

We then compare the sphericity as further geometrical prop-
erty of the spheroids growth in a 3D environment, other than
simply size in time. Sphericity is a measure of how near an ob-
ject is to a perfect sphere (see Methods section). This showed
that spheroids formed by the most aggressive clones (higher pro-

liferations rates), namely, EGFR+p53- and EGFR+p53-PTEN-, not
only grew faster but they also grew in a more symmetrical man-
ner, with higher sphericity than other clones (Supplementary
Fig. S4). This is understandable from a geometrical point of view,
as in our model the clones that tend to have proliferation as their
main action, rather than apoptosis or growth arrest, can make
the best use of the space around them. However, the accuracy
of this prediction would need to be confirmed. In this respect,
the difficulty of growing some of the less aggressive cell lines
means that there is not published evidence on these morpho-
logical aspects, and they are hard to assess in an experimental
context. However, this is an intriguing result that suggests that
morphological characteristics might be a useful aspect to con-
sider in future studies linking the way a spheroid grows with its
clonal composition.

Finally, we compared the relative doubling time of the dif-
ferent clones. We observed that the doubling time for the
EGFR+ clones (EGFR+, EGFR+PTEN-, EGFR+p53-, EGFR+p53-
PTEN-) ranged from 4.1 to 6.9 rounds of simulation, thus it was
relatively short, while the rest of the clones did not have the po-
tential to double. These results agree well with results reported
in an independent study (not used to train the model) for pre-
malignant MCF10A breast epithelial cells carrying EGFR activat-
ing mutations, with respect to WT MCF10A cells [36]. Specifically,
EGFR mutant cells showed a relatively short doubling time (20–
22 hours) irrespective of the presence of EGF in the media, while
cells not carrying a EFGR activating mutation did not reach their
doubling time, unless stimulated by EGF.

Scrutiny of clonal evolution paths: significance of the order at which
mutations occurs
In the previous examples, we considered the co-existence of
multiple mutations. This reflects reasonably well experimen-
tal conditions where mutations are artificially introduced, but
it might not represent clonal evolution in real tumors. Scrutiny
of clonal evolution paths is an emerging field of research; how-
ever, this has typically been done without taking into account
the signaling and context in which mutations occur. In this ex-
ample, we ask how the order in which mutations occur affects
both individual cells and the overall multi-cellular growth.

Focusing on the aggressive EGFR+p53-PTEN- clone (Fig. 3A),
we examine the six possible evolution paths for this clone (Fig.
3A and 3B). This revealed that the order in which mutations
occur has a significant effect on a spheroid’s growth (Fig. 3C).
Specifically, the time of occurrence of the EGFR+ mutation was
crucial; clones that acquire this mutation before the loss of a tu-
mor suppressor resulted in larger spheroids, followed by those
clones that acquire the EGFR+ mutation as second mutation,
and finally those that acquire the EGFR+ mutation as the last
mutation (Fig. 3C).

These results confirm first that cancer can occur from mul-
tiple evolutionary paths but they also suggest that a prolifera-
tion stimulus, namely, EGFR activation, followed by the loss of
a tumor suppressor, p53 loss-of-function, and then PTEN loss-
of-function, results in the most rapid evolution. This appears
to support the preponderance of experimental data indicating
that p53 mutation is a relatively late, rather than cancer ini-
tiating, event in a number of cancers (see, e.g., [37]). However,
the evidence on this point is contrasting, and it is well known
that p53 is affected by multiple mutations, with different func-
tional implications (for a review see, e.g., [38]), so further stud-
ies are needed to understand the implications of such differ-
ences. Importantly, and differently from other approaches to
study clonal evolution, microC enables exploration of how differ-
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ences in growth rates between cells carrying different mutations
might result from the underlying characteristics of the network
(Fig. 2 and Supplementary Fig. S5). For example, EGFR activation
directly affects the status of a large group of genes, including
ELK1, CREB, MYC, and RAS, that promote proliferation and block
apoptosis (Supplementary Fig. S6), and this explain why to ac-
quire this mutation early would be very advantageous.

Finally, growth rates depend also on dynamical network pa-
rameters, such as the speed of the specific intercellular pro-
cesses. We performed a thorough sensitivity analysis by chang-
ing the value of the parameters, starting from values suggested
in the literature and expanding the range far from this initial
choice (see Methods section, Supplementary Material, and Sup-
plementary Figs. S7 and S8). This identified the temporal deci-
sion window as one of the critical parameters, which is tightly
linked with the temporal ratio between intracellular to intercel-
lular processes. This analysis shows that changes in this param-
eter can affect the resulting growth rate, and the effect is differ-
ent when different mutations are considered. As expected, vari-
ations in the decision window were reflected by a different num-
ber of cells associated with a given cell fate, as more cells could
reach a decision when longer windows where allowed. Small
decision windows (below 100 steps) showed smaller differences
between the growth curves of the different clones; however, at
this time, only a small number of cells will have reached a deci-
sion (Supplementary Fig. S2), thus the predictions are based on a
very small number of cells. For large decision window values, the
predictions started to converge, and the choice on the decision
window affected the absolute number of cells but not the rela-
tive populations, and the ranking of the clones with respect to
their ability to proliferate was maintained (Supplementary Fig.
S7). This was also reflected in the activation/inactivation profiles
for the different states in the different clones, where a value of
100 was the optimal choice in order to preserve dynamical be-
havior of the model while minimizing computational intensity
of the simulations (Supplementary Fig. S8).

Emerging competition patterns impact the growth of multi-clonal cell
populations
Next, we asked how competition between different clones,
grown together in a 3D multi-cellular spheroid, affects the 3D
growth dynamics. To this end, we introduce multiple clones in
the same environment (Fig. 4A and 4B) and compare the growth
curves of the resulting spheroids (Fig. 4C) and their final size (Fig.
4D) with those observed when the same clones were grown in
isolation, that is, in single-clone spheroids.

In the multi-clonal simulations, we reveal that clones with
aggressive phenotypes systematically take over the free surface
area of the spheroids, thus restricting the rest of the clones in the
central parts of the spheroid. This is particularly evident in the
2D geometry (Fig. 4A). This is a striking finding and it implies that
the population of the aggressive phenotypes not only increases
rapidly against the rest of the clones due to faster growth but it
also creates a physical barrier for any further proliferation of the
inner, slower-growing population.

This effect significantly affects both the growth curves (Fig.
4C) and the final population fractions (Fig. 4D) achieved by the
same clones grown in competition and in isolation. The most ag-
gressive clones (EGFR+p53- and EGFR+p53-PTEN-) increase their
presence by 16.7% (EGFR+p53-, from 31.1% of total population in
isolation to a 36.3% in competition) and by 27.3% (EGFR+p53-
PTEN-, from 33.0% of total population in isolation to a 42.0%
in competition). The rest of the clonal populations decrease by

28%–54%. The population of cells that decrease the most (by
54.5%) are the EGFR+ clones.

Interestingly, these findings can be examined in light of the
proliferation rates and the dynamical properties of the differ-
ent clones (Fig. 2B). In particular, EGFR+p53- and EGFR+p53-
PTEN- clones are the only ones characterized by a single pos-
sible outcome for the cell fate decision, which is proliferation.
This is a strong advantage when competing with clones that
are characterized by multiple decision outcomes. For example,
EGFR+ clones have a higher probability of undergoing apoptosis
or growth arrest, which constitutes a strong disadvantage un-
der direct competition since apoptotic events free space that is
likely to be rapidly occupied by more aggressive clones.

Interaction between the genotypes and the microenvironment affects
multi-cellular growth and clonal selection
Although the mechanisms are not yet fully elucidated, increas-
ing evidence points to a key role of the microenvironment
in clonal selection, hence, multi-cellular growth of heteroge-
neous populations. To illustrate how microC can address this,
we focused on hypoxia simulations as this is one of the ma-
jor microenvironmental differences between cancer and nor-
mal tissue [39–42]. Specifically, we aim to study the formation
of necrotic cores in larger spheroids (Fig. 5A and 5B) and their
growth under artificially uniform well-oxygenated conditions
(our Control configuration) with respect to growth when oxy-
gen consumption and diffusion are enabled (we refer to this as
the Hypoxia configuration) (see also Methods section). To achieve
this, we consider environmental agents that simulate the dif-
fusion of oxygen in the microenvironment and have the ability
to trigger the hypoxia responsive module (see Methods section);
we also introduce a new cell fate decision, necrosis, as response
to extremely low oxygen concentrations (0.02 mM O2). We then
simulate this model in our control and hypoxia configurations.

Of note, in our network (Supplementary Protocol Fig. S3) the
activation of the hypoxia responsive module causes production
of EGF by the cell, which can then be sensed by the neighboring
cells and activate EGFR. Thus, the normoxia simulation is carried
out in the absence of EGF (no production and no prior presence
in the environment), while EGF is present in the hypoxia con-
figuration (produced by the cells). Of note, we can modify this
element and either dissociate EGF from the receptor (so EGF is
present but not sensed, representing for example of a drug treat-
ment inactivating the receptor) or we can decide not to simulate
EGF (so EGF is not in the environment, representing a knock-out
of the EGF gene). This allows us to check the effect of introducing
signaling between cells in the model and, conversely, the effect
of interfering with this signaling (Supplementary Fig. S3).

The first simulations described below are carried out with
this signaling switched off and simply assess the diffusion pa-
rameters and occurrence of necrosis. In the next session, we will
evaluate the EGFR and cell-cell signaling component. Interest-
ingly, we observe that EGFR+ clones are the only ones with the
potential to outgrow a critical spheroid size that triggers necro-
sis. For a configuration setup with initial consumption rate 0.005
mM.s−1 and diffusion coefficient 10−9 m2.s, the necrotic core
that was formed ranged from 20 to 360 cells (Fig. 5C), which is
in agreement with previous reports [43]. Accordingly, spheroids
with necrotic cores had on average 4.8%–23.6% fewer living cells
than spheroids without necrotic cores.

We then study the combined effect of hypoxia (as defined
above) and clonal competition (see Section 3). Namely, we intro-
duce all eight clones in the simulation environment and com-
pared growth in isolation and competition under either hypoxic
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Figure 4: Growth of multi-clonal spheroids is affected by, and in turns affects, the competition between the clones. (A and B) Cells with different mutation profiles
(colors correspond throughout) are grown within the same virtual microenvironment. At the end of the simulation, each cell type shows a distinct growth pattern.
Here, patterns are shown in 2D and 3D. (B) A spatial decomposition of a multiclonal spheroid to demonstrate the distribution of the different clonal populations
within the spheroid. (C) Growth curves of clones under competition in 3D simulations. (D) Relative clonal population (over total population of cells) under isolation

and competition in 3D simulations. Results are averages of 100 repeats of an initial population of 100 cells. Under competition, the initial population was shared in
equal parts among the eight clones. Error bars in bar charts represent standard error. ∗ indicates Kruskal–Wallis P<0.05, ∗∗ P<0.01, ∗∗∗ P<0.001, ∗∗∗∗ P<0.0001.

or control conditions (Supplementary Fig. S9). Overall, our sim-
ulations showed that spheroids where hypoxia was enabled
had reduced clonal diversity (Fig. 5D). In particular, we noticed
that the EGFR+p53- and EGFR+p53-PTEN- clones increased their
presence in the total population. This was additional to the ini-
tial enrichment of this population due to competition (white
bar series in Fig. 5D). On the contrary, the rest of the clones de-
creased their presence in the spheroids by an average of 4%–5%.
This selection pressure and consequent reduction of clonal di-
versity due to hypoxia can be explained by the spatial distribu-
tion of clones (Fig. 4A). Less aggressive clones are more likely to
be segregated to the central part of the spheroids that eventually
will become necrotic under hypoxia. Of note, in this example we
have not introduced possible mutations which might occur as a
result of hypoxia and could impact on the observed clonal diver-
sity.

Finally, we perform a sensitivity analysis on the parameters
involved in the diffusion-reaction equation (Equation 1), namely,
we change the oxygen consumption rate and the diffusion coef-
ficient to one of a broad range of values (Supplementary Fig. S10).
We found that the consumption rate was the only parameter
that, when changed, significantly affects oxygen concentration
(Supplementary Fig. S10A), which may impact spheroid growth
indirectly by triggering necrosis. This prediction is in agreement
with previous evidence showing oxygen consumption to be the
most critical kinetic parameter [43].

Impact of cell-cell signaling on multi-cellular growth in a heteroge-
neous microenvironment
Our final example asks how accounting for cell-cell interaction
affects the growth of spheroids. This experiment highlights one
of the most innovative aspects of microC. As cell signaling and

its relevance for normal development and disease are increas-
ingly understood, a framework that enables such modeling and
study of the consequences of such signaling on cell behavior is
correspondingly advantageous.

We study EGF signaling (Fig. 5E), a response triggered by
many stress factors, including hypoxia. We compare growth un-
der two experimental conditions: oxygen diffusion simulations
with disabled EGF signaling (which we call Hypoxia—no signal-
ing, the same as Hypoxia in section 5) and oxygen diffusion sim-
ulations with enabled EGF signaling (which we call Hypoxia—
signaling), thus where the cells are producing growth factors that
are sensed by the nearby cells. For this experiment we used
clones that did not constitutively activate EGFR.

We observed a significant increase in the population of cells
under the Hypoxia—signaling condition. This increase ranged
from 130 to 870 living cells, that is 26%–174% of the spheroid
size (Fig. 5F). These effects were consistent with the aggressive-
ness of the clones that we have seen in the previous examples;
namely, p53- and p53-PTEN- clonal populations increased signif-
icantly more than the PTEN- and WT clones under hypoxia when
EGF signaling was accounted for. Interestingly, enabling EGF sig-
naling between cells further increased the tendency of hypoxia
to reduce clonal diversity (Fig. 5D and 5G). This reveals that the
reduction in clonal diversity attributable to central necrosis (Fig.
5D) is further increased due to the different proliferation rates
of clones that are sensing EGF released under hypoxia.

A sensitivity analysis of the parameters determining the
strength and the length of the EGF response, namely, the activa-
tion threshold of the stimulus receptor and consumption rate of
the growth factor, showed that low activation threshold values
are more likely to activate the EGF receptor for any given EGF
concentration above the threshold value, whereas lower con-
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Figure 5: The effect of a hypoxic microenvironment and cell-cell signaling on multi-cellular growth. (A) Necrotic core within a spheroid as a result of oxygen consump-

tion by cells. Necrotic cells do not consume oxygen (-), in contrast to living cells (R: oxygen consumption rate). Oxygen diffusion is simulated by the diffusion-reaction
equation (Equation 1, in Materials and Methods section). (B) Spheroids growing under artificially well-oxygenated conditions (Control, initial and boundary condition:
0.28 mM O2) and an environment with oxygen level drop in the inner layer of the 3D spheroid due to diffusion (Hypoxia, initial and boundary condition: 0.04 mM

O2). (C) Growth under the well-oxygenated (Control) condition and the hypoxic condition (Hypoxia) for eight clones. EGFR+ clones develop necrotic cores under the
hypoxic condition (differences between white and red bars (right braces) show the number of necrotic cells). (D) Differences in clonal population fractions (in silico

living cells) between cells grown isolated and in competition with each other under well-oxygenated condition (Control) and the hypoxic condition (Hypoxia). Bars
are averages of 100 repeats (initial population: 100 cells, experiment length: 2000 temporal steps, RO2 = 5.0e-3 mM. s−1, DO2 = 1.0e-9 m. s−1), and error bars represent

standard error. ∗ indicates Kruskal–Wallis P<0.05, ∗∗ P<0.01, ∗∗∗ P<0.001, ∗∗∗∗ P<0.0001. (E) EGF signaling between cells. Red-colored cells have activated EGF receptors,
whereas gray-colored cells have inactivated EGF receptors (junctions on cells). EGF molecules (small, black spheres) are produced (S: EGF production rate) by cells and
may be consumed (R: EGF consumption rate) by activating the EGF receptor of the same or a neighboring cell (spheres attached to the EGF receptors), thus promoting
proliferation. Cell-cell interaction is simulated by the diffusion-reaction equation (see Material and Methods section). (F) Spheroids grown with disabled EGF signaling

(Hypoxia—no signaling), and with enabled EGF signaling (Hypoxia—signaling, 0.04 mM O2, ACTEGF = 5.0e-4 (+). m3, REGF = 5.0e-4 (+).m3.s−1, RO2 and dO2 as above), initial
population: 500 cells, experiment length: 2,000 temporal steps. The initial and boundary configuration under Hypoxia is 0.04 mM O2. Bars are averages of 100 repeats.
Error bars represent standard error. (G) Relative clonal populations in isolation and competition under different oxygen configurations (Control [Normoxia], Hypoxia—
no signaling, and Hypoxia—signaling). Percentages are normalized for each condition to the number of living cells at the end of the simulation across the four cell

types. Bar charts are averages of 100 repeats (initial population 500 cells, 2,000 steps). Error bars represent standard error. ∗ indicates Kruskal–Wallis P<0.05, ∗∗ P<0.01,
∗∗∗ P<0.001, ∗∗∗∗ P<0.0001. (+) fraction of the EGF production rate.

sumption rates of EGF are more likely to activate the EGF recep-
tor for longer (Supplementary Fig. S10B). Both events increase

the probability of proliferation that in turn affects the size of the
spheroid (Suplementary Fig. S10C).
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Discussion

To respond to the need to deepen our understanding of the in-
tricate relationship between cell genotype and phenotype, we
have developed microC, which combines a powerful stochastic
method, ABM, and gene network modeling into a novel frame-
work for in silico experimentation. Specifically, microC addresses
the challenge of modeling and simulating the dynamics and evo-
lution of a heterogeneous population of cells within a changing
microenvironment. ABM is increasingly used to simulate the dy-
namics and evolution of complex systems in applications rang-
ing from engineering to ecology [44–47]. This approach makes
microC a naturally multiscale framework, enabling assessment
of both multi-cellular systems and individual cells, together
with their physical and molecular properties.

One of the most innovative aspects of microC is that it sub-
stantially extends the capacity of ABM simulations of living
cells, considering each individual cell as a meta-agent. Each cell is
considered as a community of computational agents, the genes
and molecules, acting and interacting within each cell. This en-
ables the user to modify and/or replace gene networks in the
cells, to define new constrains representing different types of
mutations in different cells or in the same cell, and to customize
cell-cell and cell-microenvironment interaction parameters. As
a consequence, the proposed framework is naturally suited to
study how the behavior of a specific perturbation, such as a mu-
tation, occurring in individual cells within a 3D dynamic mi-
croenvironment, affects the collective behavior of other, similar
or different, cells and the whole system. This reveals in some
cases unexpected patterns of collective behavior, not a priori de-
fined in the model, that could not be predicted by observing the
individual elements. Instead, there are emerging properties of
the system as a whole which affect the evolution of the cell pop-
ulation and the behavior of the single elements in return.

microC comes with an example MAPK signaling network that
can be used as is, or modified to model in more detail specific
pathways, or else be completely replaced with a new one by
the user so that it is more specific to the system studied. Using
this example signaling network, we illustrated microC features
through the study of growth patterns of 3D in silico spheroids
affected by perturbation of intrinsic (mutations) and extrinsic
(oxygen and growth factor availability) factors.

In agreement with experimental results obtained by induc-
ing mutations in the MCF10A pre-cancer model, we demon-
strated that clones carrying concomitant mutations in the well-
known tumor suppressor genes p53 and PTEN, together with
the activation of the known cancer driver EGFR, had a growth
advantage with respect to clones carrying single mutations or
combinations of any two mutations. We also predict that the
order in which these mutations are acquired can have a sig-
nificant impact on the spheroid growth rate and its final size.
Both of these results held true when the clones were grown in
isolation and when they were allowed to compete with other
clones. We also showed that this effect increased under more ex-
treme microenvironmental conditions, namely, lack of oxygen.
Interestingly, we observed that morphological characteristics of
spheroids grown from different clones varied considerably and
may be a source for significant variability in in vitro experiments
[48]. We show how the dynamics of a gene network that is speci-
fied by the genotype and microenvironmental characteristics af-
fects the proliferation rate that, in turn, has a significant impact
on the overall spheroids’ size and shape, irrespective of other el-
ements such as adhesion forces, which are long known to affect
morphology [49].

Finally, we observed emerging properties of multicellular
growth, such as the formation of necrotic cores in the larger
spheroids, which have been previously described, and also new
unpredicted emerging properties, such as the effect of hypoxia
and EGF signaling on the clonal diversity of the spheroids. Im-
portantly, these properties were not encoded at the cellular level
but rose from the cell agents competition for nutrients, space,
and cellular interaction.

Notwithstanding the modeling possibilities that this novel
framework opens, it is important to recognize that the cur-
rent implementation of the methodology has some limitations.
Firstly, although microC accounts for certain important aspects
of physical modeling such as the three-dimensionality, the pres-
ence of neighboring cells, and local concentrations of chemicals
and molecules, it does not account in its current implementa-
tion for physical factors such as matrix porosity, stiffness, and
topographical cues. Given the importance of modeling these fac-
tors [50, 51], future extension of microC will need to include
them. On the other hand, we chose to model the cellular en-
vironment using ABM; namely, our 3D voxels are themselves
agents whose shape and behavior are defined by rules (see Meth-
ods section). These rules can be different for different parts of
the environment and can change in time, facilitating the dy-
namic modeling of physical factors using this framework.

A second limitation of our initial model is that it consid-
ers only some possible actions for the cells (e.g., proliferation,
growth arrest, apoptosis) and it does not consider, e.g., an im-
portant action such as invasion. While enhanced overall pro-
liferation can provide an indication of invasion, and it has has
been shown to correlate with migration and invasion capabil-
ity in multiple cancer cell lines [52], whether specific cells in a
spheroid divide or migrate out of the spheroid is an important
aspect to address [52, 53]. Thus, we do foresee this as an impor-
tant future development, and our choice of considering cells as
independent computational agents in a ABM framework is ideal
and greatly facilitates addition of cell actions such as migration
and invasion.

Finally, the use of Boolean networks to represent gene ex-
pression and activation is a simplification that can be reason-
ably applied in the case of loss-of-function perturbations, where
a gene is either expressed or not, active or inactive. However,
this might not accurately represent subtle changes in expression
with different biological implications or mutations that change
the gene function instead of simply inactivating the gene. Al-
though it is possible to introduce multiple nodes for a single
gene, each one representing a different state, it is natural to ex-
tend the current Boolean framework into a logical framework
with any number of states covering different levels of expres-
sion or different mutations.

In summary, here, we presented for the first time and as-
sessed the capabilities of a novel modeling framework that links
genotype with phenotype via gene networks and signaling path-
ways. We have provided a number of examples of how this
framework might be used, illustrating strengths and limitations
of the current implementation. Importantly, this framework not
only enables a broad range and new types of modeling studies,
but it also delivers a microenvironment for in silico experimenta-
tion built using well-recognized formats and shared standards,
thus enabling widely used model representations. This provides
an environment for prediction, experimentation, and reasoning
using existing gene networks and cell models, as well as a pow-
erful starting point for the development of new ones.
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Availability of source code and requirements

Project name: microC
Project home page: http://www.microc.org
Operating system(s): Linux
Programming language: Java, Javascript, Netlogo
Other requirements: JavaSE 1.7 or higher, GWT 2.7.0 or higher,

Tomcat 7.0 or higher
License: GPLv3.0
Any restrictions to use by non-academics: none (only as de-

fined by the GPL v3.0 License)
RRID:SCR 016672

Availability of supporting data

The protocol for this work is available as Protocols.io protocol
[26]. Further supporting data and snapshots of the code and vi-
sualization data are available in the GigaScience repository, Gi-
gaDB [54].

Additional files

Protocol.docx
Figure S1. microC’s ABM gene network implementation re-

produces results obtained with stable-state network analysis.
We tested 14 different mutation profiles or environmental stim-
uli responses. (A) Stable-state analysis as presented in Grieco et
al, 2013 (cyclic atractors, ca, are not shown in this graph). The
horizontal axis represents the genes in the MAPK network, and
the vertical axis represent stable states of different clones (S1
and S2 are multiple stable states). (B) Simulation results with
microC. Each row of the heatmaps represents the state of one
cell. States are composed by the activations status of genes in
the MAPK network, shown in the horizontal axis in the same
order they appear in Fig. A. The activation status is coded with
colour: grey for activate and white for inactive genes (the last
three columns are colour-coded depending on cell-fate deci-
sion). Overall there are 10 000 cells shown in each heatmap cor-
responding to 100 repeats with 100 cells each. The cell-fate de-
cisions (average ± standard deviation) are shown next to the
heatmaps (proliferation: green, apoptosis: red, growth arrest:
yellow, and no decision: grey). (Further setup: Number of repli-
cates: 100, Maximum number of simulation steps: 5000, Initial
number of cells: 100, Cell decision window: 5001, Network up-
date rate: 1, 3D simulation: true).

Figure S2. Temporal evolution of cell-fate decisions for differ-
ent clones. Cell fate decisions as a function of time for the same
mutations and environmental stimuli as in Grieco et al, 2013.
The charts show the fraction of cell-fate decisions (green: prolif-
eration, red: apoptosis, yellow: growth arrest, grey: no decision)
in a population of 100 cells at any time point throughout the ex-
periment (5000 temporal steps). At the end of the experiment the
results have converged to the stable state analysis published in
Grieco et al, 2013. Results are averages of 100 repeats. (Number
of replicates: 100, Maximum number of simulation steps: 5000,
Initial number of cells: 100, Cell decision window: 5001, Network
update rate: 1, 3D simulation.

Figure S3. Growth under Hypoxia, and Hypoxia Signalling.
Growth curves for the different clones considered in this study,
under different environment conditions. (A) Growth simulating
normoxia, starvation conditions (no oxygen, nor EGF diffusion),
(B) Growth with oxygen level drop in the inner layer of the 3D
spheroid due to diffusion (Hypoxia, initial and boundary condi-
tion: 0.04 mM O2, RO2 = 5.0e-3 mM.s-1, dO2 = 1.0e-9 m2.s-1), no EGF

in the media but EGF produced by the cells is diffused. (C) Hy-
poxia configuration with disabled EGF signalling (EGF produced
but not diffused), and (D) with enabled EGF signalling. Oxygen
concentration 0.04mM O2, ACTEGF = 5.0e-4 (+).m3, REGF = 5.0e-4
(+).m3.s-1. Curves are averages of 100 repeats. (Number of repli-
cates: 100, Maximum number of simulation steps: 2000, Initial
number of cells: 100 (500 for hypoxia—signalling), Cell decision
window: 100, Network update rate: 1, 3D simulation: true). (+)
fraction of the EGF production rate.

Figure S4. Geometrical properties of spheroids depend on
proliferation rate of clone. (A) Sphericity for 100 spheroids (<
500 number of cells) for 8 different clones. (B) Significance levels
for the differences observed in the boxplot. ∗ indicates Kruskal–
Wallis P<0.05, ∗∗ P<0.01, ∗∗∗ P<0.001, ∗∗∗∗ P<0.0001 (C) Correla-
tion between average sphericity and average proliferation rate.
We exclude the initial phase of growth (<500 temporal steps), as
the cells are initially arranged in an artificial spherical setting.
(D) Temporal evolution of average sphericity, and respective size
of spheroids for each clone. Results are averages of 10 repeats,
and spheroids limited to a maximum of 4000 cells (this is why
some experiments are shorter than others).

Figure S5. Dynamical characteristics of cells with loss-of-
function mutations in well-known tumour suppressor genes
p53 and PTEN, and activation of the known cancer driver EGFR.
(A) Stable states analysis of clones with single or co-occurring
mutations. S1, S2 refer to multiple states of the same clone.
Colours in the last three columns correspond to cell-fate deci-
sions (proliferation: green, apoptosis: red, growth arrest: yellow).
(B) Heatmaps show the activation status of genes in MAPK net-
work (horizontal axis). Each row of the heatmap represents the
state of one cell. Overall there are 10 000 cells (100 repeats with
100 cells each). The stacked bar charts show the fraction of cell-
fate decisions at the cell population (100 cells) at any time point
during the experiment. The results are averages of 100 repeats.
The cell-fate decisions (average ± standard deviation) are shown
next to the heatmaps for two distinct time points: 100 steps af-
ter the experiment starts and, at the end of the simulation. (pro-
liferation: green, apoptosis: red, growth arrest: yellow, and no
decision: grey). Number of replicates: 100, Maximum number of
simulation steps: 5000, Initial number of cells: 100, Cell decision
window: 5001, Network update rate: 1, 3D simulation: true.

Figure S6. Activation status of genes is determined by muta-
tion profile. The MAPK network used in the simulations in both
of these cases is the same, yet the mutations profile different.
(A) WT cells, and (B) EGFR+p53-. The circle represent the cell
boundary. Inside the circle: network nodes represent gene prod-
ucts (colour represents activation status, red: inactive, green: ac-
tive); Edges represent interactions between genes (red: inhibi-
tion, green: activation). Outside the circle: Pink nodes (left) repre-
sent receptors (linked with environmental stimuli), and orange
nodes (right), represent output nodes (cell products).

Figure S7. Sensitivity analysis for the effect of the multiscale
parameter cell decision window on growth curves. Growth curves
of clones under the same experimental condition, but with dif-
ferent values for the parameter cell decision window (the sim-
ulation “cell cycle” time), which regulates the timing of extra-
cellular actions, such as cell-fate decision, with respect to the
timing of events internal to the cell, determined by the net-
work execution (shown in the horizontal axis). Curves are av-
erages of 10 repeats that run for 10 cycles. A decision window
as small as 100 was sufficient to replicate the same qualita-
tive results (exponential growth for EGFR over-expressed clones,
smaller growth for non-EGFR over-expressed clones) that we ob-

http://www.microc.org
https://scicrunch.org/resolver/RRID:SCR_016672
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served with much higher values of the cell decision window,
thus decreasing the simulation time by a factor of 10.

Figure S8. The sensitivity of microC state activa-
tion/inactivation when changing the value of the decision
window paramater. The decision window is the number of
internal (network) steps for every external (inter-cellular) step.
Longer internal simulations (large decision window) result to
network stable states (figures on the right). Each row of the
heatmaps represents the state of one cell. States consist of the
activations status of genes in the MAPK network, shown in the
horizontal axis. The activation status is coded with colour: grey
for activate and white for inactive genes (the last three columns
are colour-coded depending on cell-fate decision). Overall there
are 10 000 cells shown in each heatmap corresponding to 100
repeats with 100 cells each.

Figure S9. Growth under competition in Hypoxia, and Hy-
poxia Signalling. We studied growth for 8 different mutation pro-
files grown under different conditions; in Figure S3 we consid-
ered these as monoclonal spheroids, here we grow the clones
together in multi-clone spheroids and we study competition be-
tween the clones. (A) Growth under competition without con-
sidering oxygen diffusion, (B) Growth under competition with
oxygen level drop in the inner layer of the 3D spheroid due to dif-
fusion (Hypoxia, initial and boundary condition: 0.04 mM O2), (C)
Growth under competition and hypoxia configuration with dis-
abled EGF signalling, and (D) with enabled EGF signalling (Oxy-
gen concentration 0.04mM O2, ACTEGF = 5.0e-4 (+).m3, REGF =
5.0e-4 (+).m3.s-1). Curves are averages of 100 repeats. Interface
setup: Number of replicates: 100, Maximum number of simu-
lation steps: 2000 (5000 for hypoxia—signalling), Initial number
of cells: 100 (500 for hypoxia—signalling), Cell decision window:
100, Network update rate: 1). (+) fraction of the EGF production
rate.

Figure S10. Sensitivity Analysis for the parameters regulating
the diffusion processes. (A) Extreme low oxygen concentrations
(0.02mM O2), may trigger a necrotic response to cells. Here, we
demonstrate the oxygen concentration at the centre of growing
spheroids for various values of the initial Oxygen consumption
rate (R0), and the Oxygen diffusion coefficient (d). The experi-
ments are repeated for three different values of the initial oxy-
gen concentration (Cinit). The line are averages of 10 repeats. (Ini-
tial population: 100 cells, 2000 temporal steps). (B) Intensity and
duration of an EGF response starting at a single spatial point. The
effect is regulated by the activation threshold for EGF receptors
(ACTEGF) and the consumption rate of EGF (REGF). Red-coloured
cells receive a sustained EGF stimulus from their environment.
(C) Growth under different combinations of the Consumption
Rate and the Activation Threshold. Colour represents the num-
ber of cells (results are averages of 10 repeats, initial population:
500 cells, clone: p53-PTEN-).
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