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Abstract: The immune system plays a pivotal role in the initiation, development and resolution
of inflammation following insult or damage to organs. The heart is a vital organ which supplies
nutrients and oxygen to all parts of the body. Heart failure (HF) has been conventionally described
as a disease associated with cardiac tissue damage caused by systemic inflammation, arrhythmia
and conduction defects. Cardiac inflammation and subsequent tissue damage is orchestrated by the
infiltration and activation of various immune cells including neutrophils, monocytes, macrophages,
eosinophils, mast cells, natural killer cells, and T and B cells into the myocardium. After tissue
injury, monocytes and tissue-resident macrophages undergo marked phenotypic and functional
changes, and function as key regulators of tissue repair, regeneration and fibrosis. Disturbance in
resident macrophage functions such as uncontrolled production of inflammatory cytokines, growth
factors and inefficient generation of an anti-inflammatory response or unsuccessful communication
between macrophages and epithelial and endothelial cells and fibroblasts can lead to aberrant repair,
persistent injury, and HF. Therefore, in this review, we discuss the role of cardiac macrophages on
cardiac inflammation, tissue repair, regeneration and fibrosis.
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1. Introduction

Macrophages are the central regulator of immune systems, able to activate and prolifer-
ate lymphocytes to generate innate and adaptive immune response [1]. The cardiovascular
system consists of the heart, blood vessels, and blood, which transports nutrients, oxygen,
and hormones to cells throughout the body and removes metabolic wastes. Heart failure
(HF) is the clinical indication of various forms of cardiovascular diseases (CVDs) that
impact the function of the heart. CVD includes atherosclerosis, ischemic heart disease,
cerebrovascular disease, hemorrhagic stroke, hypertensive heart disease, cardiomyopathy,
myocarditis, atrial fibrillation, aortic aneurysm, peripheral vascular disease, and endocardi-
tis [2]. According to 2016 mortality data, the World Health Organization reports that CVD
caused more than 17.9 million deaths worldwide, which is more than cancer and chronic
lower respiratory disease combined [3]. Generally, regeneration of adult heart tissue after
injury is poor. Therefore, understanding how cardiac tissue is injured and how cardiac
tissue regenerates or resolves the damage is of prime importance to universal health.

Like other organs, the heart is composed of a heterogeneous population of cells
including cardiomyocytes, fibroblasts, pericytes, smooth muscle cells, endothelial cells,
and many types of immune cells (Figure 1) [4,5]. The immune system provides a protective
inflammatory response necessary for host defense from infections and also plays a critical
role in resolving local damage caused by sterile inflammation in the heart. Macrophages are
the central regulator of immune systems [1], and the primary immune cells that reside in the
heart tissue during steady state [5,6]. A small number of monocytes and a sparse population
of dendritic cells are also present. Mast cells, regulatory T and B cells are also found in
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resting cardiac tissue, which helps to initiate the early immune response [5]. Generally,
neutrophils are not present in healthy heart tissue [5], but they are recruited upon tissue
injury or infection. These cardiac immune cells are activated by either sterile inflammation
or microbial infections which leads to the production of inflammatory cytokines and
recruitment of diverse leukocyte populations into inflamed heart tissue. Intracellular
signaling and cross talk between embryonic tissue-resident cardiac macrophages (CMs) and
non-embryonic CMs are critical in the generation, propagation and development of cardiac
inflammation, tissue remodeling and repair [5]. Herein, we review the current knowledge
of the contribution of tissue-resident cardiac macrophages on cardiac inflammation, fibrosis,
and tissue repair.
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CD45 + Cells Markers Steady State #/mg Day 1–3 MI #/mg 7 Day MI #/mg References 
Macrophage and DC CD11b+ F4/80+ MHC II high/lowCD64+ Ly6G− 567 1000 2000 [7,8] 

Total Monocytes CD11b+ F4/80− CD64− Ly6G− 80 50,000 40,000 unpublished data, [8] 
Classical monocytes CCR2high Ly6Chigh CD11clow CX3CR1low 25 37,500 10,000 unpublished data, [8] 

Non-Classical monocytes CCR2high Ly6Clow CD11chighCX3CR1high 50 12,500 30,000 unpublished data, [8] 

Figure 1. Cellular components of steady-state heart. Heart tissue consists of endothelial cells, myocytes, fibroblasts,
pericytes, mesenchymal cells, and various types of immune cells. The macrophages are the major immune cell population in
the resting heart and are found in the interstitium and around endothelial cells. Inflammatory monocytes and neutrophils
are not present in myocardial tissue but can be observed upon tissue damage. Mast cells, dendritic cells, B cells, NK cells
and regulatory T cells are found sporadically in cardiac tissue.

2. Cardiac Immune Cells

The heart is immunologically active even during steady state and contains all major
leukocyte populations, either residing in the heart or waiting to infiltrate into the heart.
There are approximately 103 leukocytes/mg of tissue in an adult mouse heart [7] (Table 1).

The majority of leukocytes present in the resting heart are F4/80+CD11b+ macrophages [5],
with small populations of dendritic cells, B cells, regulatory T (Tregs) cells, and innate
lymphoid cells [9,11–13]. Upon ischemic or non-ischemic cardiac injury, necrotic cell death
leads to the activation of tissue-resident immune and non-immune cells. The danger-
associated molecular patterns (DAMPs) released from necrotic cells are the key trigger
for immune cell activation, which results in the release of pro-inflammatory cytokines
and chemokines that are responsible for the recruitment of inflammatory leukocytes from
the blood. Following the initial inflammatory phase, the expansion of neutrophil and
macrophage populations facilitates phagocytosis and clearance of the dead cells, and
release of cytokines and growth factors. This leads to the initiation of the healing process
via the activation of myofibroblast proliferation and neovascularization of the injured
myocardium [14].
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Table 1. Cardiac immune cells, markers and cell numbers in healthy and ischemic heart.

CD45 + Cells Markers Steady State #/mg Day 1–3 MI #/mg 7 Day MI #/mg References

Macrophage and DC CD11b+ F4/80+ MHC II
high/lowCD64+ Ly6G− 567 1000 2000 [7,8]

Total Monocytes CD11b+ F4/80− CD64− Ly6G− 80 50,000 40,000 unpublished data, [8]

Classical monocytes
CCR2high Ly6Chigh CD11clow

CX3CR1low 25 37,500 10,000 unpublished data, [8]

Non-Classical
monocytes

CCR2high Ly6Clow

CD11chighCX3CR1high 50 12,500 30,000 unpublished data, [8]

T Cells CD11b− Ly6G− CD3ε+ 41 210 110 [7,9]

T Regs CD4+ CD25+ Foxp3+ 60 90 175 [10]

B Cells CD11b− Ly6G− B220+ 160 800 100 [9]

Neutrophils CD11b+ Ly6G+ 18 100,000 5000 [7–9]

Monocytes are another vital part of the innate immune system during both the ini-
tial insult and the chronic phase of cardiac injury. In steady-state conditions, the heart
contains few monocytes. In humans, there are three distinct monocytic subsets which
have been identified based on the expression of CD14 and CD16, namely classical (CD14++

CD16−); intermediate (CD14++ CD16+) and non- classical (CD14+ CD16++) monocytes [15].
In contrast, murine monocytes have been classified into two subsets based on their ex-
pression of Ly6C; classical Ly6Chigh, CCR2high and chemokine (C-X3-C motif) receptor-1
(CX3CR1)low and non-classical Ly6Clow CCR2highCX3CR1high monocytes. The classical
monocytes are recruited and accumulate at inflammatory sites, including during acute
myocardial infarction (MI). Conversely, non-classical monocytes patrol the endothelium
to maintain homeostasis [16]. HF in humans has also been associated with peripheral
monocytosis [17] and exaggerated inflammation with distinct monocyte profiles [16,18]. In
response to cardiac stress, Ly6Chigh monocytes are rapidly recruited to the mouse heart,
either following ischemic injury or hypertensive stress; in contrast Ly6Clow monocytes do
not get recruited into the myocardium during the early inflammatory stage but appear in
the heart during the later reparative stage [6,19–21]. The antigen presenting dendritic cells
(DCs) are dispersed throughout the heart [22], which links the innate immunity to adaptive
immunity. At steady state, DCs function in maintaining\peripheral tolerance [23,24] by
presenting self-antigens to Tregs [25]. The heart contains two conventional DC subsets
CD103+ CD11b− (cDC1) and CD103−CD11b+ (cDC2) [12,26,27]. Both cDC subsets are
of hematopoietic origin and dependent on Flt3L for development [12] and these DCs
differ from CMs by lack of expression of CD64 and myeloid-epithelial-reproductive tyro-
sine kinase (MERTK) [12]. Both cardiac DCs express the chemokine receptor CCR2 and
Ccr2-deficient mice result in reduced numbers of cDCs in the myocardium of the heart,
indicating that CCR2 is a key regulator of the migration of pre-cDCs into the heart [12].
Recently, it has been demonstrated that cardiac-resident MHCII+ cells process and present
myosin heavy chain alpha-derived peptides under steady-state heart function and have
the capability to prime T cells ex vivo [28,29]. In addition, previous studies demonstrated
that CD4 T cell-deficient mice, and the transgenic mice that express a single T cell receptor
gene to an irrelevant peptide, show impaired wound healing and increased expansion of
monocyte populations after ischemic injury, suggesting that CD4 T cells have protective
functions during cardiac injury [30]. Interestingly, these cardiac CD4+ T cells are activated
by presentation of self-antigens via MHCII expressing cells in the heart. This leads to
immunosuppressive responses in the myocardium, suggesting that most CD4+ T cells in
the heart are regulatory T cells (Tregs) that promote myocardial recovery through an IL-10-
dependent pathway [31,32]. Additionally, the recruitment and proliferation of regulatory T
cells (Foxp3+CD4+) in the heart improves myocardial wound healing after MI by modulat-
ing monocyte/macrophage differentiation [10]. Another study by Yang et al. reports that
the Rag-1 knock out mice (do not have mature T and B cells) develop smaller infarcts than
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control C57BL/6 mice, and transfer CD4+T cells into the RAG-deficient mice increased the
infract size and healing [33]. Interestingly, recent studies revealed that transverse aortic
constriction can induce T cell responses, and the recruitment of CD4+ T cells contributes to
the pathogenesis of HF [34,35].

3. Cardiac-Resident Macrophages

Macrophages are specialized cells of the immune system that recognize, phagocytose
and destroy apoptotic ells and pathogens and generate innate immune response. The major
challenge in the field of cardiac macrophages is the discrepancy among the macrophage
phenotypes and their markers identified and reported by various groups. In this review,
we consolidated the CM phenotypes and common markers reported in the literature
for the CM classification and function. These macrophages are dispersed throughout
the heart as spindle-like cells, acting as sentinel macrophages for pathogens that may
enter the myocardium. In the past few decades, it has been universally accepted that
bone marrow-derived hematopoietic stems cells differentiate into circulating monocytes
which enter into various tissues and differentiate into tissue-resident macrophages [36,37].
However, in recent years, the understanding of the origin of tissue-resident macrophages
has been drastically revised with the recognition that resident macrophage populations are
established during embryo development and maintain their numbers through self-renewal
properties, rather than through infiltration of blood monocytes [6,19,38–41]. The heart
contains macrophage subsets with distinct functions and origins. Using flow cytometry,
linage tracing, and parabiosis studies, subsets of chemokine (C-C motif) receptor-2 (CCR2)−

and CCR2+ CMs have been defined [19,41–44]. (Table 2) CCR2− CMs are derived from the
embryonic yolk sac and maintained without monocyte recruitment.

Table 2. Cardiac macrophage phenotypes, markers, origin and function.

Cardiac Macrophage
Populations Markers Origin Transcriptional Analysis

(Cluster Defining Genes) Function

Leid et al., and Bajpai et al.,
[43,45]

C-C chemokine receptor
type 2 (CCR2)−

CD64+, MERTK+,
CX3CR1high Embryonic

Cx3cr1, Lyve, Emr1,
CD207, Ccl12, Igf1, Pdgfc,

Hbegf, Cyr61

Pro-angiogenic and myogenic,
coronary development,

and remodeling

CCR2+ CD64+, MERTK+,
CX3CR1interm Monocyte Ly6C, CXCR2, Sel1,

Irf5, Nr4a1
Inflammatory, Type I
Interferon response

Epelman et al., [6]

CCR2− MHCIIhigh CD64+, MERTK+,
CX3CR1high, CD206interm Embryonic

MHCII genes, Cd74,
Slc11a1, March1, Fcgr2b,

Fcgr3, Stab1, Ccl12

Antigen Presentation,
Inflammatory

CCR2− MHCIIlow CD64+, MERTK+,
CX3CR1interm, CD206high Embryonic

Fcna, Lyve1, Igf1, Slco2b1,
Vsig4, C1qb, Tnk2, Cd164,

Snx8, Rab34

Homeostasis, Clearance of
necrotic and apoptotic cells

R3 CCR2+ MHCIIhigh CD64+, MERTK+,
CX3CR1high, CD206high Monocyte

MHCII genes, Cd74,
Nlrp3, Nod2, Ptgs2, IL1b,
Il18, Mefv, Tnsf14, Rgs1

Antigen Presentation,
Pro-inflammatory,

IL-1β secretion

Dick et al., [46] Steady-State
Populations

Timid4 Cluster (Equivalent
to CCR2− MHCIIlow)

CCR2−, TIMD4+, LYVE1+,
Igf1, MHCIIlow Embryonic

Timd4, Lyve1, Folr1, Mrc1,
Nrp1, Igfbp4, Wwp1, Igf1,

Fxyd2, Maf, Gas6

Homeostasis, regenerative
functions (endocytosis,

lysosome function)

MHCII Cluster (Equivalent
to CCR2− MHCIIhigh)

CCR2−, TIMD4−,
LYVE1−, MHCIIhigh

Embryonic and
Monocyte

MHCII genes, Cd74,
Cx3cr1, Axl, Rgs1, Ccl4.

Cxcl2, CCl3,
Tmsb10, Hexb

Antigen Presentation,
Chemokine Response

Isg Cluster CCR2+, TIMD4−, LYVE1−,
Irf7, Isg20, Ifit1, MHCIIlow Monocyte

Irf7, Isg20, Ifit1, C1qa,
Stat1, Gbp2, Isg15, Mx1,

Xaf1, Ifit2, Ifit3,
Oas3, Usp18

Inflammatory, Type I
Interferon Response
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Table 2. Cont.

Cardiac Macrophage
Populations Markers Origin Transcriptional Analysis

(Cluster Defining Genes) Function

CCR2 Cluster (Equivalent to
CCR2+ MHCIIhigh)

CCR2+, TIMD4−, LYVE1−,
MHCIIhigh Monocyte

MHCII genes, Ccr2,
Msrb1, Gstp1, Anxa2,

Cox5a, Mif, Lgals3,
Rac2, Clec12a

Antigen Presentation,
Pro-inflammatory, IL-12 and

IFN-γ responses

Dick et al. [46] Populations
after MI

HIf1α Cluster Hif1α Monocytic
Il1b, S100a11, Cdk2ap2,
Msrb1, Adssl1, Tmsb10,
Hif1a, Cyp4f18, Plbd1

Response to Hypoxia

cDC2 Cluster CD209a Monocytic

Ifitm3, CD209a Samsn1,
Tmsb10, Rasgrp2, Nr4a1,

Il17ra, Gngt2,
Adgre5, Samhd1

Conventional DC cluster

Cluster 6 Ifitm3, Monocytic
Vegfa, Arg1, Slc7a11, F10,

Timp1, Ass1, Cxcl3,
Fn1, Clec4e

Extracellular Matrix
interactions

Cluster 8 Cd72, IL1b Monocytic Cd72, F11r, Sh2d1b1,
Napsa, Tmem119, Il1b

Osteoclast Differentiation,
Chemokine signaling

Cluster 9 Fcrls, Ccl8 Monocytic Fcrls, Ccl8 PI-3K signaling, ECM-receptor
interactions

Cluster 10 Clec4d, Lrg1 Monocytic
Saa3, Lrg1, Prtn3, Arg1,
Fn1, Gda, C4b, Clec4d,

Thbs1, Wfdc17, Fam20c
Degradative pathways

Cluster 11 Cd63, Cd9 Monocytic

Gpnmb, Syngr1, Ctsd,
Lgals3, Trem2, Ms4a7,
Cd63, Fabp5, Clec4d,

Cd9 etc.

Lysosome and
Glycosaminoglycan

degradation,
Glutathione metabolism

In contrast, CCR2+ cardiac macrophages are maintained by monocyte recruitment.
These studies also show that the CCR2−and CCRR2+ CM differ in function, with the
CCR2−CMs being involved in maintenance of homeostasis and the CCR2+ being pro-
inflammatory. Furthermore, studies by Epelman et al. [6] characterized the CMs into three
subsets defined by the difference in expression levels of MHC class II, CCR2 and CD11c
(Table 2). The predominant cardiac macrophages were two CCR2− populations (MHCIIhigh

CD11clow and MHCIIlow CD11clow). These two subsets were primarily derived from yolk
sac progenitors and renewed through in situ proliferation. The third cardiac macrophage
subset was CCR2+, MHCIIhigh and CD11chigh were derived and slowly replenished from
circulating monocytes and these CMs were distinguished from dendritic cells by expression
of macrophage markers CD64 and MerTK [47] (Figure 2).

The transcript profile analysis of the two CCR2− macrophage populations (MHCIIhigh

and MHCIIlow) and the CCR2+ MHCIIhigh populations indicated overlapping and non-
overlapping functions. The CCR2+ macrophages were enriched for inflammatory genes
and pathways, including genes involved in the NLPR3 inflammasome and IL-1β produc-
tion. Consequently, this suggests that these macrophages are inflammatory in nature. The
MHCIIhigh subsets were enriched for genes involved in antigen presentation to T cells,
suggesting involvement in immune surveillance. The uptake of apoptotic/necrotic cells by
CCR2− MHCIIlow suggests these macrophages function in homeostasis during steady state
by removing dead cells without inducing an immune response [48]. Moreover, single-Cell
RNA sequencing by Dick et al. also identified four different cardiac macrophage clusters at
steady state, each with unique functions [46] (Table 2). One macrophage cluster identified
as CCR2− TIMD4+ LYVE1+ MHCIIlow was maintained independent of blood monocytes
and corresponds to the CCR2− MHCIIlow subset [6]. This cluster of macrophages expressed
the genes involved in homeostasis and regeneration, including phosphatidylserine recep-
tor Tmid4, Lye1 and growth factor Ifg1, which is also involved in efferocytosis of dead
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cells [49], vascular homeostasis [50] and angiogenesis [43], respectively. The second cardiac
macrophage clusters were CCR2−MHChigh TIMD4− LYVE1− and were partially replaced
by blood monocytes in long-term parabiosis. One of these clusters expressed high levels
of genes involved in antigen presentation and thus correlates with the CCR2− MHChigh

macrophage subset [6]. The third cluster, termed the Isg cluster, was enriched in genes
stimulated by interferon such as Irf7, Isg20, and Ifit1. The fourth cluster contained CCR2+

macrophages, which were fully replaced by blood monocytes in long-term parabiosis.
Studies of the human heart have described analogous resident CCR2−and CCR2+ cardiac
macrophages [44,46] as functionally distinct macrophage subsets that exist in the human
heart at steady state. Cardiac macrophages are also abundant in the atrioventricular node
(AV), which provide an electrical connection between the atria and ventricles while also
facilitating an electrical conduction by coupling to beating CMs via connexin-43-containg
gap junctions [46].
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Figure 2. Function of CCR2+ and CCR2− cardiac-resident macrophages in the resting heart. An adult heart contains
CX3CR1+, CD64+, CCR2+ and CCR2−-resident macrophages. The CCR2−-resident macrophages enter the heart during
embryonic development and possess the capability to self-proliferate. These macrophages are further divided into two
groups based on MHC II expression. The CCR2− MHC IIhigh macrophages perform antigen presentation, whereas
the CCR2− MHC IIlow CD11clow macrophage plays an important role in clearance of apoptotic cells and express anti-
inflammatory mediators. The CCR2+ MHC IIhigh CD11chigh originate from bone marrow progenitors and perform immune
surveillance functions and protect the heart from infection.

4. Macrophage Role in Cardiac Inflammation and Cardiac Dysfunction

Myocarditis is defined as an inflammation of the myocardium in the presence of
necrosis or degeneration of cardiomyocytes and other cell types. Myocarditis accounts
for about one in nine cases of HF and remains one of the top reasons for heart transplan-
tation worldwide, since the lack of specific treatments [51]. The most common causes of
myocarditis are infections of various pathogens including parasite Trypanosoma cruzi in
South America, or viruses, such as enterovirus, parvovirus B19, adenovirus and hepatitis
C virus, which are the major causes in North America [52–54]. Recently, we and others
have shown that bacterial infection also induces myocardial inflammation and cardiac
dysfunction [55–60]. In addition, non-infectious agents, such as allergic reactions to drugs
and chemicals, can induce cardiomyocyte apoptosis and the release of DAMPs, which
activate the innate immune response leading to sterile inflammation and myocarditis [53].

Viral infections are the most common cause of myocarditis, with periodicity to this
prevalence in the population and possibly related to herd immunity. The pathophysiology
of viral myocarditis involves both a direct virus-mediated response and indirect immune-
mediated injury of the cardiac tissue and subsequent dysfunction. The innate immune
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response is essential for the elimination of virus and the restoration of the normal tissue
homeostasis. Nonetheless, activation of the immune system also leads to myocardial
inflammation, necrosis, release of DAMPs, and ventricular dysfunction, which occurs
directly through the killing of virus-infected cardiac cells, and also through an increased
production of inflammatory cytokines which subsequently affect CM function [54].

The process of virus-induced myocarditis includes three stages, an acute viremia stage,
followed by sub-acute infiltrating stage, and a chronic stage [61]. In the acute stage, a
virus enters into cardiomyocytes or other cells (endothelial cells, fibroblasts and immune
cells) through specific surface receptors, i.e., the coxsackievirus binds to coxsackievirus and
adenovirus receptor (CAR) and the co-receptor, the decay accelerating factor (DAF). Viral
entry activates the inflammatory signaling cascade and produces various pro-inflammatory
cytokines (IL-1, TNF, IFN-α, IFN-β) and chemokines, resulting in recruitment of immune
cells into the tissue and an aggravation of the inflammatory process [61]. During the infil-
tration stage, the migrated immune cells activate B cells to produce neutralizing antibodies
and promote viral clearance [62]. Finally, in the chronic stage, once the virus is cleared
completely, apoptotic cell debris is removed by macrophages and the tissue restoration
process is initiated and leads to cardiac fibrosis (discussed below). However, in some cases
the viral RNA and proteins can persist in the heart and cause chronic inflammation, which
triggers extensive fibrosis and ventricular dysfunction and can eventually develop into
dilated cardiomyopathy [61]. The infiltrating activated immune cells into the myocardium
increase the expression of matrix metalloproteinase (MMP)-9, which in turn exacerbates the
immune cell recruitment and refuels the inflammatory process [63]. Several human studies
have demonstrated an increase in the activity and expression of MMP-2 and MMP-9 in
virus-induced dilated cardiomyopathy patients [64]. Since MMPs play prominent role
in the inflammation and remodeling processes of the myocardium, great interest arises
concerning the development of pharmacological inhibitors of MMPs that might be useful
for the treatment of viral myocarditis and dilated cardiomyopathy.

The coronavirus infectious disease 2019 (COVID19) is caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV2), a single-stranded RNA virus of the
Coronaviridae family. Initially described as a respiratory syndrome [65], clinical studies
indicate involvement of multiple organ systems in COVID19, including the heart [65–67].
COVID19 patients frequently show significant myocardial damage as evidenced by ele-
vated troponin-I levels, a biomarker of cardiac damage [68–70]. COVID19 patients may
also present other cardiovascular complications, such as myocarditis, acute myocardial
infarction, heart failure, arrhythmias, and venous thromboembolic events [69,71,72], and
almost half of mildly ill COVID19 patients have abnormalities in heart function [73–76].
Together these clinical studies suggest that SARS-CoV2 can directly infect cells in the heart.
Indeed, in situ hybridization of cardiac tissue from autopsy cases detected SARS-CoV-2
virus in heart interstitial cells [76]. However, this study did not identify the interstitial
cells that were infected with the virus. Interestingly, this study found that the presence
of virus in the heart was not associated with increased infiltration of mononuclear cells
into the myocardium. Post-mortem studies of a child with COVID19-related multisystem
inflammatory syndrome found myocarditis characterized by inflammatory cell infiltration
associated with foci of cardiomyocyte necrosis. Electron microscopy detected viral particles
present in several cell types including cardiomyocytes, endothelial cells, macrophages,
neutrophils, and fibroblasts. The authors of this study proposed that infection of cardiomy-
ocytes leads to cardiomyocyte necrosis and a local inflammation response, resulting in
spread of the virus to other cell types [77].

Other studies demonstrated that SARS-CoV2 can enter and replicate within human-
induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and induce cytotoxic effects
that abolish cardiomyocyte beating [78–80]. SARS-CoV-2 enters cells by binding of the viral
Spike protein (S) to the SARS-CoV2 receptor ACE2 and S priming by the serine protease
TMPRSS2 [81]. Studies by Perez-Bermejo et al. [80] examined the expression of ACE2 and
TMPRSS2 in hiPSC-derived cardiomyocytes. ACE2 was expressed by the hiPSC-derived
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cardiomyocytes but not TMPRSS2. They showed that SARS-CoV2 employs the ACE2 re-
ceptor to enter cardiomyocytes and utilizes the cathepsin-L endolysomal pathway to prime
the S protein. Infection of human-iPSC-derived cardiomyocytes with SARS-CoV2 caused
sarcomere fragmentation and transcriptomic changes in the cardiomyocytes. Although
these studies indicate that SARS-CoV2 can enter and replicate within cardiomyocytes,
the infectivity of resident cardiac macrophages is largely unknown. This is important in
that resident cardiac macrophages are in close proximity to the cardiomyocytes and have
cell–cell contact [82,83]. The influence of SARS-CoV2-induced hypoxia on cardiomyocytes,
the systemic cytokine storm induced by the virus, and psychological stress likely also has
significant impact on cardiac damage in COVID19 patients.

Chagas disease, caused by the protozoan Trypanosoma cruzi, is very prevalent in South
and Central America [84]. Chagas disease consists of an acute phase and chronic phase.
The acute phase of infection causes inflammation at the site of infection, lymphadenopathy,
and hepatosplenomegaly. In the acute phase of the infection, the parasite load dictates the
magnitude of the inflammatory response and cardiac tissue damage by the host immune
response and the parasite itself [85–87]. During the severe acute phase, patients develop
acute myocarditis, pericardial effusion and meningoencephalitis, which increases the mor-
tality rate [88]. The acute phase usually resolves spontaneously over time. However, if the
infection is untreated a chronic phase develops. More than 30–40% of chronically infected
patients develop cardiac dysfunction, which mainly affects the conduction system and
myocardium [89–91]. Severe manifestation leads to sinus node dysfunction, bradycardia,
high-degree atrioventricular block, ventricular tachycardia and dilated cardiomyopathy
with congestive HF [92]. Several experimental models of the T. cruzi infection suggest that
CD4+ and CD8+ T cells-mediated Th-1 cytokine (IFN-γ, TNF-α, IL-12 and IL-18) response
is important to control the parasites, while an uncontrolled production of these cytokines
promotes myocarditis by inducing apoptosis of the cardiomyocytes and other immune
cells [93–95]. Notably, T. cruzi infection in the heart enhances the production of IFN-γ,
which increases T cell migration and the establishment of myocarditis by promoting the
expression of chemokines (CCL5, CCl2, CXCL10 and CXCL9) and chemokine receptors,
intercellular adhesion molecules and the vascular cell adhesion molecule [96,97]. In addi-
tion, chemokines play a critical role in elimination of parasites through the induction of
nitric oxide production by T. cruzi-infected cardiomyocytes and macrophages, and thus
contributing to the pathogenesis of Chagas cardiomyopathy [98].

Bacterial myocarditis is an uncommon cause of infectious myocarditis, mainly due
to overwhelming sepsis or as part of a specific bacterial syndrome. The most common
bacterial cause of myocarditis is Staphylococcus aureus, which causes myocardial abscesses
and bacterial endocarditis [99,100]. In recent years, infection of Gram-positive bacteria
enterococci species are responsible for 8–17% of infective endocarditis cases [101–103]. The
infective endocarditis caused by enterococci spp. is becoming more prevalent in elderly pa-
tients with degenerative heart valve disease, prosthetic heart valves, and a higher incidence
of enterococci bloodstream infections originating from the gastrointestinal or urogenital
tracts [102,104–106]. The other bacteria that cause acute myocardial infarction and severe
HF are Streptococcus pneumoniae. Brown et al. [55], demonstrated that S. pneumoniae dissem-
inates into the bloodstream and translocate into the myocardium, where the bacteria cause
microlesions. These microlesions are found in both left and right ventricles and adjacent
to blood vessels and leads to the development of abnormal electrophysiology. Bacterial
translocation is facilitated by pneumococcal adhesion molecules CbpA binding to the host
ligands, laminin receptor and platelet activating factor receptor [55,56]. Additionally, this
study revealed that the bacterial toxin pneumolysin binds to eukaryotic cell membrane,
oligomerizes, and forms lytic pores. The formation of lytic pores can lead to lysis of the
target cell and have a disruptive effect on cell signaling, as well as altering the entry of
Ca2+ or causing loss of small molecules such as ATP [55,107]. The cardiomyocyte con-
tractile function is dependent on calcium release; the release of pneumolysin dysregulates
the calcium influx into the cardiomyocytes and thereby induces contractile dysfunction.
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On the other hand, pneumolysin can directly act on cardiomyocytes and other immune
cells in the myocardium to induce apoptosis, which does not depend on IL-1β-mediated
pyroptosis [55]. The necrotic cell death induced by pneumolysin typically elicits a strong
inflammatory response due to the release of DAMPs, which recruit activated immune cells
leading to the induction of cardiac fibrosis.

Other bacterial infections that lead to myocardial inflammation and cardiac dysfunc-
tion are Corynebacterium diphtheriae, Francisella tularensis sp novicida, and Mycobacterium
avium species. Diphtheria toxin produced by C. diphtheriae inhibits elongation factor-2
activity in protein synthesis and causes DNA fragmentation and cytolysis, resulting in
both local and systemic manifestations [108]. This leads to myocarditis, neuritis and focal
necrosis in various organs. Diphtheria toxin-mediated myocarditis is mainly due to damage
to muscle fibers, which progresses to myolysis with fibrosis and resulting in permanent
cardiac damage, without the involvement of immune cells [109,110]. Our previous studies
demonstrated that Ft. novicida infection disseminates to heart tissue, causing myocardial
lesions via inducing cardiac inflammation, cardiomyocyte apoptosis, and immune cell
recruitment into the heat. Due to increased myocardial cell apoptosis and clearance of
dead cells, cardiac fibrosis is induced and causes severe damage to cardiac electrical con-
duction [60]. Furthermore, we demonstrated that the M. avium infection in aged mice
enhances the recruitment of CD45+ leukocytes into the heart and increased expression of
inflammatory cytokines, which results in the induction of cardiac fibrosis and cardiac hy-
pertrophy [59]. In addition, many bacterial, fungal and viral infections cause inflammation
in the endocardium of the heart [111]. Several studies demonstrated that both infectious
pathogens and non-infectious agents can cause acute pericarditis, an inflammation in the
pericardium of the heart [112].

There are multiple causes for myocardial infarction that lead to heart failure, including
the extensive area of myocardium damage and excessive inflammatory response that
induces reactive fibrosis and remodeling of the ventricular wall outside the infarction [113].
This reactive fibrosis is associated with cardiomyocyte hypertrophy to compensate for
increased workload by an increase in size. Excessive secretion of pro-fibrotic factors during
myocardial infarction can also lead to leakage into surrounding areas of the myocardium
resulting in proliferation of local fibroblasts and collagen deposition. Incomplete and
delayed resolution of the inflammatory phase of myocardial infarction may also lead to
late phase remodeling and heart failure [114].

5. Activation of Cardiac Macrophages in Diseased Heart

Macrophages comprise the innate and adaptive immune system with a major role
in immune system defense, inflammation and tissue restoration. Cardiac tissue contains
large numbers of resident macrophages, further increased by infiltration of circulating
monocytes during injury [6]. These resident macrophages are activated by the recognition
of pathogen/damage-associated molecular patterns (PAMPs/DAMPs) by a number of
pattern recognition receptors (PRRs) [115]. For example, lipopolysaccharides (LPS) from
Gram-negative bacteria, lipoteichoic acid from Gram-positive bacteria, zymosan from fungi,
lipoarabinomannan from Mycobacteria, bacterial flagellin and toxins, viral and bacterial
CpG DNA and single-stranded RNA from viruses are sensed by various PRRs [116]. The
PRRs are divided into two groups based on their subcellular localization: toll-like recep-
tors (TLRs) and C-type lectin receptors are present on plasma membranes or endosomes
and the second class of PRRs, including retinoic acid inducible gene –I- like receptors
(RLRs), nucleotide binding and oligomerization domain (NOD)-like receptors and absent-
in-melanoma-2 (AIM2) receptors, are localized in intracellular compartments [117,118].
In the heart, both PAMPs and DAMPs are detected by membrane PRRs and mediate the
signaling cascades that activate nuclear factor-kB (NF-κB), activation protein-1 (AP1), and
interferon regulatory factors (IRFs) transcription factors, that in turn enhance the expression
of genes that encode pro-inflammatory cytokines and interferon in the heart [119]. The
activation of intracellular PRRs in the heart leads to distinct pro-inflammatory signaling
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complexes called inflammasomes, which convert pro-caspase-1 into the catalytically ac-
tive protease that is responsible for the production of interleukin-1β (IL-1β) and IL-18,
subsequently triggering cardiac inflammation [120].

TLRs 1–10 are expressed in the human heart and particularly TLR2 and TLR4 are
expressed abundantly [121], though the expression of TLRs have not been identified in
human myocytes. Frantz et al., demonstrated that TLRs (2, 3, 4 and 6) are expressed in
the myocytes of neonatal rats [122]. Although regulation of TLR expression in the heart
has not been studied fully, TLR4 expression seems to be upregulated in the failing human
heart and on circulating monocytes at the time of myocardial infarction [123,124]. Studies
also show that loss of TLR2 in hematopoietic cells provide protection during ischemic
injury [125].

The heart can be injured through a variety of pathophysiological processes, which can
be grouped broadly into ischemic and non-ischemic etiologies—acute ischemic injury is the
best studied model of cardiac injury and repair. Following injury, necrotic cell death leads
to the activation of leukocyte populations in the cardiac microenvironment, which initiates
an inflammatory response characterized by the production of pro-inflammatory cytokines
and chemokines by resident immune and non-immune cells that are responsible for the
recruitment of leukocytes into the area of injury. DAMPs which include adenosine triphos-
phate (ATP), several members of heat shock proteins (HSPs), S100A8/9, high mobility
group protein B1(HMGB1), hyaluronic acid, fibrinogen, fibronectin, β-defensin, neutrophil
elastase, and histones released from dying cells activate the resident macrophages, which
leads to the production of inflammatory cytokines and causes sterile inflammation in
the heart [115,126]. The sterile inflammation caused by non-infectious DAMPs can cause
myocarditis in susceptible individuals. The sterile inflammation can be induced following
cardiac injury stimuli such as myocardial infarction, cardiac surgery, allergic reactions
to drugs or chemicals or excessive stress, which can be reproduced in the laboratory by
exposure to myosin [127]. In addition to PAMPs and DAMPs, the cytokines released
from inflammatory cells in the myocardium activate the resident macrophages, and play
a critical role in macrophage polarization. For example, clearance of dead cells from the
infarcted heart enhances the production of IL-10 and TGF-β, which in turn promote the
anti-inflammatory M2 phenotype of CMs. In addition, secreted pro-inflammatory cytokines
act on macrophages and promote the inflammatory phenotype [128].

6. Role of Cardiac-Resident Macrophages in Tissue Repair during Cardiac Injury

Myocardial infarction results from blockage of coronary arteries that supply oxygen to
the heart. Ischemic injury occurs in the region of the heart that is normally oxygenated by
the blocked artery. Compared to adult mice, neonatal mice have striking ability to repair car-
diac injury by regenerating the myocardium [129,130]. Studies by Lavine et al. [42] showed
that the neonatal mice heart contains one macrophage population (MHCIIlow CCR2−) and
one monocyte (MHCIIlow CCR2+) subset, in contrast the adult heart contains two different
resident CMs subsets (MHCIIlow CCR− and MHCII high CCR2−). Upon cardiac injury
in neonatal mice, an embryonic-derived resident CCR2− MHCIIlow macrophage popula-
tion expanded and did not recruit CCR2+ monocytes. In contrast, cardiac injury in the
adult heart recruited monocytes and MHC-IIhigh CCR2+ monocyte-derived macrophages.
CCR2− macrophages isolated from neonatal hearts were reparative with the ability to
stimulate cardiomyocyte proliferation and angiogenesis, and minimal ability to induce an
inflammatory cytokine response. Whereas CCR2+ macrophages isolated from adult hearts
produced a strong inflammatory cytokine response to LPS and were unable to stimulate
cardiomyocyte proliferation and angiogenesis. Thus, these studies indicate that resident
CCR2− MHCIIlow macrophages are key mediators of cardiac repair in the neonatal heart.

At steady state, the adult mouse heart also contains embryonic-derived resident CCR2−

MHCIIlow macrophage with reparative properties similar to the neonatal macrophages [42].
However, CCR2− resident macrophages in adult mice are rapidly lost within infracted
myocardium, being reduced by 60% at day 2 after infarction [131]. The loss of resident



Cells 2021, 10, 51 11 of 27

CMs is largely due to cell death with a significant increase in dead macrophages being
observed within 2 h of infarction [132]. The resident CCR2− macrophages are replaced by
an influx of inflammatory CCR2+ monocytes and monocyte-derived macrophages into the
infarcted tissue.

Necrotic cardiomyocytes and macrophages release DAMPs that trigger a rapid in-
flammatory response in the injured myocardium. The interaction of DAMPS with Toll-like
receptors activates inflammatory signaling pathways leading to the production of vari-
ous chemokines: CCL chemokines (CCL-2, CCL5 and CCL-7) to attract leukocytes and
mast cells, and CXC chemokines (CXCL1, 2, and 8) to attract neutrophils [133,134]. A cas-
cade of pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6 and IL-18 further amplify
the inflammatory response by activating the resident and invading leukocytes [115] to
clear the cellular debris and dead cells [134,135]. CMs can also detect extracellular DNA
released from dying cells by a cGAS-STING/IRF3 pathway that results in a Type I inter-
feron response [136]. Release of type I interferons can then induce interferon-stimulated
gene expression by autocrine and paracrine activation which can amplify the inflamma-
tory response in the infracted heart. Granulocyte-macrophage colony-stimulating factor
(GM-CSF) is also produced by cardiac fibroblasts after myocardial infarction and can act
locally to promote recruitment of monocytes and distally to induce production of Ly6Chigh

monocytes in the bone marrow [137].
CCL2 is essential for migration of inflammatory CCR2+ monocytes into the infracted

tissue. CCL2−/−mice have reduced monocyte infiltration, lower interstitial fibrosis, and
attenuated ventricular dysfunction in response to myocardial ischemia [21]. In response to my-
ocardial injury in mice, cardiac-resident CCR2+ macrophages promote monocyte recruitment
through a MyD88-dependent production of CCL2, while resident CCR2−macrophages inhibit
monocyte recruitment [45]. Further, this study showed that CCR2+ resident macrophages
are inflammatory, but production of inflammatory cytokines and chemokines is less than
recruited CCR2+ macrophages. However, resident CCR2+ macrophages compared to re-
cruited CCR2+macrophages differentially express type I IFN-stimulated genes in response
to myocardial injury, which suggests that CCR2+-resident macrophages are responsive to
type I interferon produced during myocardial infarction.

Circulating monocytes in the mouse consist of two subsets, classical Ly6Chigh mono-
cytes which are recruited to sites of inflammation and non-classical Ly6Clow which patrol
the luminal surface of the vascular endothelial cells [138]. Ly6Chigh and Ly6Clow monocyte
accumulation in the infracted heart define two distinct sequential phases of monocyte re-
cruitment [8,20] (Table 1). In the initial inflammatory phase 1, Ly6Chigh monocytes rapidly
accumulate in the heart after ischemic injury, reaching a peak at 3 days post infarction and
then declining. These monocytes express CCR2 and migrate into injured myocardium in
response to the chemokine CCL2 and differentiate into the recruited CCR2+ macrophages.
These macrophages support inflammation by secreting pro-inflammatory cytokines and
chemokines and by secreting matrix metalloproteinases that break down the extracellular
matrix in the injured myocardium. These recruited macrophages are phagocytic and re-
move debris and dying cardiomyocytes, a process that is dependent on the expression of
MERKT [139]. Thus, depletion of circulating monocytes with clodronate-loaded liposomes
during phase I resulted in larger areas of debris and necrotic tissue, which indicates that
influx of Ly6Chigh monocytes is required for removal of debris and necrotic cells [8].

In the second phase, Ly6Clow monocytes/macrophages accumulate in the injured
myocardium, with a peak at day 7 post infection (Table 1) and then declining [8,20].
Even though total numbers of Ly6Clow macrophages decline after 7 days, 75% of the
macrophages are Ly6Clow through day 16 [8]. These Ly6Clow macrophages are reparative
and non-inflammatory. They promote myofibroblast accumulation, angiogenesis and de-
position of collagen. Two pathways have been described for the accumulation of Ly6Clow

macrophages in infracted myocardium. The first pathway involves the migration of circu-
lating Ly6Clow monocytes into the myocardium via expression of the chemokine receptor
CX3CR1, which interacts with the chemokine fractalkine [8]. In this regard, depletion of cir-
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culating monocytes during phase II resulted in decreased collagen deposition and reduced
numbers of smooth muscle cells. The second pathway is the differentiation of Ly6Chigh

monocytes in the myocardium into proliferating Ly6Clow macrophages, which was shown
to be dependent on the induction of the orphan nuclear receptor Nr4a1 [20]. In the absence
of Nr4a1, Ly6Chigh monocytes expressed high levels of CCR2, increased mobilization into
the myocardium, and differentiated into highly inflammatory macrophages. Further, in
the absence of Nr4a1, LV function was impaired and cardiac healing was reduced with
increased myocardial scar size and reduced collagen density.

Recent single-cell RNA seq analysis of recruited macrophages in the infarcted my-
ocardium indicate that recruited macrophages are highly plastic and differentiate into
multiple subsets with distinct phenotypes [45,46]. Studies by Dick et al. [46] examined
recruited macrophages at day 11 after ischemic injury. At this time point the recruited
monocytes have differentiated into macrophages. They found three different subsets of
resident macrophages populations (described above in Cardiac-Resident Macrophages
Section 3 and listed in Table 2) in the steady state and the infarcted heart tissue. In addition,
they observed seven macrophage clusters unique to infarcted tissue. These unique clusters
represent 64% of the macrophages present in the infracted tissue. Thus, the recruited
macrophages differentiate into macrophage subsets with unique transcriptional signatures
that are different from the resident macrophage populations. These unique clusters are
enriched in both inflammatory pathways and reparative pathways. Single RNA sequencing
studies by Bajpai et al. [45] also found seven macrophage clusters after cardiac injury. While
the mechanisms involved in the differentiation of recruited monocytes that result in the
macrophages clusters are unknown, Bajpai et al. found that depletion of tissue-resident
CCR2+ macrophages before cardiac injury not only reduced monocyte recruitment and but
also decreased a type I Interferon biased cluster. In contrast, depletion of tissue-resident
CCR2− macrophages increased numbers of Arg1 and CxCL1 clusters. This suggests that
cardiac-resident macrophages are important drivers of the differentiation of recruited
monocytes [45].

Although recruited macrophages present during the inflammatory phase have been
described as M1 macrophages and macrophages present during the reparative phase as
M2 macrophages, the transcriptional heterogeneity in recruited macrophages present in
infarcted tissues does not easily fit into the MI/M2 paradigm. The M1/M2 nomenclature
is derived from studies of in vitro polarization of mouse macrophages with classically
activated LPS+IFN-γ (M1) or alternatively activated IL-4 (M2), each with a distinct tran-
scriptome response. See Jablonski et al. [140] for transcriptomes (GSE69607) of classically
activated and alternatively activated bone marrow-derived macrophages. Further, research
indicated that M1 macrophages have a pro-inflammatory phenotype with anti-pathogen ac-
tivity while M2 macrophages promote anti-inflammatory and tissue repair responses [141].
Recently Orecchioni et al. [142] found that most surface markers identified on in vitro
generated macrophages do not translate to the in vivo situation in classically activated
mice. Thus, we prefer that macrophage subsets be classified based on their function and
transcriptional profile as suggested by Nahrendorf and Swirski [143]. In this regard, in
Table 2 we listed CMs present in the heart during steady state and myocardial infraction
based on transcriptional profile and function.

7. Role of Macrophages in Cardiac Remodeling in Hypertension and
Diabetic Cardiomyopathy

Diabetes and hypertension, which often co-exist, are predominant risk factors for
cardiovascular diseases such as MI and HF, and are characterized by chronic, low grade
inflammation, which promotes adverse cardiac remodeling. The inflammatory response
is a critical mechanism by which the heart responds to injury and develops adaptive re-
modeling [144]. However, uncontrolled inflammation can weaken the adaptive response
and promote cardiac injury. Both diabetes and hypertension can lead to chronic inflam-
mation and activation of macrophages toward an inflammatory phenotype. Although
macrophages play a key role in cardiac remodeling, dysregulation of macrophages between
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pro-inflammatory and anti-inflammatory phenotypes promotes excessive inflammation
and cardiac injury [145]. Cardiac metabolic reprogramming has been implicated in cardiac
adaptation to injury [146–148], though the healthy heart relies mainly on mitochondrial
oxidative phosphorylation metabolism of fatty acid for its energy demands. In contrast,
during decompensated HF, the heart relies predominantly on glycolysis [147,149], in which
HF leads to the activation of hypoxia-induced factor 1 alpha (HIF-1α) transcription factor
which induces transcription of a glycolytic and proinflammatory gene profile [150,151].
HIF1-α can also be stimulated by nonhypoxic mechanisms associated with obesity and
hypertension, such as inflammatory cytokines, hyperglycemia, saturated fatty acid ac-
tivation of TLR4, and oxidized low-density lipoprotein [152–155]. In addition, diabetic
patients are prone to bacterial infections and impaired wound healing, which may be
due to the impairments in pro-reparative/anti-inflammatory macrophage functions and
increases in a pro-inflammatory macrophage phenotype through enhanced expression of
long-chain acyl-CoA synthetase [156–158]. Macrophages are also susceptible to protein
glycation and formation of advanced glycation end products (ACEs) due to excess glucose
levels, which activates the NF-κB pathway and induces production of inflammatory cy-
tokines [159,160]. Additionally, macrophages from patients with coronary artery disease,
a common comorbidity of obesity–hypertension, display significantly increased IL-1β
and TNF-α expression compared to patients with inflammatory vascular diseases [161].
Therefore, during hyperglycemia, macrophages appear to upregulate glucose uptake and
utilization and subsequently increase inflammatory cytokine production, which leads to
activation of an inflammatory phenotype [161]. In addition, free fatty acids, lipid mediators
and adipokines can promote the inflammatory phenotype [162–164].

The source of cardiac macrophages plays a key role in regulation of cardiac remodeling
during obesity and hypertension. Generally, the healthy heart contains a low number of M2-
like macrophages [45,165,166] which are often considered protective. Recent studies have
demonstrated that these M2-like macrophages (embryonic in origin) are lost with aging and
replaced with CCR2+ monocyte-derived macrophages, even in the absence of injury [45].
In a pressure overload mouse model, resident M2-like macrophages initially promote
myocardial adaptive remodeling to mechanical stress. However infiltrating CCR2+ mono-
cytes promote maladaptive remodeling during the transition to decompensated HF [167].
The epicardial adipose tissue (EAT) is a rich source of macrophages, neutrophils, and
lymphocytes, which may protect the heart from infections [168]. The myokines released
from heart muscle during exercise act directly on EAT macrophages to promote an M2-like
phenotype and provide protective effects [169]. However, during cardiac injury EAT can
be a major source of inflammatory macrophages, due to hypoxia-induced activation of
macrophages in EAT which can easily infiltrate into the myocardium [170,171]. In mice,
EAT is a major contributor to inflammation during cardiac injury after MI [170], and in
MI patients, increased EAT thickness is associated with visceral obesity and cardiac fi-
brosis [172]. In addition, necrotic myocytes during severe cardiac injury can recruit and
activate macrophages via the release of DAMPs [166,173]. The damaged mitochondria in
myocytes (a hallmark of HF) can also release DAMPs that enhance the release of proinflam-
matory chemokines and cytokines [174]. The other major activator of cardiac inflammation
during hypertension is endothelial cell injury, due to pressure-induced shear stress and
mechanical stretch, which lead to increased reactive oxygen species (ROS) production and
impairment of NO signaling, which may attract nearby macrophages [175].

Although the importance of macrophages in cardiac remodeling in myocardial in-
farction has been studied extensively [46,165,176,177], the role of macrophage metabolism
has not been investigated thoroughly. In a mouse model of MI, glycolytic genes, such as
GAPDH, are strongly upregulated in macrophages found in the infarcted region at day 1
of MI. In contrast, mitochondrial genes, such as succinate dehydrogenase, are increased at
day 3 after MI [173], which suggests that the cardiac microenvironment is hypoxic at day 1
but becomes reoxygenated at day 3 due to vasculogenesis [173,178]. In a rat model of MI,
inhibition of glycolysis decreased cardiac macrophage glycolysis and inflammation, and
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improved LV function [179]. Mechanistically, the efferocytosis of necrotic cells increases
intracellular fatty acid supply, fuels mitochondrial fatty acid oxidation and polarizes the
macrophage M2-like phenotype [180]. In mice with hypertension and diastolic dysfunction,
M2-like polarization contributes to cardiac fibrosis, though this depends initially on inflam-
matory macrophage infiltration and expansion [181]. Furthermore, in the mouse heart as
discussed earlier in this review, resident macrophages, which are negative for CCR2, can
be further divided into two groups based on the expression of MHCII [6]. Similarly, CCR2+

cardiac monocyte-derived macrophages can be derived from infiltrating Ly6Chi (M1-like) or
Ly6Clow (M2-like) monocytes [8,167], which suggests that the metabolic profiles may differ
not just based on the M1 and M2 paradigm but also on resident macrophages versus infil-
trating monocytes and their subsets. Still the immunometabolics field is new and largely
based on M1/M2 phenotypes, and in the future research will focus on understanding the
metabolic processes of the cardiac macrophage subsets in the remodeling heart.

8. Role of Macrophages on Mitochondrial Homeostasis and Collagen Secretion

The majority of the tissues in the body contain tissue-resident macrophages, which
are extremely heterogeneous and perform tissue-specific functions—this heterogeneity is
dependent on the microenvironment in each tissue. Though macrophages are considered a
key cell to mount innate and adaptive immune functions [182], they also mediate tissue-
specific functions unrelated to immunity [183]. For example, in the heart, tissue-resident
macrophages prevent fibrosis [184], facilitate electrical activity in the atrioventricular
node [82] and are involved in healing of injured areas [46,185]. Furthermore, macrophages
of unknown function are populated in the myocardium of healthy heart, that yet to be
identified. Cardiomycytes are highly specialized cells in the heart with a unique function.
Cardiomyocytes are large in size and contain a large number of mitochondria and sarcom-
eres, which occupy most of the cell volume and deal with the intense metabolic energy and
mechanical demands of the heart. Additionally, cardiomyocytes are long lived and rarely
renew; they are subjected to the intense mechanical stress and metabolic demands of the
beating heart, which requires homeostatic mechanisms to eliminate dysfunctional mito-
chondria in order to maintain the healthy state of cardiomyocytes. These nonfunctional
mitochondria are removed by a process called mitophagy and this preserves the crucial
functions of cardiomyocytes [186]. Since cardiomyocytes are subject to extreme energetic
demand and the mitochondria produce high energy ATP and reactive oxygen species,
it is expected that mitochondria will become damaged and the damaged mitochondria
will be degraded via autophagy machinery. Recently, Nicolas-Avila et al. demonstrated a
novel non-canonical elimination of dysfunctional mitochondria and other organelles from
healthy cardiomyocytes. These authors showed that dysfunctional mitochondria and other
cargo are expelled in dedicated membranous particles called exophores. The exophores
expose phoshotidylserine on the membrane, which is recognized by the MerTK phagocytic
receptor expressed on CMs and the internalized exophores are degraded by phogosome
maturation. This intracellular exchange occurs in the heart during homeostasis. In addition,
depletion of CMs or deletion of the phagocytic receptor MerTK results in defective elimi-
nation of the exophores and mitochondria accumulation in the heart extracellular space,
which leads to inflammasome activation, blockage of cardiomyocyte autophagy, accumula-
tion of anomalous mitochondria in cardiomyocytes, metabolic alterations, and ventricular
dysfunction [187]. Thus, cardiac macrophages are key for maintaining mitochondrial
homeostasis in the healthy heart.

As discussed above, macrophages are highly plastic and functionally diverse during
steady state and following injury [188]. Similarly, in the heart tissue, resident macrophages
have been implicated in many disease conditions (discussed above). After myocardiac
infarction or infection, a large number of immune cells are infiltrated into the heart to
remove dying tissue, scavenge pathogens and promote healing. However, in some circum-
stances, immune cells can cause irreversible damage, contributing to HF. During the initial
stage of injury, CMs release pro-inflammatory cytokines to create an inflammatory state,
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and later transition into a reparative M2-like state, which produce cytokines, chemokines
and growth factors (TFG-β and PDGF) that activate fibroblasts to become myofibroblasts,
which deposit collagen to form scars. Additionally, CMs produce metalloproteinases and
regulate extracellular matrix (ECM) accumulation at the site of injury, which contributes
to scar tissue formation [189]. Thus, transition of a tissue repair phase to a regenerative
phase following heart injury requires an orchestrated and balanced immune response to
fine-tune the interplay between a pro-fibrotic and a pro-regenerative environment. The
macrophages are essential to both repair by scar formation and tissue regeneration. How-
ever, factors that drive CMs towards either regenerative or pro-fibrotic phenotype are
largely unknown [190–193]. Recently, Simoes et al. [194] demonstrated that the CMs di-
rectly contribute to collagen secretion and scar formation in a Zebrafish model and a mouse
model. Transcriptomic analysis revealed that the expression of collagen-associated genes
(col4a3bpa, col7a1l) was upregulated upon injury in the zebrafish model. In the neonatal
mouse model, the authors harvested CMs from P1 and P7 infarcted heart at day 7 and
compared gene expression; they reported that several ECM genes Col8a1, Col5a2, Col6a2,
Fbn, Postn and Bgn are upregulated, accompanied by evidence of collagen-1+ fibrils in
the infarct region. Thus, these findings indicate the CMs are also essential for cardiac
tissue repair and regeneration. However, the functional relevance of macrophage-derived
collagen production in the context of cardiovascular outcomes remains to be investigated
in the future.

9. Cardiac-Resident Macrophages and Cardiac Fibrosis

Cardiac fibrosis is an inevitable consequence of chronic insult to the myocardium,
characterized by net accumulation of extracellular matrix (ECM) proteins in the cardiac
interstitium which leads to wall thickening, systolic and diastolic dysfunction, and impaired
overall heart performance. In the healthy heart, the ECM provides a scaffold for cardiac
cells and in this manner ensures the structural integrity and function of the heart [189].
In addition, it has been demonstrated that each cardiomyocyte is surrounded by ECM,
which ensures the transmission of electrical conduction and contractile force from a single
cardiomyocyte into the whole organ, and also ECM function as a reservoir for various
latent growth factors [133]. Myocardial injury can be caused by either sterile inflammation
or non-sterile inflammation (infection). Moreover, terminating the inflammation requires
an anti-inflammatory response, which leads to the initiation of pro-fibrotic signaling [195].
On the other hand, pathophysiological stimuli, for instance pressure overload, volume
overload, metabolic dysfunction, and biological aging process may cause interstitial and
perivascular fibrosis in the absence of myocardial inflammation.

Both human patients and experimental models of heart disease indicate that the ex-
tent of fibrotic remodeling is closely associated with adverse outcome. During the initial
inflammatory phase, described above, debris and dead cardiomyocytes are cleared by
resident embryonic and recruited macrophages and the extracellular matrix is degraded by
secreted matrix metalloproteinases. Once sufficient clearance of necrotic cells and apoptotic
immune cells is achieved, a proliferative phase is activated to resolve the damage. During
this phase, the fibroblasts trans-differentiate into secretory and contractile cells, called
myofibroblasts. This is a key cellular process that results in secretion of an abundant
collagen and nonstructural matrix proteins to compensate for the cellular loss in many
different conditions associated with HF [133,135]. The proliferative phase is orchestrated
by several anti-inflammatory and pro-fibrotic mediators produced by both immune and
non-immune cells in the injured myocardium. For example, apoptotic neutrophils release
lactoferrin and annexin A1 which inhibit further leukocyte invasion [134], efferocytosis
of dead cells stimulates macrophages to produce anti-inflammatory TGF-β1, IL-10, lipox-
ins and resolvins [134,196,197], regulatory T cell activation leads to additional secretion
of TGF-β1 and IL-10 [134], and the secretion of MMPs by immune cells [198] function
together and resolve the inflammatory damage. MMPs initiate remodeling by degrading
ECM and act to limit leukocyte invasion by cleaving chemokines [199]. TGF-β1 is a well
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characterized isoform in the cardiac tissue [4], which in the healthy heart is bound to the
ECM as an inactive latent complex [200,201]. Cleavage by plasmin and MMP-2 and MMP-9
releases the active form of TGF-β1 [200,202]. Active TGF-β1 binds to its type II receptor
(TGFβRII) on the cell surface of fibroblasts and initiates the Smad3- signaling pathways and
enhances the expression of a smooth muscle actin (x-SMA) expression and promotes myofi-
broblast trans-differentiation in the presence of fibronectin domain ED-A [133,203]. These
myofibroblasts accumulate in the myocardium in a wide range of pathologic conditions,
including myocardial infarction, myocarditis, cardiac pressure or volume overload and
alcoholic cardiomyopathy [204–207]. The activated myofibroblasts secrete elevated levels
of collagens and other ECM proteins to maintain the structural integrity and prevent wall
rupture and myocardial dysfunction [208]. The excessive deposition of ECM proteins and
collagens leads to ventricular stiffness, which can result in contractile dysfunction [209,210],
and increase the risk of arrhythmogenesis and mortality [211,212] (Figure 3). Furthermore,
myocardial inflammation and fibrosis within the perivascular regions may decrease the
oxygen and nutrient availability to cardiac tissue and increase the pathological remodel-
ing response [213]. Following the proliferative stage and establishment of collagen and
ECM-based matrix at the infarct site, a maturation stage occurs in which a scar is formed
with a cross-linked extracellular matrix. The growth factors and matrix cellular proteins
that support the survival and activity of myofibroblasts are depleted, and the majority of
the myofibroblasts undergo apoptosis [203,214]. Vascular cells also die, and temporary
microvasculature disintegrates. In addition, Lavine et al. demonstrated that tissue-resident
macrophages induce cardiomyocyte proliferation and blood vessel development after
cardiac injury [42]. Consequently, monocyte recruitment to the injured adult heart is
suppressed, and the embryonic macrophage population is largely preserved, resulting in
reduced inflammation and accelerated repair. Therefore, cardiac macrophages differenti-
ated from recruited bone marrow-derived monocytes exhibit tissue destructive activity,
whereas the embryonically derived tissue-resident macrophage population facilitates the
resolution of inflammation and instructs tissue repair in the heart (Figure 3).
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Figure 3. Cardiac immune response during infection and tissue repair. During early infection, cardiomyocytes undergo
necrosis and release endogenous danger-associated molecular patterns (DAMPs), which activate resident mast cells and
CCR2+ macrophages to release pro-inflammatory cytokines, such as TNFα and IL-1β, and chemokines, which activate
endothelial cell dilation and recruit activated CCR2+ monocytes and neutrophils. The CCR2+ monocytes differentiate
into macrophages, which together with neutrophils create an inflammatory environment and clear the invaded pathogens.
IL-10 and TGFβ1 are released by the action of DAMPs directly on fibroblasts or from CCR2-macrophages that have
efferocytosed necrotic cardiomycytes. IL-10 and TGF-β1 then activates fibroblasts to transdifferentiate into myofibroblasts.
The myofibroblasts produce extracellular matrix (ECM) and collagen, fill in the gap, and regenerate cardiac tissue. However,
increased cardiomyocyte death and cardiac inflammation leads to enhanced myofibroblast activation and uncontrolled
production of ECM and collagen which accumulate in the injured heart tissue and cause cardiac fibrosis.
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10. Future Direction of Cardiac Macrophages

Although scientists have identified new phenotypes and functions of cardiac macrophages
in the context of MI and HF, their role in cardiac inflammation, tissue regeneration, remodel-
ing and fibrosis is still developing and there remains several important avenues of research
for the future. First, although the roles of macrophages in regulating cardiac inflamma-
tion, fibrosis, tissue repair and regeneration in different experimental rodent models may
overlay, the source and phenotypes of resident macrophage are not completely understood.
Recent studies demonstrated that healthy human myocardium is populated with CCR2−

macrophages and maintained through local proliferation, while CCR2+ macrophages are
derived from monocytes and local proliferation [173]. However, the localization and func-
tion of these macrophages in the heart is distinct: CCR2− macrophages (M2- like) function
as anti-inflammatory, helping to control the inflammation while the CCR2+ macrophages
(M1-like) initiate the inflammation, which can lead to HF. However, we still lack a clear
understanding of whether macrophage function is a cause or consequence in human
disease development, and even less is known about the role of these cells after chronic
HF has been established. Animal models have provided significant advancement in un-
derstanding of the complexity and plasticity underlying resident and recruited cardiac
macrophage biology in both steady-state and chronic HF and have identified the impor-
tance of macrophages in HF pathogenesis. However, it remains unclear whether these
findings will mimic human diseases. Second, the lack of knowledge defining the crosstalk
between cardiac-resident macrophages and other cardiac-resident cells such as fibroblasts
and cardiomyocytes, and the influence of comorbidities and risk factors on macrophage
heterogeneity and function limits our understanding of the role of macrophages in chronic
HF, and the development of new therapeutic strategies. Third, macrophage polarization
is closely tied to changes in glycolytic (M1-like) and oxidative phosphorylation (M2-like).
Macrophage metabolic shifts are not only required for energy demands but also for regu-
lation of pro- and anti-inflammatory processes. Macrophage metabolic shifts are tightly
regulated by several intracellular signaling pathways, in which NF-κB, HIF-1α, PDK1
and PPAR-γ play an important role in reprogramming the macrophages [145]. However,
investigation pertaining to cardiac macrophage metabolism is still young and requires thor-
ough investigations. Thus, understanding cardiac macrophage metabolism will provide
insight into its roles and the mechanisms associated with the remodeling heart and heart
failure. Additionally, the thorough investigation of macrophage metabolism will yield
unique opportunities to treat HF by targeting macrophage metabolism in the heart without
affecting cardiomyocyte metabolism.

11. Conclusions

Over the past few years, significant advancements were made to characterize the
cardiac immune cells and their role in steady heart function, which will allow for the
development of new regenerative targets for HF. In mammalian hearts, the resident cardiac
fibroblasts and immune cells, specifically macrophages, regulate cardiomyocyte function
in health and disease conditions. The regenerative capacity of cardiomyocytes is very
limited in adult hearts and the rate of cardiomyocyte proliferation cannot support the
need for new myocytes upon cardiac injury, particularly with infections. However, the
resident macrophage populations recognize the danger signal from cardiomyocytes, recruit
immune cells and exert detrimental inflammation to clear the infection. At the same time,
the immune response activates the cardiac fibroblasts to promote cardiac fibrosis, and
cardiac hypertrophy. This leads to further recruitment and enhancement of inflammation,
which creates an environment hostile to regeneration and tissue repair. Cardiac fibrosis is
beneficial for cardiac tissue repair upon injury. However, uncontrolled tissue damage and
continuous activation of pro-inflammatory signaling leads to unregulated extra cellular
matrix production, and causes defects in the cardiac electrical conduction system and HF.
Despite the incredible research efforts and progress in new drug discoveries that have been
made to treat the cardiac dysfunctions during infections or sterile inflammation, the human
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heart remains unprotected after injury. Therefore, a better understanding of immune cell
phenotypes, function, and cardiac macrophage plasticity during cardiac tissue damage and
repair could lead to the development of new therapies that improve the outcome of patients
with severe myocardial damage caused by either sterile or infectious inflammation.
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