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Abstract—Using eight newly generated models relevant to
addiction, Alzheimer’s disease, cancer, diabetes, HIV, heart
disease, malaria, and tuberculosis, we show that systems
analysis of small (4-25 species), bounded protein signaling
modules rapidly generates new quantitative knowledge from
published experimental research. For example, our models
show that tumor sclerosis complex (TSC) inhibitors may be
more effective than the rapamycin (mTOR) inhibitors
currently used to treat cancer, that HIV infection could be
more effectively blocked by increasing production of the
human innate immune response protein APOBEC3G, rather
than targeting HIV’s viral infectivity factor (Vif), and how
peroxisome proliferator-activated receptor alpha (PPAR«)
agonists used to treat dyslipidemia would most effectively
stimulate PPARo signaling if drug design were to increase
agonist nucleoplasmic concentration, as opposed to increas-
ing agonist binding affinity for PPAR«. Comparative anal-
ysis of system-level properties for all eight modules showed
that a significantly higher proportion of concentration
parameters fall in the top 15th percentile sensitivity ranking
than binding affinity parameters. In infectious disease mod-
ules, host networks were significantly more sensitive to
virulence factor concentration parameters compared to all
other concentration parameters. This work supports the
future use of this approach for informing the next generation
of experimental roadmaps for known diseases.
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INTRODUCTION

Progress in identifying mechanisms of human disease
and new therapeutic approaches has been steady over
the last 20 years, but limited in pace by several factors
that govern discovery and innovation. These factors
include choice of time-consuming experimental
approaches based on phenotypes exhibited by gene
knock-out animals, incremental exploration of steps in
known signaling pathways without quantitative con-
sideration of connectivity to important cellular out-
comes, and single-target approaches. Quantitative
systems analysis of cell signaling networks gives new
perspective into mechanistic events that will lead to the
development of novel experimental strategies and ther-
apeutic concepts.'>7!4162426 Thig quantitative mod-
eling approach promises a more thorough exploration
of possible disease mechanisms. Individual groups have
shown this with the construction of small (5-20 species)
system-level models for selected protein signaling path-
ways, illustrating that this approach is critical for:
(1) quantitatively determining the relative significance of
two signaling events with regard to an important cell
behavior'®?®; (2) understanding the role of feedback
loops in a signaling system™'®; and (3) testing current
drugs and identifying new targets based on system-level
properties.”® Even though these models are based on a
deep body of experimental research and developed with
well-defined methodology, this approach has not yet
been broadly adopted and used by experimentalists.
Despite the unique perspective gained from a systems
approach, models are viewed as difficult to construct due
to unavailability of quantitative parameter values'® and
uncertainty regarding appropriate model boundaries.

Here, we illustrate how even small, simple compu-
tational models rapidly integrate the best available
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experimental data, providing new mechanistic insight
and corresponding new experimental strategies and
therapeutic concepts. We constructed eight small (4-25
species) ordinary differential equation (ODE)-based
models (we term ‘modules’) (Fig. 1) relevant to
addiction, Alzheimer’s disease (AD), cancer, diabetes
(DM), heart disease, human immunodeficiency virus
(HIV), malaria, and tuberculosis (TB) (Table 1).
Together these diseases account for four of the six
leading causes of disease-related death for adults in the
United States (58% of all deaths per year (2.5 million
people) CDC data, 2006), and four of the top ten
leading causes of death for adults in low-income
countries (26.5% of deaths per year (8 million people)
WHO data, 2002). Because our models were small
(constrained to 4-25 species), we were able to construct
them over a short, 6-month time period. We built these
small models under the assumption that a system-level
analysis would guarantee new insight into the system,
regardless of the amount of current information
available and irrespective of the specific boundaries
chosen for a given module. Each one was designed
based on important questions in the current literature,
validated where possible against published experi-
mental data, and subjected to a sensitivity analysis to
identify key parameters. Results were used to suggest
new directions for future experimental research. Cre-
ation of eight models at once also allowed for com-
parative analysis of system-level properties of all eight
signaling pathways. Altogether our results suggest new
experimental strategies and therapeutic concepts rele-
vant to these diseases, provide a basis for comparative
study of system-level properties of cell signaling net-
works, and promote future broad adoption and wide-
spread use of small-module computational analysis for
writing the next generation of experimental roadmaps
for known diseases and other important biological
processes.

METHODS

Module Design and Implementation

We constructed each module with a workflow that is
readily implemented for any disease and its associated
signaling network. Details regarding the following
design and implementation of specific modules can be
found in Supporting Information. We use a detailed
description of the diabetes module here as an illustra-
tive example. First, we identified a major signaling
pathway relevant to each of the eight major diseases
and then designed a small (4-25 species) bounded
module to generate insight into questions raised by the
current experimental literature. Each module was
constructed to quantify an important output as a

function of upstream interactions known to be altered
in the respective disease state (Fig. 1). For example, we
designed our diabetes module around peroxisome
proliferator-activated receptor alpha (PPAR«) and
liver X receptor alpha (LXRo), two nuclear receptors
that act as nutrient sensors to activate genes involved
in hepatic lipid oxidation and synthesis, respectively
(Fig. 1d). The PPAR« receptor is also the target of
PPAR« agonists currently used clinically to treat
dyslipidemia and stimulate the lipid oxidation path-
way. Our goal was to quantify transcriptional complex
formation output as a function of known upstream
protein binding interactions and metabolic ligands (free
fatty acids (FFA), polyunsaturated fatty acids (PUFA),
oxysterols, and glucose) that are altered in the diabetic
state. Figure 1 depicts species altered in the disease state
and quantified output for each module.

Overall our goal in the design of each module was
to give insight into questions raised by the current
experimental literature. In the diabetes module exam-
ple: What is the main mechanism by which one path-
way is able to suppress the other, counteracting
pathway? Is it (1) PPARo and LXRa competition for
the retinoid X receptor (RXR) partner required for
formation of both types of transcriptional com-
plexes’>% or (2) the formation of the PPARx:LXRo
complex?”-! What is the role of the recently identified
LXRo ligand glucose,”® which has an LXRa« binding
affinity that is five orders of magnitude weaker than
any other known ligand? What is the most effective
way to improve PPARo agonist drug design and
stimulate transcriptional complex formation in the
PPARu« lipid oxidation pathway? Our module quanti-
tatively integrates species concentration and binding
affinity information to reveal information about these
events that was not accessible with isolated experi-
mental work.

Even though our model did not include all possible
known interactions of PPARo and LXRa in the
hepatocyte nucleus, this seven species module gave us
new mechanistic ideas about a very important region
of the signaling pathway and its quantitative role in an
output known to be significant in diabetes. The small
size and bounded nature of each of our modules
empowered a better understanding of its limitations,
and allowed for learning despite an incomplete set of
quantitative parameter values.

Species interactions within each module were
described using quantitative relationships, expressed as
ordinary differential equations (ODEs). The system of
ODE:s for each module was defined using initial con-
ditions, protein concentrations, binding affinities, and
rate constants mined from published experimental
work and solved using MatLab (Mathworks, Natwick,
MA). The same foundation MatLab code was used to
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FIGURE 1. Module schematics. (a) Addiction: Drug-induced dopaminergic PKA input stimulates AfosB accumulation in the brain
to increase addictive behavior. (b) Alzheimer’s disease: Inherited alterations in PS1 and combine with elevated GSK3 activation to
increase production of plaque components. (c) Cancer: Deregulation of Akt elevates formation of the MTORC1 complex to increase
G1-phase cell cycle progression. (d) Diabetes: Altered availability of metabolic ligands alters the balance of transcriptional
complexes involved in hepatic lipid oxidation and lipid synthesis. (e) Heart disease: Angiotensin both stimulates and inhibits
fibrotic cardiac remodeling via AT1R and AT2R receptors, respectively. (f) HIV: HIV produces Vif to promote degradation of the
innate immune response protein APOBEC3G and increase the release of infectious virus. (g) Malaria: Glycophosphatidylinositols
(GPIs) from P. falciparum initiate an immune response and activation of NFxB. (h) Tuberculosis: M. tuberculosis produces ManLam
and SapM, two virulence factors that interfere with host endosomal phagocytosis. (green dotted arrow) indicates enzymatic
activation, (red dotted arrow) indicates enzymatic inhibition, (brown arrow) indicates degradation (null sign) or production, pink
circles represent species altered in disease state, blue circles represent quantified output.
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TABLE 1.

Representative findings and associated new experimental strategies and therapeutic concepts.

New understanding

Suggested experimental strategies and therapeutic concepts

Addiction: PKA and Darp32 in Afosb accumulation (12, 7, 22)

1. Raised basal PKA in addiction models of females versus
males does not alter Afosb accumulation dynamics, but does
slightly elevate the Afosb magnitude (Figure S6)

2. There is a specific range of PKA input doses in which Darp32
phosphorylation is maximal. This suggests a specific dose at
which positive reinforcement of drug-taking behavior is opti-
mized (Figure S8)

A. Suggests investigation of gender differences in addictive

behavior that could be the result of a ~2 M increase in Afosb
magnitude among females
B. Suggests in vivo experiments to validate this range, as well as
experiments to determine whether the range shifts with long-
term drug use

Alzheimer’s disease: Presenilin-1 and GSK-3 in amyloid plaque and neurofibrillary tangle formation (14, 11, 23)

3. No single change to a module component is able to consid-
erably alter both the Af42/Af40 ratio and the phospho tau
(p-tau)/tau ratio (Figure S11)

4. Over-activation of GSK3 by PI3K cannot account for the
elevated p-tau/tau ratio (>0.33) observed in Alzheimer’s
patients but increased GSK3 concentration can (Figures
S11, S13)

Cancer: Akt/mTOR in cell cycle control (7, 5, 14)

5. mTOR activation is more sensitive to parameters involved in
TSC interactions than mTOR interactions (Figure S16)

6. mTORC1 negative feedback to doubly phosphorylated Akt
makes the system robust to PP2A deregulation (Figure S17)

C. Multi-targeted therapy would be necessary to reduce both
components known to be involved in plaque formation

D. Suggests investigation of transcriptional regulation of GSK3 as
well as search for other kinase candidates that phosphorylate
tau

E. Suggests a shift in focus from the mTOR inhibitors currently
being used to the design of novel TSC inhibitors

F. Experiments should investigate whether the mTORC1 nega-
tive feedback loop is altered in cancerous cells

Diabetes: Hepatic PPAR«/LXRa nuclear signaling in lipid metabolism (7, 10, 20)

7. Glucose:LXRa:RXR heterodimers are uniquely sensitive to
LXRa and PPARx concentration and would be considerably
altered by feedback loops that increase them, whereas other
heterodimers would not be (Fig. 2, S25)

8. PPARu agonist drug efficacy is highly dependent on agonist
nucleoplasmic concentration, not on agonist binding affinity
for PPARa. PPAR« agonism could disrupt PPARx:LXRx
complexes and activate LXRua signaling, especially in high
glucose (diabetic) conditions (Figures S29, S30)

G. These feedback loops should be investigated to see if they
cause increased LXRu signaling in diabetic patients

H. PPARo agonist drug design should focus more on controlling
nucleoplasmic concentration of the drug rather than binding
affinity for PPARw. Studies should investigate whether PPARx
agonists increase LXR signaling in diabetic patients

Heart disease: angiotensin Il signaling in fibrotic cardiac remodeling (16, 12, 24)

9. AT2R signaling is anti-fibrotic but AT2R-specific agonists
would not be effective at inhibiting fibrotic remodeling due to
saturation of AT2 receptors and downstream phosphatases
(Figure S34)

10. Ang Il signaling responses are deactivated by delayed

negative feed-forward control (Figure S42)
HIV: bolstering innate APOBEC3G response to HIV--Vif (4, 4, 12)

11. While degradation rate of the A3G-Vif complex can impact
the release of infectious HIV, A3G-Vif binding is 10 times
more important (S47A)

12. Innate A3G production above 1 uM/h effectively shuts down
HIV production, while an antibody to Vif is only predicted to
be effective at high production rates (due to an excess of Vif
available) (Figure S48)

I. Therapies should focus more on inhibiting Ang Il production or
increasing AT2R receptor availability as opposed to blocking
AT1R activity or stimulating AT2R activity

J. Fibrotic cardiac remodeling may be explained by AT¢R stim-
ulation beyond the control of AT;Rs

K. Exploring changes to the APOBEC3G-Vif interaction should
be more effective than altering the degradation pathways

L. Therapeutic interventions to increase APOBEC3G should be
more effective than targeting Vif

Malaria: negative feedback regulation of TLR1/2 signaling (24, 13, 60)

13. Negative regulators maintain periodicity of NFxB and TNF«
but reduce average TNFa concentration (Figure S52)

14. The magnitude of initial malaria GPI insult alters NFxB
frequency and amplitude in the wild-type model (Figure
S53)

M. Knock-down of negative regulators including IRAKM, TRAIL,
TLRs, or MyD88s should cause sustained TNFo and NFxB
concentrations and exacerbate malaria in an animal model

N. Exposing macrophages to an increasing range of malaria GP!I
should reveal a threshold at which NFxB dynamics switch
from sustained oscillations to steady production

Tuberculosis: M. tuberculosis interference with endosomal phagocytosis (20, 5, 9)

15. Binding of virulence factor ManLam to EEA1 is more
effective than the dephosphorylation of PI3P by lipid phos-
phatase SapM in reducing EEA1:Rab5:GTP:PI3P formation
and preventing the efficient recruitment of EEA1 to the
phagosomal membrane (Figure S56)

L. ManLam is a higher-priority drug target as compared to SapM.
Therapeutic strategies should focus on development of inhib-
itors to selectively target ManLam

Numbers in parenthesis are the number of elementary species, derivative species and reactions, respectively, for each module. A complete
description of the all findings for each module can be found in Supporting Information.
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solve the system of ODEs and perform the sensitivity
analysis (described below) for each of the modules.
Unknown parameters were estimated as best as pos-
sible using a variety of methods including use of
parameters for enzymes/substrates similar to those in
the module, fitting of independent experimental data,
and/or appropriate order-of-magnitude parameter
estimates. For the diabetes module example, quanti-
tative binding affinity values for most of the interac-
tions were available in the literature, but time-
dependent data (binding on and off rates) were not.
Therefore, analysis was limited to steady-state condi-
tions. Additionally, quantitative nucleoplasmic con-
centration values for RXR and LXRa were
unavailable, so they were assumed to be equal to the
nucleoplasmic concentration of PPARa. These values,
as well as unknown parameter values initially esti-
mated for all modules, were re-evaluated using the
sensitivity analysis, described below.

Validation

To build confidence in our modules, we validated
module output against independent experimental lit-
erature where possible. In our diabetes module, we
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compared predicted ligand:LXR:RXR heterodimer
concentration after addition of oxysterol ligand to a
dose response curve generated from independent
experimental work'' (Fig. 2a). We also compared
results to total predicted ligand:LXR:RXR heterodi-
mers after overexpression of both PPAR« and LXRo*
(Fig. 2b). In both cases, there was good agreement
between the model predictions and published data, as
was true for the other modules in the study. More
details about the diabetes module validation simula-
tion and other modules can be found in Supporting
Information, in Figures SSA-C; S10A, B; S15, S32 A,
B; S33A-D; S46A, B; S50A, B.

Sensitivity Analysis and Module-Specific Simulations

A sensitivity analysis**® quantitatively determined
the importance of individual parameter values on
model output. This analysis was critical in our small-
module approach as it allowed for a better
understanding of whether or not the set of estimated
parameters values was sufficient and also suggested
additional informative module-specific simulations.
We subjected each module to a sensitivity analysis in
which steady-state module output was calculated after
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tors. For the full diabetes module sensitivity analysis including all parameters, see Figures S21 and S22.

variation of all parameters, including individual pro-
tein concentrations, binding affinities, and rate con-
stants over six orders of magnitude around the
estimated physiological value. Information from the
sensitivity analysis of each module was then used
together with the known literature to direct other
module-specific simulations. For example, in the dia-
betes module, when we evaluated the sensitivity of the
different transcriptional complex outputs to concen-
tration parameters, we found that PUFA:PPAR-
w:RXR, FFA:PPARz:RXR, and oxyst:LXR:RXR
heterodimers (Figs. 3a—3c) were exclusively sensitive to
their respective ligand concentrations whereas glu-
cose:LXR:RXR heterodimers were sensitive to both
LXR and RXR receptor concentrations (Fig. 3d). This
sensitivity occurs because other ligands are at a much
lower nucleoplasmic concentration (low nM) com-
pared to glucose (uM), though they have a much
stronger binding affinity for their receptors than glu-
cose does for LXRa (Table S5). The result directed

further simulations (Figure S25) that generated the
novel hypothesis that glucose:LXRa:RXR heterodi-
mers are likely much more sensitive than other LXRa
and PPAR« heterodimers to feedback loops'>?>27:3!
that alter receptor concentration and could act syner-
gistically with other ligands to enhance or inhibit
transcriptional complex formation (Result 7, Table 1).
The fact that glucose:LXRa:RXR transcription com-
plexes are sensitive to LXRo receptor concentration
also turned out to be important in the context of
PPARw agonist drug design, described below.

The complete diabetes module sensitivity analysis
on ligand:PPAR«:RXR heterodimers (Figure S29) led
to the hypothesis that changing the nucleoplasmic
concentration of PPAR« agonist drugs would consid-
erably alter ligand:PPAR«:RXR heterodimer forma-
tion whereas changing drug binding affinity for
PPARa has no effect. This non-intuitive result was
explained by the low nucleoplasmic concentration of
the drug and most endogenous ligands (nM) compared
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Insight into PPAR« agonist design. PPAR« agonists are used clinically to stimulate the lipid oxidation pathway in

patients with dyslipidemia. Our diabetes module predicted that changing agonist binding affinity over four orders of magnitude
would not affect PPAR« transcriptional complex formation (a, ¢), whereas changing nucleoplasmic concentration of the drug
would have large effects (b, d). These predictions held true over a range of RXR (a, b) and LXR (c, d) concentrations, which have not
yet been measured in experiments. Our diabetes module additionally illustrated that PPAR« agonism and stimulation of the lipid
oxidation pathway could also inadvertently stimulate the lipid synthesis pathway via activation of LXR« transcriptional complexes,
especially in diabetic conditions of high glucose (e). This could be one explanation for recent reports that diabetic animals are

resistant to PPAR« agonist (Satapati et al.?).

to a much higher nucleoplasmic concentration of the
receptors (~300 uM, Table S5). Additional simulations
confirmed the result (Figs. 4a—4d), and showed that
this prediction held over a range of RXR (Figs. 4a, 4b)
and LXR concentrations (Figs. 4c, 4d), which have not
yet been measured in the experimental literature.
Simulations also illustrated how PPARo agonism
could inadvertently activate the counter-acting LXRa
signaling pathway via disruption of PPARu:LXRa
complexes, especially in diabetic conditions of high
glucose (Fig. 4e). Elevated LXRa signaling in high
glucose conditions occurred because, as mentioned

above, glucose:LXR:RXR complexes were much more
sensitive to LXRa concentration, and were therefore
sensitive to an increase in free LXRa after PPARo was
removed from PPAR:LXR complexes by PPAR
agonism. This new concept (Result 8 in Table 1) was
especially exciting in the context of a recent indepen-
dent report that indicated that diabetic animals are
resistant to PPARo agonists.”®> As in the diabetes
module example, results of the sensitivity analysis of
each module directed additional simulations that
resulted in potential new experimental and therapeutic
directions that were previously unrecognized.



628 BENEDICT ef al.

Comparative Meta-Analysis

Simultaneous construction of eight small models
allowed for an unprecedented comparative analysis of
system-level properties from all eight modules. For
each module, we defined parameters as ‘sensitive’ if a
100% change in parameter value (normalized to
baseline parameter value) resulted in a 50% change in
at least one module output (normalized to baseline
module output). We defined parameters as ‘hypersen-
sitive’ if a 50% change in parameter value resulted in a
150% change in at least one module output. We used
these definitions to look at correlations between
module properties (size, parameter availability, feed-
back loops, redundant paths). We also investigated
whether certain parameter types were more likely to be
sensitive than others.

In order to examine the relative sensitivity rank of
different parameter types within respective modules,
we assigned each parameter a percentile sensitivity
rank based on the calculated sensitivity (described
above) and total number of parameters in the respec-
tive module. We used a Wilcoxon Rank Sum test to
determine whether there were significant differences
between the average percentile rank of different
parameter types within our modules. Specifically we
evaluated whether the percentile rank of concentration
parameters was significantly higher than the percentile
rank of binding parameters.

In order to determine whether trends we observed
were also present in existing published models, we
compared some of our results to similar models in the
published literature.>'*1%>* We chose these models
based on the fact that they were ODE-based, focused
on protein signaling, contained both binding affinity
parameters and concentration parameters, employed
some type of sensitivity analysis to include individual
perturbation of all concentration and all binding
affinity parameters, and parameter sensitivity ranks in
overall top 15% sensitive were clearly discernable. As
our modules and findings focused on mammalian sig-
naling, we did not include models of bacterial or yeast
signaling in this analysis. For each existing model, we
recorded total concentration parameters, total binding
affinity parameters, and total of each type that were
reported in the top 15% most sensitive for a given
model. For our models, literature models, and both
combined we computed proportion of concentration
parameters in the top 15% most sensitive of each
model and proportion of binding affinity parameters in
the top 15% most sensitive of each model. We included
concentration density parameters (#species/area) as
concentration parameters, and we did not include
production or degradation terms. We used standard
error for proportion to determine whether a significantly

higher proportion of concentration parameters
appeared in the top 15% of their respective modules
than did binding affinity parameters.

Three of our modules (HIV, malaria, TB) focused
on host—pathogen interactions in infectious diseases.
We used the percentile sensitivity rank of parameters in
our modules to determine whether parameters related
to pathogen virulence factors (Vif, GPI, ManLAM)
exhibited different sensitivities in our modules com-
pared to host parameters.

OVERALL RESULTS

Module Findings Result in New Experimental
Roadmaps for the Study of Elements
of Eight Human Diseases

Representative findings and associated new experi-
mental strategies and therapeutic concepts for each
module are listed in Table 1, with a complete descrip-
tion of module construction and findings in Supporting
Information. Module findings based on system-level
properties of cell signaling generated new experimental
roadmaps for the study and treatment of each of these
diseases. The finding from our diabetes module that
PPARa transcriptional complexes were sensitive to
nucleoplasmic concentration of PPAR« agonists but
not to agonist binding affinity for PPAR« recommends
a shift in focus from current PPARa agonist design
goals of controlling agonist binding affinity, to a new
design goal of controlling agonist nucleoplasmic con-
centration (Table 1, Finding 8). The module gave the
additional new insight that PPARo agonism and
stimulation of the lipid oxidation pathway could also
activate the counteracting LXRua lipid synthesis path-
way in high glucose conditions, providing a new
potential mechanism for PPARa agonist resistance in
diabetic patients. Key results from each of the eight
modules are summarized in Table 1 (see Supporting
Information for all results) and illustrate how this
approach generates novel, system-level insight to guide
future experimental research and treatment of human
disease. Specifically, system-level analysis of these
small modules was able to quantitatively evaluate
whether an experimentally measured pathway alter-
ation in a disease could be responsible for pathological
output (Findings 1, 4), help clarify the role of specific
feedback and feed-forward events in disease pathology
(Findings 6, 7, 10), and evaluate current therapeutic
strategies and uncover new ones based on system-level
insight (Findings 3, 5, 8, 9, 12, 15). New therapeutic
strategies based on these findings were very specific and
highly actionable. Several are highlighted below.
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Bolstering Innate Resistance to Retroviruses in HIV:
Helping APOBEC3G Overcome HIV-Vif

The HIV module (Fig. 1f) focused on the recently
discovered innate mammalian defense to retroviruses
via the cytidine deaminase apolipoprotein B mRNA
editing enzyme, catalytic polypeptide-like 3G (APO-
BEC3G), and its circumvention by the HIV-encoded
protein viral infectivity factor (Vif). The module was
used to answer two questions: can this innate anti-
retroviral immunity be boosted to overcome HIV
infection? If so, how best might this be achieved? One
major finding of this module was that innate A3G
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production above 1 uM/h effectively shuts down HIV
production, while a proposed antibody to Vif'? is only
predicted to be effective at high production rates (due
to an excess of Vif available) (Figs. 5a, 5b). This lim-
ited efficacy happens because only a small amount of
Vif is required to sequester APOBEC3G and thus a
high level of Vif blockade is required to reduce infec-
tious HIV release rate, compared to a relatively lower
amount of APOBEC3G required to inactivate the
virus. The finding directly resulted in the new
hypothesis that interventions to increase APOBEC3G
may be more effective than targeting Vif. The new
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FIGURE 5. Representative module results generate new therapeutic concepts. One result from the HIV module suggested that a
proposed antibody to Vif would only be effective at reducing release of infectious HIV at very high production rates (a), due to an
excess of Vif available. In contrast, increasing production of the innate immune response protein APOBEC3g (A3G) would be
effective over a range of production rates (b). The exact quantitative value of baseline A3G production was an unknown parameter
in this module, but the result is true over a large range of estimated values. One result from our heart disease module was that
AT.R agonists (green) would not be effective in reducing production of MMPs and cardiac fibrosis compared to ACE inhibitors that
reduce production of angiotensin (red, used clinically), and AT{R antagonists (blue, currently in clinical trials) (¢, d). This non-
intuitive finding was due to limited availability of AT, receptors and saturation of downstream AT,R phosphatases.
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therapeutic concept held true regardless of the exact
value of baseline APOBEC3G production (pA3G),
which has not yet been quantitatively measured (as
reported in the experimental literature) and was clas-
sified as an unknown parameter in this module. With
the finding that increased production of APOBEC3G
could reduce the release of infectious virus, the HIV
module imparted both an innovative new therapeutic
hypothesis as well as an accompanying quantitative
hypothesis for its mechanism of action.

Angiotensin and Angiotensin Receptors
in Cardiac Fibrosis

Our heart module (Fig. le) quantitatively explored
the ability of angiotensin to both stimulate (via
angiotensin 1 (AT;R) receptors) and inhibit (via
angiotensin 2 (AT,R) receptors) the production of
matrix metalloproteinases involved in cardiac fibrosis
(Fig. le). Treatments targeted at Ang II signaling are
effective in curbing the effects of heart disease® and
currently target either the production of Ang II (ACE
inhibitors) or Ang II association with the AT;Rs
(AT R antagonists). Agonism of AT,Rs has also been
considered as a potential therapeutic target, but it is
unclear if AT,R signaling is anti-fibrotic under physi-
ological conditions. Moreover, there is no quantitative
evidence to compare AT,R-targeted drugs with current
therapies in use or development. To determine if AT,R
agonists may be a meaningful treatment for fibrotic
remodeling, we compared the responses of our model
to simulated ACE inhibitors (presently used in the
clinic), AT;R antagonists (in clinical trials now), and
AT,R agonists (proposed in the literature). Our mod-
ule found that of the three types of therapies simulated,
ACE inhibitors had the most robust result, reducing
MMP2 and MMP3 expression to nearly basal rates,
followed by AT ;R antagonists which also reduced
MMP expression. Surprisingly, AT,R agonists showed
little effect in blocking MMP expression (Figs. 5c, 5d).
This counterintuitive result was explained by the
observation that the activities of the phosphatases
activated by AT,R are largely saturated at basal Ang I1
levels (Figure S35). However, this saturation may be
overcome by increasing the total number of available
AT,Rs (Figures S34A, S34B, and S34C). Taken
together, these results suggested that while AT,R sig-
naling is anti-fibrotic, AT,R agonists would have lim-
ited effect in treating fibrotic remodeling. This directly
results in the therapeutic concept that therapies
designed to limit Ang II signaling should focus more on
either inhibiting Ang II production or increasing AT,R
availability than either blocking AT R activity or
stimulating AT,R activity (Table 1, Finding 9).

Novel Mechanistic Insight Relevant to Current
Therapeutic Targets

The small-module approach was additionally vali-
dated by the predictive capabilities of several modules
that were able to independently identify current drug
targets as sensitive species. For example, a 2009 Alz-
heimer’s disease study found glycogen synthase kinase-
3 (GSK3) inhibitors to be beneficial to animals with
the disease but detrimental to controls.® Our Alzhei-
mer’s module independently identified GSK3 concen-
tration as a sensitive parameter and strong
determinant of phosphorylated tau (p-tau) (Figure
S11A), a major component of neuritic plaques. In
cancer, interest in protein phosphatase 2A (PP2A) as a
drug target has recently arisen.”” Our cancer module
independently predicted PP2A concentration as a
sensitive parameter in elevated mammalian target of
rapamycin (mTOR) (Figure S16), which is believed to
involved in pathological cell cycle control observed in
cancer.

These modules also generated novel, specific mech-
anistic insight into these previously identified drug
targets. For GSK3 in Alzheimer’s disease, our module
revealed that GSK3 concentration, as opposed to
kinetic activation by Akt, has the most dramatic effect
on p-tau levels (Figure S11A, C). This result suggests
that drugs aimed at controlling GSK3 concentration
may be more useful in reducing p-tau levels than the
above mentioned GSK3 inhibitors which block GSK3
kinetic activity. Our Alzheimer’s module also predicted
that no GSK3-associated parameters had any effect on
amyloid beta 42/amyloid beta 40 ratio (another major
component of neuritic plaques) (Figure S11A, top
panel), suggesting that GSK3-related therapy alone
may not be sufficient to reduce plaque formation. For
PP2A as a cancer target, the additional insight pro-
vided by the model was that mTOR negative feedback
could compensate for PP2A dysregulation (Figure
S17). Both of these results illustrate how systems
analysis of signaling pathways facilitates improved
mechanistic understanding of current therapies and
their targets.

Comparative Meta-Analysis of System-Level
Properties of All Eight Signaling Modules

The comparative analysis in our study demon-
strated that the ability to gain insight into therapeutic
targets based on the sensitivity of module output to
individual species is preserved across models of dif-
ferent sizes and in varying states of parameter avail-
ability. Pearson correlation and Spearman correlation
tests indicated no correlation between the module size
and the overall percentage of sensitive parameters
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(Fig. 6¢, R* = 0.025, p > 0.05 for both tests), and no
correlation between percentage of parameters available
in the literature and overall percentage of sensitive
parameters (Fig. 6d, R* = 0.009, p > 0.05 for both
tests). Interestingly, however, certain network proper-
ties were a stronger determinant of module sensitivity
to parameter perturbation. For example, modules
lacking both redundant pathways and negative feed-
back loops had a much higher percentage of sensitive
parameters (69 and 72% for HIV and heart modules,
respectively), than all other modules (<30%, Fig. 6e).
The comparative analysis confirms that for small-
module systems analysis, size and parameter avail-
ability do not constrain discovery based on sensitive
species.

In the interest of uncovering molecular targets of
high therapeutic potential, we categorized sensitive and
hypersensitive parameters by type and found that
module outputs were least sensitive to protein binding
interaction parameters (7% of all binding parameters
were sensitive, 0% were hypersensitive, Fig. 6b) and
often hypersensitive to species concentration and pro-
duction/degradation parameters (12% were sensitive,
28% hypersensitive, Fig. 6b). To examine the finding

in more detail, we ranked each parameter within its
module and computed a percentile ranking for each
based on sensitivity and the total number of parame-
ters in the respective module (Fig. 7a). Since all of our
modules contained concentration and binding affinity
parameters (only some contained production/degra-
dation parameters), we chose to focus on these two
parameter types for further analysis. We found that
percentile rank of concentration parameters was sig-
nificantly higher than the percentile rank of binding
affinity parameters (Fig. 7a, Wilcoxon Rank Sum,
two-tailed test, p < 0.05). Intriguingly, this analysis
also revealed that a large number of concentration
parameters appeared in the top 15% most sensitive
parameters of each module, while relatively few bind-
ing affinity parameters were in this category (Fig. 7a,
red box).

When we examined the published literature to
determine whether this phenomena occurred in other
small models of protein signaling, we found that in our
models, in four other similar published models,> 131624
and in the combined data, there was a significantly
higher proportion of concentration parameters than
binding parameters in the top 15% most sensitive for
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each model (Fig. 7b, * indicates significance with
99.5% confidence using standard error for propor-
tion).

Altogether, this indicates that detailed, quantitative
experimental measurements of protein concentrations
may be more useful in determining targets of high
therapeutic potential than measurements of protein
binding affinities. This meta-analysis across our eight
networks and four published models also suggests that
there may be selective pressure for fine-tuned control
and more regulatory steps to govern sensitive cell
processes such as concentration, while there is less
pressure and fewer regulatory steps for control over

1.2 1 1 concentration
XX virulence factor

1.0

0.8 1

0.6 1

0.4

0.2 -

Parameter Sensitivity Percentile Rank

0.0 T

FIGURE 8. Host networks in infectious disease modules are
highly sensitive to pathogen virulence factor concentration/
production. Pathogen virulence factor concentration/produc-
tion parameters (Vif, GPl, ManLAM) in our infectious disease
modules (HIV, malaria, TB) had a significantly higher per-
centile sensitivity rank than all other concentration parame-
ters in our modules (*Significance compared to concentration
parameters with Student’s t test, p>0.01).

more robust processes, such as protein binding inter-
actions.

When we evaluated host-pathogen interactions in
our infectious disease modules (HIV, malaria, and TB)
we found that concentration parameters associated
with pathogen virulence factors had a significantly
higher percentile sensitivity rank that all other con-
centration parameters in our modules (Fig. 8, Stu-
dent’s ¢ test, p <0.01). We found no noticeable
differences in sensitivity rank associated with pathogen
kinetic parameters compared to other kinetic param-
eters. This has interesting implications in quantita-
tively understanding host—pathogen interactions in
infectious disease, discussed below.

DISCUSSION

Systems analysis of protein signaling pathways has
not yet been broadly adopted and used to enhance
most experimental research. While many individual
studies have illustrated the value of small-module
systems analysis, 714162426 we show here that it can
be performed rapidly to generate new ideas to guide
experimental research. Our unprecedented compara-
tive meta-analysis across eight real biological signaling
networks serves as a basis for future work toward more
comprehensive understanding and control over sys-
tem-level properties of biological signaling networks.
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Small, simple models can be highly informative. All
eight of our models were limited to 4-25 species and
based exclusively on ordinary differential equations,
yet they were still able to reveal new mechanistic
insight relevant to major human diseases. The small
size of each module was advantageous in that it
allowed for a better understanding of module limita-
tions and new insight, even though an average of 44%
of our module parameters were unknown. Validation
of module output against independent experimental
data and a sensitivity analysis were useful in deter-
mining whether estimations for unknown parameter
values were appropriate. The small size also enabled
rapid analysis and generation of new ideas from
existing experimental research. We believe that this
approach fills a significant unmet need between broad
genome-wide analytical work on properties of very
large networks and highly detailed work that focuses
on individual signaling pathways.

We argue that small models, constrained to a lim-
ited number of species, will generate important new
insight even when some quantitative parameter values
are unknown. Our modules employ a variety of
methods for estimating parameters, including fitting of
experimental data, use of parameters for similar
enzymes/substrates to those in the module, appropriate
order-of magnitude estimates, and even Monte Carlo
sampling. These approaches, combined with a sensi-
tivity analysis, enable discovery despite unknown
parameters. In many cases, we found that information
could be gained in recognizing system-level interac-
tions that were not as dependent on exact parameter
values. In the HIV module, the prediction that addi-
tional production of A3G would be more effective than
an antibody to Vif held true regardless of the precise
value of A3G production, which has not yet been
experimentally measured (Figs. 5a, 5b). We also illus-
trate that the diabetes modules predictions regarding
PPAR« agonist drug design are not dependent on the
precise values of nucleoplasmic RXR (Figs. 4a, 4b) or
LXR (Figs. 4c, 4d) concentrations, which are currently
unknown. In the most extreme case that all parameters
needed for a small model are unknown, a sensitivity
analysis still provides new, significant information
about the network by highlighting key parameters
based on network topology alone.

Focused quantitative systems analysis of small
modules from protein signaling pathways not only
accelerates new experimental discovery, but also pro-
vides concomitant new mechanistic explanations for
these discoveries. This approach complements time-
consuming experiments that correlate related signaling
events. With an understanding of sensitive nodes in a
pathway gained from a sensitivity analysis, models can
identify which experiments will be most insightful and

prioritize experiments that will be most likely to suc-
ceed. In addition to addressing specific questions rele-
vant to the current literature, we found that all of our
modules produced new ideas and insight that were not
obvious during the module construction process. This
new perspective will drive more innovative experi-
mental research.

Small models of protein signaling pathways can
enhance all areas of drug development from identifi-
cation of novel targets, to understanding the mecha-
nistic basis of current therapies, and validation and
testing of targets in clinical trials. As more and more
disease-specific genetic data is collected from human
populations, small-module analysis will allow for rapid
identification and a quantitative understanding of
mechanisms by which genetic alterations might inter-
act with epigenetic factors to alter disease-related
signaling pathways. Genetic information from indi-
vidual patients could also be used to create personal-
ized modules and move towards more personalized
therapy.

Increased use of system-level models to study pro-
tein signaling will allow for discovery of unifying
quantitative principles that govern protein signaling.
By comparing system-level properties in our eight
modules, we discovered the increased sensitivity of
protein signaling to concentration parameters, and
were able to confirm this using data from other pub-
lished models. Intriguingly, we also discovered the
extreme sensitivity of host network to pathogen viru-
lence concentration parameters. This suggests that host
immune response networks may have developed over
time to be fine-tuned to concentrations of pathogen
virulence factors. In turn, pathogens may have devel-
oped over time to produce a high enough concentra-
tion of virulence factor to perturb host signaling
networks. Insights such as these will be valuable as the
next major steps are taken to understand and treat
complex infectious diseases.

Several species (PP2A, PI3K, and Akt) appeared in
multiple modules. Interestingly, we found that PP2A
concentration was a key sensitive parameter in all four
modules in which it appeared. It was classified it as
“sensitive’” in the Alzheimer’s, heart, and addiction
modules, and “hypersensitive’” in the cancer module.
However, a Student’s ¢ test to compare ranks of PP2A
concentration sensitivity to other concentration sensi-
tivities indicated no significant differences because one
of the outputs in the Alzheimer’s module was not
sensitive to PP2A. In Alzheimer’s and addiction
modules, two kinetic parameters associated with PP2A
were classified as sensitive. No Kkinetic parameters
associated with PP2A were sensitive in cancer and
heart modules. Several other parameters (Akt, PI3K)
that appeared in multiple modules were classified as
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sensitive parameters in some, but not others. Alto-
gether, this data from our modules indicates that
common species exhibit different sensitivities depend-
ing on the network structure. The best evidence for this
is the fact that one output of the Alzheimer’s module is
extremely sensitive to PP2A, but the other output is
not. In addition, some kinetic parameters associated
with PP2A are sensitive, while others are not.

One notable comparative analysis by another
group® has used 17 protein signaling models in the
literature to show that parameter sensitivities in these
models have eigenvalues evenly distributed over sev-
eral decades, termed a ‘sloppy’ spectrum of parameter
sensitivities. Though not equivalent to the analysis
performed in (6), the distribution of sensitivities
(Figure S1) from our pooled models largely agrees with
this data. Comparing our Figure S1 to Figure 1 in
Ref. 6 shows that in both cases, most of the models are
robust, insensitive to most parameter changes. In fact,
~70% of the parameters in our models were not ‘sen-
sitive’ or ‘hypersensitive’. Since eigenvalues depict how
strongly the systems are carried along by their eigen-
vectors, we would expect to find few eigenvalues for
parameters in our models (corresponding to the 10%
of parameters >350% sensitivity in our Figure S1)
that are ‘large’ with the remainder being comparatively
small. We therefore expect to see a skewed distribution
to smaller relative eigenvalue size (e.g., toward 10~°),
similar to that depicted in Fig. b from Gutenkunst
et al.® We would also expect to see more ‘sloppy’ dis-
tribution (spanning multiple decades) of parameter
sensitivities if we plotted our data on a log scale (as in
(6)), as opposed to a linear scale.

By documenting and revealing system-level proper-
ties of actual biological signaling networks, our small-
module approach also adds to and benefits from the-
oretical studies of synthetic networks. One recent the-
oretical study computationally searched all possible
three-noded enzymatic signaling networks and a large
associated kinetic parameter space to identify core
topologies that are involved in biological adaptation.'®
Findings from our comparative meta-analysis may
enhance and direct future work in this area. The fact
that module outputs in our study were sensitive to
concentration and production/degradation parameters
suggest that it is critical for future theoretical work to
consider these parameter spaces in addition to those
associated with enzyme kinetics.'® Insight gained from
the theoretical approaches such as Ma ez al.'® in turn
complement small-module analysis. Intriguingly, we
identified an incoherent feed-forward loop (IFFL), one
of the core network topologies discovered to perform
adaptation, as one of the main motifs driving angio-
tensin-stimulated MMP production in our heart dis-
ease module. The identification deepens system-level

understanding of the angiotensin signaling pathway,
and will lead to more effective study and treatment of
cardiac fibrosis and heart disease.

This work helps to define the role of small-module
computational models in the overall taxonomy of
computational systems biology, a growing field which
also includes the complementary areas of genome-wide
analysis of biochemical networks,!” more extensive
pathway models in single cells,' and integrative sys-
tems bioengineering models that link multiple scales
and incorporate multiple cells or organisms.?' We show
that small-module computational biology can be per-
formed rapidly in a reproducible workflow with
research teams of appropriate expertise, can delincate
substantial new questions for experimental, therapeutic
and/or computational study, and thus can produce
useful new knowledge relevant to human disease.

SUPPLEMENTAL METHODS

A detailed description of the construction and
results of each module can be found in Supporting
Information.

ELECTRONIC SUPPLEMENTARY MATERIAL

The online version of this article (doi:10.1007/
$10439-010-0208-y) contains supplementary material,
which is available to authorized users.
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