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SUMMARY

Obesity is a heterogeneous phenotype that is crudely
measured by body mass index (BMI). There is a
need for a more precise yet portable method of
phenotyping and categorizing risk in large numbers
of people with obesity to advance clinical care and
drug development. Here, we used non-targeted
metabolomics and whole-genome sequencing to
identify metabolic and genetic signatures of obesity.
We find that obesity results in profound perturbation
of the metabolome; nearly a third of the assayed
metabolites associated with changes in BMI. A
metabolome signature identifies the healthy obese
and lean individuals with abnormal metabolomes—
these groups differ in health outcomes and underly-
ing genetic risk. Specifically, an abnormal metabo-
lome associated with a 2- to 5-fold increase in
cardiovascular events when comparing individuals
who were matched for BMI but had opposing metab-
olome signatures. Because metabolome profiling
identifies clinically meaningful heterogeneity in
obesity, this approach could help select patients
for clinical trials.

INTRODUCTION

Obesity is one of the most widespread problems facing our so-

ciety’s health today. Excessive weight significantly increases

risk for conditions like diabetes mellitus and cardiovascular dis-

ease (Hales et al., 2017; Whitlock et al., 2009). Worldwide, the

prevalence of obesity has nearly tripled since 1975, with 39%

of the world’s adults being overweight and 13% being obese

(WHO, 2018). The high prevalence can partially be attributed to

increasing consumption of hypercaloric foods and sedentary

lifestyles (WHO, 2018). Previous studies have identified meta-

bolic signatures associated with obesity, including increased

levels of branched-chain and aromatic amino acids as well as

glycerol and glycerophosphocholines (Butte et al., 2015; Chen

et al., 2015; Ho et al., 2016; Menni et al., 2017; Park et al.,

2015; Piening et al., 2018). However, prior work has been limited

by focusing on a relatively small numbers of metabolites, individ-

uals, or obesity phenotypes.

The characterization of the metabolites that are associated

with obesity can provide insights into the mechanisms that

lead to this disease and associated consequences. Longitudinal

assessment of weight gain and weight loss over time may indi-

cate whether there are metabolomic changes that cause

obesity—meaning that current metabolite levels could predict

future weight changes—or whether all metabolite changes asso-

ciated with obesity are a consequence of weight changes. Draw-

ing genetics into this assessment allows the determination of

whether genetic variation leads to metabolite changes that sub-

sequently result in obesity, allowing the further delineation of the

causal pathway to obesity. Finally, research in this area may

identify biomarkers of obesity and of different types of obesity,

for example biomarkers of so-called healthy obesity (Neeland

et al., 2018).

There are recent calls to improve phenotyping in very large

numbers of obese people with the goals of understanding fac-

tors that make people susceptible to (or protected from)

obesity, accompanied by a better elucidation of the factors

that account for variability in success of different obesity treat-

ments (Yanovski and Yanovski, 2018). Here, in an effort to un-

derstand the relationship between metabolic perturbations and

the obese state, we analyzed 2,396 individuals with longitudinal

measurements of body mass index (BMI), anthropomorphic

data, whole-body DEXA scans, and metabolome, combined

with baseline genetic risk. The metabolome assay covered up

to 1,007 metabolites at up to three distinct time points for

each individual over the course of study. We identified associ-

ations between nearly a third of the metabolome and BMI, and

we show that metabolite levels can predict obesity status with

�80%–90% specificity and sensitivity. The metabolome profile

is a strong indicator of metabolic health compared to the poly-

genic risk assessment and anthropomorphic measurements

of BMI.
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RESULTS

Profound Perturbation of Metabolome by Obesity
Metabolites Associated with BMI

We compared the levels of individual metabolites to the BMIs of

832, 882, and 861 unrelated individuals of European ancestry in

the TwinsUK cohort (Moayyeri et al., 2013) at three time points

spanning a total range of 8–18 years. We identified 284 metabo-

lites that were significantly associated (p < 5.5 3 10�5) with BMI

at one ormore time points (Table S1).We focused on 110metab-

olites that were significantly associated with BMI at all 3 time

points and sought to replicate the associations in an indepen-

dent sample of 427 unrelated individuals of European ancestry

participating in the Health Nucleus cohort (Perkins et al., 2017).

In total, our analyses identified 307 metabolites that were signif-

icantly associated with BMI in at least one cohort and time point

(Table S1). We identified 83 metabolites that showed directions

of effect that were consistent between the two cohorts, of which

49 were statistically significant replications (Figure 1; Table 1).

While this set of 49 metabolites was the most stringently associ-

ated with BMI, the majority of the implicated metabolites (292 of

307, 95%) had directions of effect that were consistent between

time points/cohorts, indicating that many of the remaining me-

tabolites may reach our stringent cutoffs in a larger study.

The 49 metabolites that associated with BMI were primarily

lipids (n = 23, accounting for 7.5% of all lipids assayed across

both cohorts) and amino acids (n = 14, 9.3% of all amino acids)

but also included nucleotides (n = 3, 12.0% of all nucleotides),

peptides (n = 3, 12% of all peptides), and other categories

(n = 6; Figure 1; Table 1). The most significantly associated

metabolite was urate (uric acid; p value 1.23 10�40 for combined

analysis of TwinsUK time point 1 and Health Nucleus data).

Patterns in Metabolite Change According to BMI

The majority of the 49 BMI-associated metabolites increased

with increasing BMI (n = 35) (Figure 1; Table S1). This included

glucose and, notably, mannose, which has recently been high-

lighted as playing a role in insulin resistance (Lee et al., 2016).

Most metabolites change linearly (both proportionally and

inversely) with BMI (Figure 1C). Branched-chain and aromatic

amino acids as well as metabolites related to nucleotide meta-

bolism like urate had the most rapid increases. Those that

decreased (n = 14) included phospholipids and lysolipids, as

well as the amino acids asparagine and N-acetylglycine and

the xenobiotic cinnamoylglycine, which has been identified as

a product of the microbiome (Wikoff et al., 2009). The negatively

associated lipids tended to reflect HDL (high-density lipoprotein)

levels, while the positively correlated lipids were more represen-

tative of triglyceride levels (Tables 1 and S1). Of particular

interest was the association between BMI and cortisone, a

metabolite of the steroid hormone cortisol. We identified lower

levels among the obese individuals, which is consistent with pre-

vious reports (Björntorp and Rosmond, 2000; Praveen et al.,

2011; Walker et al., 2000; Wirix et al., 2017). We examined the

overall composition of the distributions of these metabolites via

Figure 1. Pathway Categories of Metabolites Associated with BMI

(A and B) Shown are the pathway categories of (A) the 307 metabolites significantly associated with BMI and (B) the 49-metabolite signature.

(C) The values of each of the 49 BMI-associatedmetabolites are plotted with a Loess curve against the BMI for time point 1 in TwinsUK. Only unrelated individuals

of European ancestry are included, and the small number of individuals with BMI below 20 (n = 31) or above 40 (n = 10) are removed to keep the ends of the graphs

from being skewed. The apparent inversion of the relationship between one cofactor/vitamin metabolite and BMI at higher BMIs is an artifact that is corrected

once morbidly obese individuals are included.

Cell Metabolism 29, 488–500, February 5, 2019 489



Table 1. Metabolite Signature Associated with BMI

Super Pathway Metabolite

Subpathway (Correlated

Blood Lipidsc)

Direction of Effect

(Ranka) BMI r2b

Nucleotide urate Pur.Met. [ (1) 16.4%

N2,N2-dimethylguanosine Pur.Met. [ (6) 8.8%

N6-carbamoylthreonyladenosine Pur.Met. [ (28) 7.3%

Amino acid glutamate Glu.Met. [ (2) 11.5%

N-acetylglycine Gly.Met. Y (9) 9.0%

5-methylthioadenosine (MTA) Poly.Met. [ (10) 7.5%

valine Leu.Met. [ (11) 8.8%

aspartate Ala.Met. [ (16) 7.0%

N-acetylvaline Leu.Met. [ (18) 7.3%

kynurenate Try.Met. [ (19) 6.0%

alanine Ala.Met. [ (23) 5.3%

asparagine Ala.Met. Y (26) 3.7%

N-acetylalanine Ala.Met. [ (31) 6.6%

tyrosine Phe.Met. [ (34) 1.8%

leucine Leu.Met. [ (37) 6.8%

N-acetyltyrosine Phe.Met. [ (40) 4.2%

2-methylbutyrylcarnitine (C5) Leu.Met. [ (41) 8.3%

Lipid 1-(1-enyl-palmitoyl)-2-oleoyl-GPC Plas. (HDL, TG) Y (3) 7.1%

1-stearoyl-2-dihomo-linolenoyl-GPC Phos.Met. (TG, Chol) [ (4) 9.8%

1-eicosenoyl-GPC Lysolipid Y (5) 6.2%

1-arachidoyl-GPC Lysolipid Y (7) 8.6%

1-(1-enyl-stearoyl)-2-oleoyl-GPC Phos.lip. (HDL) Y (8) 6.5%

propionylcarnitine BCAA.Met [ (12) 9.9%

1-nonadecanoyl-GPC Lysolipid Y (14) 4.2%

1-linoleoyl-GPC Lysolipid Y (15) 4.9%

sphingomyelin Sph.Met. (Chol) [ (20) 6.8%

1-palmitoyl-2-dihomo-linolenoyl-GPC Phos.Met. (TG, Chol) [ (21) 5.1%

1-(1-enyl-palmitoyl)-2-linoleoyl-GPC Phos.Met. (HDL) Y (22) 5.7%

1-palmitoyl-3-linoleoyl-glycerol Phos.Met. (TG) [ (24) 7.6%

1-oleoyl-2-linoleoyl-GPC Phos.Met. Y (27) 5.6%

1-(1-enyl-stearoyl)-2-docosahexaenoyl-GPC Phos.Met. Y (29) 2.5%

1-oleoyl-3-linoleoyl-glycerol Di.gly. (TG, HDL) [ (30) 6.3%

carnitine Car.Met. [ (33) 7.5%

1-palmitoyl-2-linoleoyl-glycerol Phos.Met. (TG, HDL) [ (36) 7.2%

1-oleoyl-2-linoleoyl-glycerol Di.gly. (TG, HDL) [ (38) 5.9%

1,2-dilinoleoyl-GPC Phos.Met. Y (39) 4.2%

1-palmitoleoyl-2-oleoyl-glycerol Phos.lip. (TG) [ (42) 5.6%

1-palmitoleoyl-3-oleoyl-glycerol Phos.lip. (TG) [ (45) 6.0%

1-palmitoyl-2-adrenoyl-GPC Phos.Met. (TG) [ (47) 2.9%

cortisone Plas. (HDL, TG) Y (49) 2.5%

Energy succinylcarnitine TCA [ (13) 9.8%

Carbohydrate mannose Fru.Met. [ (17) 6.6%

glucose Pyr.Met. [ (48) 6.3%

Xenobiotics cinnamoylglycine Food Y (43) 3.5%

Cofactors/ vitamins gulonic acid Asc.Met. [ (46) 3.2%

quinolinate Nic.Met. [ (44) 8.4%

(Continued on next page)
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principal component analysis and found complex underlying

correlations; in particular, the first principal component ex-

plained �20% of the total variation in the levels of these 49 me-

tabolites.We additionally examined each of the 49metabolites in

just those of normal weight, overweight, or obese separately,

and we found directions of effect that were largely consistent

with those seen in the group as a whole (Table S1).

Modeling the Metabolome of Obesity

We used ridge regression to build a model that would predict

BMI from the 49 BMI-associated metabolites (Figure 2). We

chose this method to focus on the most stringently associated

metabolites and to remove effects of collinearity, and we found

similar results when using lasso regression. We combined our

data for the first visit of the TwinsUK cohort and the Health

Nucleus cohort and trained with 10-fold cross-validation on a

random half of the population. In our test set of the other half

of the data, we found that the model could explain 39.1% of

the variation in BMI (Figure 2A). In predicting whether partici-

pants were obese (BMI R 30) or normal weight (BMI 18.5–

25), the model had an area under the curve (AUC) of 0.922,

specificity of 89.1%, and sensitivity of 80.2% (Figure S1). The

model based on the metabolite signature was thereafter used

as a tool to define mBMI, the predicted BMI on the basis of

metabolome.

Richer models using the full set of available metabolites

(n = 650 measured in both cohorts) improved the accuracy of

the model (47%–49% of the variance explained) and could be

considered as the optimal approach by accepting the additional

cost of a full untargeted metabolome as compared to the more

targeted panel of 49 metabolites. This performance should

be contrasted with the results of models using routine clinical

laboratory determinations: regression analysis predicting BMI

from age, sex, HDL, LDL, total cholesterol, and total triglycerides

explained 31% of the variation in BMI, whereas a model using

age, sex, and the 49-metabolite signature explained 43%

of the variation. In fact, even though mBMI was modeled by

training on BMI, thismetabolite signature had a better correlation

than BMI with most health-related phenotypes measured here

(Table S2).

Identification and Characterization of Metabolic BMI
Outliers
Having established a model to predict BMI using the metabo-

lome (mBMI), we split the participants into five groups (Fig-

ure 2A). Three groups included individuals whose metabolome

accurately predicted their BMI, as defined by having a residual

between �0.5 and 0.5 from a regression analysis of mBMI

with age, sex, and BMI included as predictors. These criteria

delineated �80% of individuals as having an mBMI relatively

concordant with actual BMI. They were characterized as having

a normal BMI (18.5–25), overweight (25–30), or obese (>30). Two

groups were characterized as outliers: these included individ-

uals whose metabolome predicted a substantially lower mBMI

than the actual BMI (mBMI << BMI, residual < �0.5) or a sub-

stantially higher mBMI than the actual BMI (mBMI >> BMI, resid-

ual > 0.5). While these two outlier groups had the same weight

and age distribution (Figure 2B), they had very different values

for many of the phenotypes of metabolic health collected from

these cohorts (Figures 2B and 2C). Individuals with an mBMI

prediction that was substantially lower than their actual BMI

had levels of insulin resistance, total triglycerides, HDL, blood

pressure, waist/hip ratio, android/gynoid ratio, percent body

fat, percent visceral fat, and percent subcutaneous fat that

were similar to normal-weight individuals with healthy metabo-

lomes. Individuals with an mBMI prediction that was substan-

tially higher than their actual BMI had levels for these traits

that were similar to those of obese individuals with obese me-

tabolomes. Evaluating these data from a more clinical perspec-

tive, with individuals separated into clinical categories such as

normal BMI with obese metabolome and obese BMI with

healthy metabolome, generally confirmed these effects (Fig-

ures 3 and S2). Our findings suggest that the metabolome can

be used as a clinically meaningful instrument, where obesity is

analyzed in the context of its metabolome perturbation rather

than just on BMI alone. Thus, our results are important in the

frame of the current debate on the metabolically ‘‘healthy’’

obese and also for the identification of individuals with normal

BMI (Chen et al., 2015) but poor metabolic health (Caleyachetty

et al., 2017; Iglesias Molli et al., 2017).

Table 1. Continued

Super Pathway Metabolite

Subpathway (Correlated

Blood Lipidsc)

Direction of Effect

(Ranka) BMI r2b

Peptide N-acetylcarnosine Dipep. [ (25) 6.9%

gamma-glutamylphenylalanine Gam. [ (32) 6.0%

gamma-glutamyltyrosine Gam. [ (35) 4.6%

Subpathway acronyms: Ala.Met., alanine and aspartate metabolism; Asc.Met., ascorbate and aldarate metabolism; BCAA.Met, branched-chain

amino acid metabolism; Car.Met., carnitine metabolism; Di.gly., diacylglycerol; Dipep., dipeptide derivative; Food, food component/plant; Fru.Met.,

fructose, mannose, and galactose metabolism; Gam., gamma-glutamyl amino acid; Glu.Met., glutamate metabolism; Gly.Met., glycine, serine, and

threonine metabolism; Leu.Met., leucine, isoleucine, and valine metabolism; Lysolipid, lysolipid; Nic.Met., nicotinate and nicotinamide metabolism;

Phe.Met., phenylalanine and tyrosine metabolism; Phos.lip., phospholipid; Phos.Met., phospholipid metabolism; Plas., plasmalogen; Poly.Met., poly-

amine metabolism; Pur.Met., purine metabolism; Pyr.Met., glycolysis, gluconeogenesis, and pyruvate metabolism; Sph.Met., sphingolipid meta-

bolism; Steroid, steroid; TCA, TCA cycle; Try.Met., tryptophan metabolism.
aRank indicates order of significance of association with BMI.
bMean r2 indicates the percent variation in BMI explained by each metabolite in univariate analysis for a combined analysis of the first time point of the

TwinsUK cohort and the Health Nucleus data.
cBlood labs for TG (triglycerides), Chol (cholesterol), HDL (high-density lipoprotein), or LDL (low-density lipoprotein) that had an r2 > 0.1 with themetab-

olite are indicated in parentheses.
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Having characterized these outliers, we revisited their metab-

olome differences. As the 49 metabolites were chosen for

their association with BMI, there is no a priori expectation

that they would all show differences between the group with

mBMI >> BMI and the group with mBMI << BMI, as these

two groups have the same BMI distribution. However, we found

that these two outlier groups did indeed have statistically signif-

icant differences in their metabolite levels for all of the 49

metabolites but two: asparagine and cortisone (Figure S3).

This lack of association of cortisone with mBMI/BMI outliers

shows that its correlation with BMI does not appear to extend

to metabolic health, which presents interesting questions about

the underlying biology. Although cortisone’s parent compound

cortisol has been reported as associated with obesity, there are

inconsistent relationships between cortisol and metabolic pa-

rameters in the literature (Abraham et al., 2013; Incollingo

Rodriguez et al., 2015). It is also known that cortisol levels

change throughout the day, and this factor could have influ-

enced our results as the participants were not all measured

at the same time. We additionally investigated the association

between each of the BMI-associated metabolites and insulin

resistance, as many previously reported markers of obesity

have also been markers of diabetes (Ho et al., 2016; Park

et al., 2015). We had quantitative insulin resistance measure-

ments for 515 unrelated, European-ancestry participants. After

controlling for BMI, we found that 12 of the 49 BMI-associated

metabolites were also significantly associated (correcting for

49 tests requires p < 0.001) with insulin resistance, all with pos-

itive directions of effect: tyrosine, alanine, kynurenate, gamma-

glutamyltyrosine, 1-oleoyl-3-linoleoyl-glycerol (18:1/18:2), six

phospholipids, and, as expected, glucose (Table S1). Mannose,

which recently underwent extensive study with regard to

insulin resistance (Lee et al., 2016), was nominally associated

with insulin resistance after controlling for BMI in our study

(p = 0.004).

Evolution of Obesity and Metabolome Clinical Profiles

Given recent work suggesting that obese individuals who are

metabolically healthy may remain at higher risk of negative

health outcomes than are normal weight individuals who are

metabolically healthy (Caleyachetty et al., 2017), we next asked

whether the outlier groups were more likely to become obese

over time. Focusing on the 1,458 individuals from TwinsUK

who had weight measurements at all three time points, we found

that those who had an mBMI that was higher than their BMI

were marginally more likely to gain weight and convert to an

obese phenotype (BMI > 30) over the 8–18 years of follow up.

For example, 32.8% of those of normal weight but with an over-

weight or obese metabolome converted to being overweight or

obese by time point 3 compared to 24.8% of those who were of

normal weight and had a healthy metabolome (p = 0.01; Fig-

ure 4). However, this association was not strongly supported,

and overall, the mBMI states of the individuals remained fairly

stable with time and were a function of BMI changes (Figure 4).

For example, 68% of the individuals who began the study

with an obese metabolome ended the study with an obese me-

tabolome. When an individuals’ weight increased and then

decreased, their mBMI followed suit, and no single metabolite

was significantly predictive of subsequent BMI changes. In

summary, our results are consistent with a favorable long-term

health benefit for the overweight and obese individuals with a

healthy metabolome.

Cardiovascular Disease Outcomes

Obesity is considered a risk factor for cardiovascular disease

and ischemic stroke (Rhee, 2018). In the TwinsUK study, 32 of

1,573 individuals reported having had a cardiovascular event

(myocardial infarct, angina, or angioplasty) or stroke prior to

baseline. We found significant differences between mBMI/BMI

groups in their reported baseline cardiovascular events (Fisher’s

exact p = 0.01). In particular, the mBMI << BMI outliers had no

history of cardiovascular events, whereas the mBMI >> BMI out-

liers had a proportion of historical events that was similar to

those of overweight and obese individuals (Figure 4C). Informa-

tion about blood pressure medication use was also available for

379 individuals at baseline, and those with mBMI >> BMI had

very high rates of use compared to mBMI << BMI (Fisher’s exact

p = 0.00003; Figure 4C). The longitudinal nature of the TwinsUK

study also allowed the collection of clinical endpoints in these

unselected participants. The age of participants at the first visit

ranged from 33 to 74 years old (median 51), and 42 to 88 years

old (median 65) at the last visit. During the follow up (median

13 years), the study recorded 53 cardiovascular events (myocar-

dial infarct, angina, or angioplasty) or strokes for 1,573 individ-

uals. We calculated that our study had 80% power to identify

effects with a hazard ratio of at least 1.5 for differences in cardio-

vascular event outcomes between the different mBMI/BMI

groups. We found that participants with a healthy metabolome

(normal BMI, overweight, or obese) had 2.6 events per hundred

individuals. Individuals with an obese metabolic profile, mBMI,

had 3.4 (normal/overweight BMI) and 4.4 events (in obese indi-

viduals) per hundred individuals. Separated analysis of the

various endpoints confirmed the trends, more accentuated for

cardiovascular than for diagnosis of stroke. We then performed

a formal survival analysis for participants to have any cardiovas-

cular event after the first time point, and we found those

with healthier metabolomes to have fewer/later cardiac events

(p = 0.003; Figure 4D).

Correlations between Twins

Because twin studies are important to analyze the heritability of

traits, we reassessed the BMI model predictions and obesity

status of 350 sets of twins where either both twins had normal

BMI (n = 244), both twins were obese (n = 67), or one was obese

and the other had normal BMI (n = 39). To keep the categories

clear, individuals with BMIs between 25 and 30 (overweight)

and their twins were excluded. As asserted by the model’s

high specificity and sensitivity, the metabolite-based obesity

predictions reflected the actual obesity status of the individuals.

This was even the case when only one twin was obese: the

obese twin was generally predicted by their metabolome to

be obese, while the normal weight twin was not (Figure S1).

The correlations between the metabolite-based obesity predic-

tions were also substantially higher between the monozygotic

twins than the dizygotic twins, as expected. Interestingly, we

identified three sets of twins where both twins were predicted

from the metabolome to be of normal weight, but both

were obese, and eight sets of twins where the reverse

was true. These outliers were thought to represent healthy

obese and normal weight, metabolically unhealthy individuals

described above.
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Figure 2. Variables Associated with BMI and Predicted BMI from the Metabolome

(A) Correlation between ridge regression model prediction of BMI and actual BMI for all unrelated individuals of European ancestry in the TwinsUK and Health

Nucleus dataset. The identification of outliers is defined below: the pink box shows individuals with a much lower predicted BMI (mBMI) than actual BMI, and the

yellow box shows individuals with a much higher mBMI than actual BMI.

(B) Factors associatedwith being anmBMI outlier. Participants were split into five groups: those whosemetabolome accurately predicted their BMI (residual after

accounting for age, sex, and BMI between �0.5 and 0.5) whose BMIs were either normal (18.5–25), overweight (25–30), or obese (>30), and those whose

metabolome predicted a substantially higher mBMI than the actual BMI (residual < �0.5) or a substantially lower mBMI than the actual BMI (residual > 0.5). All

y axis values are scaled to a range from 0 to 1 to allow comparison across groups.

(legend continued on next page)
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Genetic Analyses
Known Genetics of Obesity

We first investigated the known genetic factors contributing to

high BMI. We calculated polygenic risk scores for BMI using

known associations from the considerable literature of obesity

and BMI GWAS (genome-wide association study) (Locke et al.,

2015). As previously reported, we found that polygenic risk score

only explained 1.2%–2.2% of the variation in BMI at each of the

three TwinsUK time points and in Health Nucleus for unrelated

participants of European ancestry (Figure S4). We investigated

whether unique individuals with the highest polygenic risk scores

would have a significant perturbation of the metabolome and

anthropomorphic, insulin resistance, and DEXA measurements

(Figure 5). While the data did not support a strong role for poly-

genic risk, there were trends for higher polygenic risk scores to

be associated with a higher android/gynoid ratio (p = 0.04),

waist/hip ratio (p = 0.03), and triglycerides (p = 0.01). However,

there was no statistical association between the polygenic score

and mBMI (p = 0.07).

Studies of rare variants in obesity have identified melanocortin

4 receptor (MC4R) mutations as having effects large and clear

enough to be appropriate for study in our dataset (Collet et al.,

2017; Turcot et al., 2018). We therefore identified members of

the study populations who were carrying rare (MAF < 0.01%)

coding variants in MC4R. We identified eight such carriers in

the subset of unrelated participants (Table 2). Each variant was

observed in one unrelated individual, and six of the eight had

already been annotated as causing obesity in clinical databases

HGMDor ClinVar (Table 2). As a group,MC4R carriers had signif-

icantly higher BMI (p = 0.02) than did non-carriers as well as non-

significant trends toward a higher diastolic blood pressure,

insulin resistance, and percent body fat (Figure 5). However, it

is known that not all rare variants are deleterious, and the meta-

bolic impact could have been greater for the true subset of func-

tional variants. The BMI data in the participants supported a

pathogenic role for at least five of the variants (Met292fs,

Arg236Cys, Ser180Pro, Ala175T, and Thr11Ala), but did not

corroborate a role of Ile170V, which is defined in HGMD, ClinVar,

and the literature as pathogenic (Clément et al., 2018; Collet

et al., 2017; Landrum et al., 2018; Stenson et al., 2003). Impor-

tantly, of the five sets of twins who both carried the same

MC4R variant, three sets included twins who were both over-

weight or obese. In the two cases where a carrier’s twin did

not have theMC4R variant, their BMI was lower than their twin’s.

(C) The same process is used to show DEXA imaging values associated with metabolic BMI outliers. The mBMI >> BMI and mBMI << BMI groups had a

comparable measured BMI and age; however, these two groups were statistically significantly different from each other (p < 0.01) for all modalities except blood

pressure, LDL, total cholesterol, and polygenic risk score. Additionally, the mBMI >> BMI group was statistically significantly different from normal weight,

metabolically healthy people (p < 0.01) for all traits (except LDL), while mBMI << BMI individuals were only statistically different in diastolic blood pressure

(p = 0.005). In contrast, outliers with mBMI << BMI were always statistically significantly different from obese, metabolically obese individuals (except systolic

blood pressure, LDL, and total cholesterol), while mBMI >> BMI individuals were only statistically different in percent body fat (p = 4.43 10�6). LDL, low-density

lipoprotein; HDL, high-density lipoprotein. The correlations of each modality with mBMI can be found in Table S2.

Whiskers of boxplot extend to the most extreme points no greater than 1.5 times the interquartile range (distance between the first and third quartiles).

Figure 3. Body Composition Profiles from Dixon Magnetic Resonance Imaging for Four Outlier Individuals

(A) Correlation between ridge regression model prediction of BMI and actual BMI for all unrelated individuals of European ancestry in the TwinsUK and

Heath Nucleus dataset. Outliers highlighted in (B) and (C) are marked with corresponding colors. All individuals highlighted are from the outlier mBMI >> BMI or

mBMI << BMI categories shown in Figure 2.

(B) Body composition profiles (red, visceral adipose tissue; yellow, subcutaneous adipose tissue; cyan, muscle).

(C) Waist to hip cross-sections (hip, mid femoral head; waist, top of ASIS).
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We observed an enrichment of MC4R variant carriers among

obese individuals with low polygenic risk scores (Figure S4).

Out of 37 participants whowere obesewith polygenic risk scores

in the lowest quartile, 5.4%wereMC4R variant carriers, while the

carrier frequency was just 0.4% in those of normal weight.

We also searched the study population for rare variants

associated with Mendelian lipodystrophy syndromes. Lipody-

strophies are heterogeneous, genetic, or acquired disorders

characterized by selective loss of body fat and associated

metabolic complications such as diabetes mellitus, hypertrigly-

ceridemia, and hepatic steatosis (Garg, 2011). We identified six

individuals with rare heterozygous variants in four genes:

ZMPSTE24, AGPAT2, LIPE, and BSCL2 (Table 2). The individ-

uals with LIPE or BSCL2 variants were of normal weight but

were in the mBMI >> BMI outlier category. The three individuals

with ZMPSTE24 p.Leu362fs caused by a 1-bp insertion had

normal to low BMI andmBMI. We also observed an unannotated

1-bp deletion at this site in one obese individual (Table 2; Fig-

ure S5). While these observations are interesting, there are no

data in the literature to support a phenotypic role for these vari-

ants in carriers (heterozygotes).

Genetics of the Metabolically Healthy Obese

Individuals with an mBMI that was substantially lower than their

actual BMI had a higher polygenic risk score for BMI than did

other groups. In contrast, those whose mBMI was substantially

higher than their actual BMI had low polygenic risk scores

Figure 4. Progression of Different mBMI/BMI Categories

(A) Alluvial plot showing the proportion of participants who remained in the same weight category or transitioned to a different weight category over the course of

the 8–18 years of the TwinsUK study. Red individuals have an obesemetabolome, orange individuals have an overweight metabolome, and gray individuals have

a normal metabolome.

(B) Alluvial plot showing the proportion of participants who remained in the same mBMI category or transitioned to a different mBMI category over the course of

the 8–18 years of the TwinsUK study. Red individuals begin the study with an obese BMI, orange overweight, and gray normal weight.

(C) Bar graph showing baseline rates of stroke, infarction, angina, angioplasty, any of the above, and blood pressure medication use at baseline for TwinsUK (with

colors indicating groups as in D; n = 1,573 for information on cardiovascular and stroke events and 379 for information on blood pressure medication). Those with

mBMI << BMI had none of these conditions at baseline except stroke, while those with mBMI >> BMI had rates similar to those of overweight and obese in-

dividuals.

(D) Survival plot showing age until cardiac event (infarction, angina, or angioplasty). The plot is divided into those whose mBMI corresponds with their BMI

(normal weight (n = 598), overweight (n = 461), and obese (n = 192) categories) as well as the two outlier groups: those with mBMI << BMI (n = 158) and those with

mBMI >> BMI (n = 164) (p = 0.003 for a difference between these categories in cardiovascular outcomes).
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(Figure 2B; p = 0.08 for a difference between these two groups).

This result would support the notion that the polygenic risk score

for BMI may capture an anthropomorphic phenotype (larger-

framed individuals) rather than a unique association with obesity

as a disease trait.

Genetics of Metabolome Differences

Last, we investigated whether obese individuals with different

genetic backgrounds had different metabolomes from other

obese individuals. We first searched for metabolites, BMI-asso-

ciated or otherwise, that could distinguish individuals with

different BMI polygenic risk scores or MC4R variant carriers.

Linear regression showed no significant associations between

any single metabolites and polygenic risk orMC4R carrier status

in either the entire population or in only the obese individuals.

This result implies that metabolites are unlikely to be intermedi-

ate phenotypes that explain the underlying genetics of obesity.

To check for more specific signals beyond the compiled poly-

genic risk score, we also performed separate analyses of

each of the 97 variants that are used to calculate the polygenic

risk score. We found no evidence for any of these known

GWAS variants to be more strongly associated with a metabolite

than with BMI itself, though our power for discovery was limited

given the very small effect sizes of most individual GWAS

variants. In summary, although it is known that there is a

strong genetic component to metabolite levels (Long et al.,

2017), most of the metabolic perturbations that occur in the

obese state are a response to obesity as opposed to shared ge-

netic mechanisms.

DISCUSSION

The results of the present study highlight the profound disruption

of the metabolome in obesity and identify a metabolome signa-

ture that serves to examine metabolic health without the limita-

tions of anthropomorphic measurements or the cost, time, and

equipment requirements of imaging technologies. Nearly one-

third of the approximately 1,000 metabolites measured in the

study were associated with BMI, and 49 were selected as a

Figure 5. Genetic Risk Compared to BMI-Relevant Variables

(A) Correlation between polygenic risk score (PG) category, MC4R carrier status, and BMI and anthropomorphic and clinical measurements for all unrelated

individuals of European ancestry in the TwinsUK and HN dataset. All y axis values are scaled to a range from 0 to 1 to allow comparison across groups.

(B) The same process is used to show bloodwork and DEXA imaging values.While there was a trend for genetic risk to be associated with variousmeasurements,

the polygenic risk score achieved nominal p < 0.05 for BMI, waist/hip ratio, android/gynoid ratio, and triglycerides, and MC4R carrier status achieved nominal

p < 0.05 for BMI. LDL, low-density lipoprotein; HDL, high-density lipoprotein.

Whiskers of boxplot extend to the most extreme points no greater than 1.5 times the interquartile range (distance between the first and third quartiles).
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Table 2. Variants Identified in MC4R or Lipodystrophy Genes in Participants of European Ancestry

Gene Variant Protein Change Study MAF

Global

Gnomad MAF Known Functional Annotation

Carrier BMI

(mBMI)

Carrier Twin

BMI (mBMI)

Non-carrier Twin

BMI (mBMI)

Twin

Zygo-sity

Obesity

MC4R chr18:60371541 G/A p.Ser270Phe 0.04% 0.00% none 25.7 (26.1) 24.8 (24.7) N/A MZ

MC4R chr18:60372307 G/A p.Leu15Phe 0.04% 0.00% none 23 (22.6) 22.6 (22.4) N/A MZ

MC4R chr18:60371474 CA/C p.Met292fs 0.04% <0.003% (complete LOF)b 32.8 (26) N/A 28.8 (24.3) DZ

MC4R chr18:60371644 G/A p.Arg236Cys 0.04% 0.00% HGMD highC DM (not LOF)b 34.5 (32.3) 30 (27.5) N/A DZ

MC4R chr18:60372319 T/C p.Thr11Ala 0.04% <0.003% HGMD lowC DM (not LOF)b 36 (31.7) N/A N/A N/A

MC4R chr18:60371812 A/G p.Ser180Pro 0.04% <0.003% ClinVar LP (partial LOF)b 34.2 (30.2) 34.4 (33.5) N/A DZ

MC4R chr18:60371827 C/T p.Ala175Thr 0.04% 0.02% ClinVar P HGMD highC DM

(partial LOF)b
29 (25.6) 28.5 (24.4) N/A MZ

MC4R chr18:60371842 T/C p.Ile170Val 0.04% 0.01% ClinVar P HGMD highC DM

(partial LOF)b
22.6 (23.7) N/A 21.3 (24.7) DZ

Lipodystrophy

ZMPSTE24 chr1:40290870 G/GT p.Leu362fs 0.11% 0.03% ClinVar P 18 (18.9) N/A N/A N/A

ZMPSTE24 chr1:40290870 G/GT p.Leu362fs 0.11% 0.03% ClinVar P 22 (20.3) N/A N/A N/A

ZMPSTE24 chr1:40290870 G/GT p.Leu362fs 0.11% 0.03% ClinVar P 22.4 (26.1) N/A 22.6 (25.1) DZ

ZMPSTE24 chr1:40290870 GT/G p.Leu362fs 0.04% <0.003% not annotateda 30.7 (27.5) N/A 24.9 (24.1) DZ

AGPAT2 chr9:136673876 G/C p.Ala238Gly 0.04% 0.00% HGMD highC DM 20 (23.3) N/A N/A N/A

LIPE chr19:42401821

CCCCCCGCAGCCC

CCGTCTA/C

p.Val1068fs 0.04% 0.07% ClinVar P 23 (27.4) N/A N/A N/A

BSCL2 chr11:62692371 C/T c.863+5G>A 0.04% <0.003% ClinVar P 24 (29.9) N/A N/A N/A

MAF,minor allele frequency; HGMD highCDM, HumanGeneMutation Database high-confidence disease-causingmutation; lowC, low confidence; ClinVar LP, likely pathogenic; P, pathogenic; MZ,

monozygotic; DZ, dizygotic. Each variant was only seen once in the unrelated participants of this study. See alignments in Figure S5.
aThis deletion at the same site as a lipodystrophy insertion has not previously been annotated.
bFunctional annotation according to Collet et al. (2017), where LOF = loss of function.
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strong signature for the study of the relationship between BMI,

obesity, metabolic disease, and the genetics of BMI.

Consistent with previous studies and earlier work in the

TwinsUK cohort, branched-chain and aromatic amino acids,

and metabolites involved in nucleotide metabolism, such as

urate and pseudouridine, are strongly perturbed by obesity

(Butte et al., 2015; Ho et al., 2016; Menni et al., 2017; Park

et al., 2015). The underlying reason for the perturbation of

branched-chain amino acid metabolism in obese individuals

and thosewith insulin resistance is thought to be related to differ-

ences in the amino acid catabolism in adipose tissue (Newgard,

2012). The single metabolite with the most significant associa-

tion with BMI was urate, as we previously reported (Menni

et al., 2017). It is well known that uric acid increases with obesity,

due to insulin resistance reducing the kidneys’ ability to eliminate

uric acid, but previous work has not emphasized the power of

urate to predict BMI (Butte et al., 2015; Facchini et al., 1991;

Ho et al., 2016). We also found a strong signal for lipids to be

associated with BMI, with an enrichment of associations found

for glycerol lipids. These results are consistent with previous

studies showing that sphingomyelins and diacylglycerols in-

crease with BMI while lysophosphocholines decrease with

BMI, with other various phosphatidylcholines having effects in

both directions (Butte et al., 2015; Ho et al., 2016; Park et al.,

2015). A number of BMI-associated metabolites (12 of the 49-

metabolite signature) were associated with insulin resistance af-

ter controlling for BMI. As previously observed (Caleyachetty

et al., 2017; Oberbach et al., 2011; Reinehr et al., 2015; Wahl

et al., 2015), the metabolome abnormalities associated with

high BMI corrected with loss of weight. However, our study

found that metabolite levels did not provide predictive power

for future weight changes. Overall, the metabolome perturba-

tions appear as a consequence of changes in weight as opposed

to being a contributing factor.

While BMI correlates well and to a large extent with individual

health outcomes, it does not have the sensitivity to identify out-

liers, some of which carry unique health consequences. These

limitations to BMI are recognized in the literature (Neeland

et al., 2018). Here, the metabolome signature identified individ-

uals whose predicted mBMI was either substantially lower or

higher than their actual BMI, i.e., individuals with lesser or greater

metabolic consequences of obesity, using a technology that is

amenable to large-scale implementation. These individuals

include the metabolically healthy obese, but we also emphasize

the importance of the metabolome anomalies in identifying

unhealthy individuals with a normal BMI. These profiles were

generally stable over the prolonged follow up. An abnormal me-

tabolome was associated in the present study with an approxi-

mately 5-fold increase in baseline cardiovascular events and

additional 2-fold increase in cardiovascular events during follow

up when comparing individuals who were matched for BMI but

who had opposing metabolome signatures. Thus, while our find-

ings are in line with the known relationships between metaboli-

cally healthy obese status and health-related traits likemetabolic

syndrome and body fat (Brochu et al., 2001; Caleyachetty et al.,

2017; Karelis et al., 2005), we extend this relationship to the

broader category of metabolically healthy and unhealthy individ-

uals on the basis of the disparity between mBMI and BMI. For

example, we observed differences in waist/hip ratio, percent

visceral fat, and blood pressure between mBMI/BMI outliers

despite having the same BMI distribution. The fact that themeta-

bolically healthy obese have a high BMI polygenic risk score

also supports the concept that some of the genetic studies

may capture anthropomorphic associations—body size—rather

than obesity sensu stricto. Overall, the health consequences

observed across the various mBMI groups indicate that there

is a durable benefit of maintaining a healthy metabolome signa-

ture and point to an ongoing risk for the individuals that have an

unhealthy metabolome despite stability of BMI.

In line with the observation that a richer set of biomarkers is

more accurate than a narrower panel of single biomarkers, we

observed that 650 metabolites could explain ~50% and a 49-

metabolite signature of the best markers could explain 43% of

variance in BMI. In contrast, a conventional model that included

age, sex, HDL, LDL, total cholesterol, and triglycerides could

explain 31%, while the best single metabolic marker (urate)

could explain 16% of the variance in BMI. The message that

emerges from these types of observations—and that will

become central to the implementation of machine and deep

learning in medicine—is that there is a substantial loss of signal

associated with the quest for a single biomarker. The medical

system would, however, need to validate and establish the

health economics of rich data biomarkers to foster adoption in

clinical diagnostic routine.

In contrast with metabolomics analyses, the present study

does not support a strong association between metabolome

changes and the genetics of BMI defined by a 97-variant poly-

genic risk score (Locke et al., 2015). This may be explained by

the fact that known BMI GWAS loci explain only a small fraction

(�3%) of BMI heritability (Locke et al., 2015). Despite this overall

lack of explanatory power, there was a clear signal for individuals

with higher polygenic risk scores to have greater rates of obesity.

Because the genetic risk score does not include rare variants, we

also identified individuals who carried rare functional variants in

the known obesity geneMC4R, which is the single best example

of a gene where rare coding variants have a large effect on

obesity (Turcot et al., 2018). The carriers of these variants were

often obese individuals, but their metabolome was not categor-

ically different from that of other obese individuals. The lack of

metabolome differences for carriers of variants in this gene is

not surprising given that MC4R variants cause obesity by

increasing appetite. However, we did find that obese carriers

ofMC4R variants often had low polygenic risk scores for obesity;

out of 31 participants who were obese with polygenic risk scores

in the lowest quartile, 5.4%wereMC4R variant carriers, while the

carrier frequency was just 0.4% in those of normal weight. Thus,

our study shows the interest of sequencing obese individuals

with low polygenic risk scores because of the apparent enrich-

ment for monogenic contributions. As we completed this study,

a large consortium provided additional detail on the role of vari-

ants in pathways that implicate energy intake and expenditure in

obesity (Turcot et al., 2018). Future studies should also explore

the role of rare functional variants in lipodystrophy genes on

the metabolic traits in the general population.

In summary, the present study highlights the health risks of the

perturbed metabolome. The study also indicates that the ge-

netics of BMI are separate from metabolic health and serves to

prioritize a subset of individuals for genetic analysis. The
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assessment of themetabolome and genome of BMI lays ground-

work for future studies of the heterogeneity of obesity and treat-

ment of its endophenotypes. Specifically, the methodology used

here can be applied to build similar models for insulin resistance,

fat distribution, or any other number of clinical traits, and the

mBMImetabolome signature can act as a biomarker of response

to the new therapeutics that target patients with MC4R muta-

tions (K€uhnen et al., 2016). In the future, metabolic profiling could

help select patients for clinical trials beyond genetic sequencing,

thus expanding drug utility (Yanovski and Yanovski, 2018).

Limitations of Study
While the uniquely rich metabolomic and phenotypic data in this

study permitted a thorough investigation of obesity-related

health, there were nonetheless limitations. We chose to focus

this study on BMI, the most widely used measurement of

obesity. However, future studies building models for other traits

of metabolic health, for example diabetes or visceral fat, may be

of greater utility. Our study also had limited longitudinal informa-

tion onmedication use, which precluded an analysis of how drug

prescription influenced mBMI/BMI categories and vice versa.

Additionally, the association we observed between mBMI/BMI

categories and longitudinal cardiovascular outcomes requires

confirmation in a replication cohort.
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KEY RESOURCES TABLE

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Elizabeth

Cirulli (liz.cirulli@gmail.com).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The study included 1,969 largely European ancestry twins enrolled in the TwinsUK registry, a British national register of adult twins

(Moayyeri et al., 2013). We previously reported a detailed study of the genetic variants influencing the human metabolome in this

cohort (Long et al., 2017). Serum samples were collected at three visits, 8-18 (median 13) years apart. The cohort is mainly composed

of females (96.7%), and the sample set we used included 388 monozygotic twin pairs, 519 dizygotic twin pairs, and 155 unrelated

individuals. The age of participants at the first time point ranged from 33 to 74 years old (median 51); 36 to 81 years old (median 59) at

the second time point; and 42 to 88 years old (median 65) at the third time point. The BMI values measured at each metabolome time

point were taken within two years of the blood draw date. At baseline, 36.3% of the female participants and 53.8% of the male par-

ticipants were overweight, and 16.9% of the females and 10.8% of the males were obese. The twins study was approved by

St. Thomas’ Hospital Research Ethics Committee, and all participants provided informed written consent. BMI data were available

for 1743 participants within two years of the time point for metabolome time point 1, 1834 for within two years of time point 2, and

1777 for up to 2 years before time point 3 or 4 years after this time point; 1,458 individuals had all three datapoints.

For independent validation and studies of phenotypes correlated with metabolic BMI outliers, we enrolled 427 unselected adults

more than 18 years old who were able to come to the Health Nucleus in La Jolla, CA for a clinical research protocol (Perkins et al.,

2017). Participants underwent a verbal review of the institutional review board-approved consent (Western Institutional Review

Board). Participants ranged in age from 18-89 years old (median 53), were 32.9% female, and had BMI data measured at one

time point: 16.7% of the female participants and 47.5% of the male participants were overweight, and 7.2% of the females and

23.7% of the males were obese.

METHOD DETAILS

Phenotyping
Individuals in the TwinsUK cohort and Health Nucleus both underwent dual-energy X-ray absorptiometry (DEXA) imaging. The data

from these scans were used to calculate android/gynoid ratio, percent body fat, visceral fat, and subcutaneous fat. DEXA is very ac-

curate in themeasurement abdominal visceral adipose tissue (VAT). High levels of VAT are associated with atherogenic dyslipidemia,

hyperinsulinemia, and glucose intolerance (Neeland et al., 2018). TwinsUK cohort participants were additionally measured for

circumference at the waist and hip using a measuring tip to calculate the waist/hip ratio. TwinsUK participants self-reported infor-

mation about whether they were taking high blood pressure medication at their first visit and about cardiovascular events and their

timing via a survey at the final visit. For a selected number of Health Nucleus participants, images of fat and water (imaging of muscle)

were available from symmetrical chemical shift Magnetic Resonance Imaging (MRI) via the Dixon method. Quantitative insulin
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gnomad, Genome Aggregation Database http://gnomad.broadinstitute.org/ RRID: SCR_014964
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HGMD, Human Gene Mutation Database http://www.hgmd.cf.ac.uk/ac/index.php RRID: SCR_001888

Study data deposited into Mendeley Data This paper; https://data.mendeley.com/ https://doi.org/10.17632/kpjsnwd2mc.1

Study data and scripts deposited into GitHub This paper; https://github.com https://github.com/humanlongevity/mbmi

Software and Algorithms

R Project for Statistical Computing http://www.r-project.org/ RRID: SCR_001905

FaST LMM https://github.com/MicrosoftGenomics/

FaST-LMM

RRID: SCR_015506
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resistance (homeostatic model assessment, HOMA) was calculated as fasting insulin x fasting glucose / 405, and being insulin resis-

tant was defined by HOMA score R 3 (http://gihep.com/calculators/other/homa/) (Matthews et al., 1985).

Metabolite Profiling
The non-targeted metabolomics analysis of 901 metabolites in the TwinsUK cohort and 1,007 metabolites in the Health Nucleus

cohort was performed at Metabolon (Durham, North Carolina, USA) on a platform consisting of four independent ultra high perfor-

mance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods. The detailed descriptions of the platform can

be found in our previous publications (Cohen et al., 2018; Long et al., 2017). For the TwinsUK cohort, blood serum after fasting was

used for analysis, and the resulting raw values were transformed to z scores using the mean and standard deviation. For the Health

Nucleus cohort, blood plasma after fasting was used for analysis, and values from multiple experimental batches were normalized

into Z-scores based on a reference cohort of either 42 (n = 457) or 300 (n = 176) self-reported healthy individuals run with each batch.

The 42 and 300-normalized batches were converted to the same scale using linear transformation based on the values obtained from

7 runs that included both the 42 and 300 controls. Samples with metabolite measurements that were below the detection threshold

were imputed as the minimum value for that metabolite.

Genome Sequencing and Analysis
As previously described (Telenti et al., 2016), DNA samples were sequenced on an Illumina HiSeqX sequencer utilizing a 150 base

paired-end single index read format. Reads were mapped to the human reference sequence build HG38. Variants were called using

ISIS Analysis Software (v. 2.5.26.13; Illumina). A linear mixed model was applied to account for family structure in the cohort while

testing for associations between genetic variants and the different phenotypes: BMI; BMI prediction model values and residuals after

accounting for BMI, age, sex; and levels of the 49 BMI-associated metabolites. A genetic similarity matrix (GSM) was constructed

from 301,556 variants that represented a random 20% of all common (MAF > 5%) variants genome-wide after linkage-disequilibrium

(LD) pruning (r2 less than 0.6, window size 200 kb) and was used to model the random effect in the linear mixed model via a ‘‘leave-

out-one-chromosome’’ method for each tested variant. Each of 97 known BMI-associated variants was tested independently using

customized Python scripts wrapping the FaST-LMM package (FaST LMM, RRID: SCR_015506) (Lippert et al., 2011; Locke et al.,

2015). Principal component axes were calculated to check ethnicity using plink, and the first principal component for those of

European ancestry was used as a covariate in analyses of unrelated individuals in R described below. Polygenic risk scores were

calculated using genotypes for 97 variants whose associations and betas had been published previously (Locke et al., 2015).

Rare variants in the gene MC4R were defined as coding and splice variants with MAF < 0.1%. Rare lipodystrophy variants were

defined as those achieving a pathogenic or likely pathogenic categorization in ClinVar (ClinVar, RRID: SCR_006169) or HGMD

(HGMD, RRID: SCR_001888). Allele frequencies were calculated in our set of samples and also retrieved from gnomad (Genome

Aggregation Database, RRID: SCR_014964).

QUANTIFICATION AND STATISTICAL ANALYSIS

R (R Project for Statistical Computing, RRID: SCR_001905) was used for the analysis and data manipulation. Bonferroni correction

was used for all analyses, and most statistical analyses were restricted to unrelated individuals of European ancestry, in accordance

with field standards for ensuring that ancestry differences do not cause bias or skew in the results. For each quantitative analysis of

BMI or other traits, the subset of BMI values or other outcome variables used were rank-ordered and forced to a normal distribution.

Analyses comparing metabolites to BMI were performed in R using the lm function, and age, sex, and the first genetic principal

component were included as covariates. The obesity prediction model was built using ridge regression (alpha = 0) with glmnet in

R. The residuals used to separate participants into the five categories shown in Figure 2 were calculated using age, sex, and initial

BMI. Heatmaps were generated in R using the pheatmap package. Survival analysis was performed using coxph in R with age at first

visit included as a covariate. Power calculation was performed using the power.stratify command in the powerSurvEpi package in R.

DATA AND SOFTWARE AVAILABILITY

The R analysis scripts and data files used are available at https://github.com/humanlongevity/mbmi. Data files have been deposited

to Mendeley Data and are available at https://doi.org/10.17632/kpjsnwd2mc.1.
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