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Many patients with advanced gastric/gastroesopha-
geal junction cancers still have a poor prognosis despite 
advancements in treatment [4]. From 2014 to 2020, the 
United States’ five-year relative survival rates by stage at 
diagnosis were 75% for localized tumors, 36% for tumors 
with regional spread, and 7% for patients with distant 
spread [2]. The prevalence of GC is rising among those 
under 50 in both low-risk and high-risk areas. This may 
be due to changes in the gastric microbiome caused by 
modern lifestyles and the rise in obesity [5].

Approximately one-third of cancers that cause death 
are digestive system cancers. Infectious agents precipitate 
at least 15–20% of cancers; tobacco products are linked 
to 20–30% of cancers, and diet, inactivity, and obesity 
account for 30 -35% of cancers [6].

Introduction
Gastric cancer is the fifth most common cause of can-
cer-related death worldwide and ranks fifth in terms 
of incidence [1]. At diagnosis, 61% of patients with gas-
tric cancer have advanced disease [2]. There are nearly 
1.1  million new cases of GC each year, with approxi-
mately 1.1  million new cases of GC are reported each 
year, and the disease is responsible for about 800,000 
deaths, or roughly 7.7% of all cancer-related deaths [3]. 
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Abstract
The development of gastric cancer is significantly influenced by the intestinal microbiota, with H. pylori serving 
as a major risk factor. Through genotoxic effects, persistent inflammation, and metabolic changes, other microbes 
also play a role. It has been demonstrated that cancer patients and healthy people have different microbiome 
compositions. Cancer can be inhibited or promoted by the gut microbiota and its metabolites. The relationship 
between intestinal flora, bacterial extracellular vesicles, and the tumor microenvironment directly affects tumor 
progression and efficacy of anti-tumor medications, indicating the importance of the tumor microenvironment 
in tumor survival. Gastrointestinal malignancies may be brought on by the gut microbiome’s dysregulation of 
non-coding RNA expression. Non-coding RNAs are intriguing avenues for future therapeutic and diagnostic 
research. The tumor microenvironment is altered by bacterial extracellular vesicles, which may have an effect on 
immunosuppression, treatment resistance, metastasis, and cancer progression. Further research is required to 
completely understand the involvement of non-coding RNAs in GI cancers. By modifying drug metabolism and 
absorption, which have a substantial impact on healing efficacy and serious impact profiles, the dynamic changes 
in gut microbiota also have a considerable impact on the results of anti-cancer treatment. Improved treatment 
approaches may arise from a better understanding of the role of the microbiome in gastric malignancies.
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There are two different types of GC: diffuse and intesti-
nal [7]. The Correa cascade, comprised of intestinal epi-
thelial metaplasia (IM), erosive gastritis, atrophic gastritis 
(AG), and normal gastric mucosa, best describes intesti-
nal-type GC. After heterogeneous proliferation, it pro-
gresses to invasive carcinoma and GC in situ [8]. While 
little is known about this process, it is well known that 
inflammation and Helicobacter pylori (Hp) may contrib-
ute to the development of diffuse GC [9].

The entire community of microorganisms that live in 
the gastrointestinal tract is known as the microbiota, and 
bacteria make up the majority of this community [10]. 
Loss of beneficial probionts, reduction in microbiome 
diversity, and increase in commensal-derived pathobi-
onts are the hallmarks of gut microbiota dysbiosis [11]. 
Proteobacteria, Firmicutes, Actinobacteria, and Bacte-
roidetes accounted for 93.5% of the species isolated from 
humans that were categorized into 12 different phyla [12]. 
Microbiota helps maintain the integrity of the mucosal 
barrier, protect against infections, and supply nutrients 
like vitamins. Furthermore, appropriate immune function 
depends on the commensal microbiota’s interaction with 
the mucosal immune system [13]. Vitamin B12, folic acid, 
vitamin K, riboflavin, biotin, nicotinic acid, pantothenic 
acid, pyridoxine, and thiamine are among the essential 
vitamins that it can de novo synthesize [14]. It can also 
ferment complex carbohydrates, producing metabolites 
like short chain fatty acids (SCFAs) [15]. By generating 
a range of bioactive substances, including SCFAs, vita-
mins, and secondary metabolites, the gut microbiota has 
recently been recognized as a crucial regulator that pro-
foundly affects stem cell function [16]. We still don’t fully 
understand the specific makeup of the gastrointestinal 
microbiota in GC and how these microbial communities 
change as GC progresses [17–19].

The microbial diversity and abundance in tumor tis-
sues of GC patients are higher, indicating possible con-
nections between stomach microorganisms and cancer 
[20–22]. Streptococcus, Lactobacillus, Veillonella, Heli-
cobacter, and Prevotella, have been frequently reported 
in multiple studies and meta-analyses, demonstrating 
their diagnostic value for GC [23].

Although findings from various studies exhibit con-
siderable variability, 16  S ribosomal RNA (rRNA) gene 
sequencing which examines both conserved and variable 
regions of the 16 S rRNA gene, has become essential for 
taxonomic classification of bacterial genomes and the 
basis of bacterial diversity research [24, 25].

The 16  S rRNA data, with high throughput, culture 
independence, and high sensitivity and specificity, offer 
significant advantages in identifying microbiota asso-
ciated with GC. However, it has several limitations 
including time-consumingprocess that involves mul-
tiple complex steps, along with the need for specialized 

equipment and computational resources, thereby limit-
ing its scalability for clinical applications. Also, it cannot 
differentiate between microorganisms that are.

alive and metabolically active. RNA sequencing offers a 
more dynamic perspective on microbial activity, offering 
more advantageous means for exploring the relationship 
between microorganisms and GC [26].

The Wnt/β-catenin pathway is a pivotal regulator of 
several biological processes, including cellular prolifera-
tion, migration, and tissue homeostasis [27]. It has been 
proposed that gut microbiota may influence the activity 
of YAP/TAZ via Wnt/β-catenin signaling, offering fresh 
perspectives on the role of microbiota in cancer initiation 
and development [28, 29].

The review will cover the microbial factors, the mecha-
nisms of action, the clinical implications, and finally the 
interventions and future directions.

Helicobacter pylori and GC
One of the main risk factors for intestinal GC is known 
to be Hp infection [30]. GC may develop as a result of 
microbial dysbiosis [31, 32]. Long and his associates 
discovered possible links between cancer and the gut 
microbiota. Using Mendelian Randomization study, 
they found a positive causal direction with cases of gas-
tric cancer [33]. Chronic inflammation of the stomach 
mucosa, oxyntic cell death, elevated stomach pH, and an 
imbalance in the gastric microbiota caused by Hp infec-
tion lower Hp levels and allow non-Hp bacteria to colo-
nize. Long-lasting inflammation causes DNA damage, 
gastric epithelial cell apoptosis, and autophagy, which 
in turn damages the gastric mucosa and causes GC and 
Hp-related gastropathy [34]. Hp is much less abundant 
in tumor tissues than in nearby non-tumor tissues, as it 
prefers to colonize healthy gastric mucosa [35, 36]. There 
are notable variations in the gastric microbiota between 
Hp-infected and non-infected patients, indicating that 
Hp might be involved in other microbial dysbiosis [37–
40]. Other microbes become more prevalent as Hp abun-
dance declines [41]. There were no discernible differences 
in the gut microbiota composition of Hp-positive and 
Hp-negative individuals in patients with late-stage gas-
tric cancer [42, 43]. While Pseudomonas was significantly 
more common in tumor tissues, Hp and Lysobacter were 
significantly more common in normal tissues [44]. Hp 
plays a role in oncogenesis at the gastric level through 
three mechanisms [45]. First, Hp injects two cytotox-
ins, VacA and CagA into the host cell, which activates 
oncogenic signal transduction pathways [46–48]. A tiny 
RNA molecule; Hpnc 4160 in Hp has the capacity to 
suppress the expression of both outer membrane pro-
tein (OMP) and CagA causing autophagy inhibition and 
consequently malignant transformation [49, 50]. CagA-
positive Hp mediates dysregulation of multiple signaling 
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pathways including the Wnt/β-catenin signaling pathway, 
PI3K/Akt, NF-κB signaling pathway, Shh signaling path-
way, JNK signaling pathway, JAK/STAT3 signaling path-
way, and ERK/MAPK signaling pathway [51]. Second, 
it causes reactive oxygen species (ROS) to be produced, 
which in turn triggers inflammatory pathways. Finally, 
atrophic gastritis is characterized by the destruction 
of the parietal cells that produce acid so that there is a 
compensatory upregulation of gastrin that stimulates the 
cells to produce more acid, but also activates oncogenic 
signals. Following diminish of gastric acidity, the carcino-
genic strength of a few bacterial lines might additionally 
increase. Additionally, the microbiota is likely populated 
with microorganisms that has the ability to form nitrites 
and carcinogenic N-nitroso compounds [52–55]. The 
USF1 gene has an important shielding function in Hp 
carcinogenesis and can be used potentially as a marker 
for susceptibility to GC [56, 46]. Watanabe et al. [57, 47] 
found that Hp infection was associated with reduced 
richness and evenness of gastric bacteria, and eradication 
of Hp only partially restored microbial diversity.

Bacteria other than Hp and GC
Although other stomach microbes might have an impact 
on gastric carcinogenesis, their precise function is still 
unknown and needs more research [58]. The ‘Hp initia-
tion–non-Hp acceleration’ cascade is increasingly recog-
nized [59].

Gastric fluid samples from GC patients had larger 
amounts of Lactobacillus and Veillonella compared to 
lower levels of Verrucomicrobia and Deferribacteres [60]. 
There have been reports linking the phylum Verrucomi-
crobia, which includes Akkermansia, to the advancement 
of GC [61]. Fusobacterium was reported to be enriched 
in gastric adenocarcinoma [36, 62, 63].

Protumorigenic bacteria (e.g., E. coli and F. nucleatum) 
which are not predominant species in fecal microflora 
are enriched in the cancerous tissues, and may promote 
tumorigenesis by expression of genotoxins and virulence 
factors. E. coli, F. nucleatum, and B. fragilis by using 
experimental models are Potential tumorigenic patho-
bionts [64]. Mucosal colonization of Adherent-invasive 
E. coli (AIEC) through fimbriae-mediated adhesion was 
a crucial step for its colitogenic ability as a pathobiont 
[65]. Aside from causing genotoxicity, the induction of 
tumor-infiltrating macrophages and other unknown 
mechanisms may also play indispensable roles in E. coli-
driven tumorigenesis. Enrichment of F. nucleatum was 
demonstrated in the stool and tissue samples of CRC 
patients [66]. The inconsistent data of F. nucleatum sug-
gested that other unidentified mechanisms, such as 
interaction with other bacteria, may partly contribute to 
its protumoral characteristics. Entertoxigenic Bacteroi-
des fragilis (ETBF) enterotoxin known as fragilysin acts 

as a metalloprotease that causes oxidative DNA dam-
age, E-cadherin cleavage, epithelial barrier damage, and 
activation of STAT3/Th17 immune responses, and gen-
eration of protumoral monocytic myeloid suppressor 
cells [67]. Also, fragilysin stimulated the production of 
spermine oxidase in intestinal epithelial cell lines, sug-
gesting a direct role of the enterotoxin on epithelial free 
radical production and DNA damage [68]. So, ETBF 
promote tumorigenesis through both direct and indirect 
mechanisms.

The gut microbiome of patients with esophageal cancer 
(EC), GC, and CRC differs from those of healthy people. 
The abundance alteration of R. faecis in patients with GI 
cancer might be a predictor of chemotherapy efficacy. 
Bifidobacterium, Ruminococcus and Roseburia; a mem-
ber of the Clostridium coccodis cluster of the phylum 
Firmicutes, are considered a protective taxa in patients 
with EC, GC, and/or CRC and might be useful in iden-
tifying novel diagnostic biomarkers [69, 70]. The clinical 
chemotherapy response was not significantly associated 
with baseline microbiota. Moreover, no bacterial differ-
ences between responders and non-responders were 
observed in the patients with EC, GC, and CRC [70].

Results on microbial diversity were inconsistent. After 
analyzing nearly 200 gastric mucosal samples, Olabisi 
and his colleagues reported variations in the microbial 
composition without a discernible difference in microbial 
diversity [62]. Francisco et al., on the other hand, reported 
a decline in bacterial diversity from intestinal metaplasia 
(IM) to intestinal-type GC after non-atrophic gastritis 
(NAG) [58, 60, 61, 71]. This could be caused by a variety 
of factors, such as diet, ethnicity, sequencing methods, 
and the fact that the study populations included both Hp-
positive and Hp-negative people. The analysis of different 
microbial groups in variable gastric regions can explain 
the heterogeneous results. There are differences between 
the proximal and distal GC in terms of microbial compo-
sition and metabolic products, despite the fact that there 
is no significant difference in species variety and abun-
dance [72]. Clinically, EBV-associated GC (EBVaGC) is 
more common in men than women, tends to be found in 
the proximal region [73], has a better prognosis [74] and 
a comparatively low rate of lymph node metastasis [75].

The mechanism by which microbes and their metabo-
lites affect gastric carcinogenesis is generally unclear. 
S. anginosus is consistently observed in mucosa biop-
sies of patients with GC and produces proinflammatory 
cytokines. The surface protein TMPC on S. anginosus 
mediates its attachment and colonization of gastric tis-
sues. Activation of the oncogenic pathway can take place 
by the interaction of TMPC with the annexin A2 recep-
tor on gastric epithelial cells. Compared with Hp which 
is mostly depleted in GC, S. anginosus is consistently 
involved in different stages of gastric carcinogenesis from 
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precancerous lesion, mucosal atrophy, intestinal metapla-
sia, gastric dysplasia cascade, and finally to malignancy 
[76].

Pathogenic fungus and virus in gastric carcinogenesis
Fungus sequencing showed that each tumor cell had a 
single fungus microbe. These microorganisms are less 
common in the esophagus and somewhat more common 
in the head and neck, colorectal, and stomach tissues 
[77]. The organization of fungal communities is drasti-
cally changed during gastric carcinogenesis, and the spe-
cies richness, variety, and evenness of fungal components 
decline. Ascomycetes was the most enriched phylum in 
GC tissues, in contrast to the normally lower enrichment 
[78]. It is unknown if GC is caused by or follows from 
fungal dysbiosis [79]. Pu and his colleagues have recently 
emphasized the significance of age in determining the 
differences in the gut mycobiome. They further empha-
size that the gut mycobiome of long-lived people has par-
ticular signatures that set them apart from other seniors. 

These signatures include an increase in core taxa and an 
overrepresentation of the Candida enterotype. Crucially, 
gut bacterial compositions are also strongly connected 
with these longevity-associated traits, which may be used 
as biomarkers to distinguish long-lived individuals from 
others [80].

Epstein-Barr virus (EBV) is one of the pathogenic 
viruses that has the ability to infect eukaryotic cells and 
produce cancer [81]. Other viruses such as human pap-
illomavirus, human herpesvirus, and hepatitis virus 
showed no causal relationship and GC [82]. Figure 1.

Mechanism of intestinal flora regulating tumor 
microenvironment
Through its impact on the tumor microenvironment 
(TME), the intestinal microbiome has a significant 
impact on the course and outcome of GC. The TME 
is primarily composed of tumor cells, stromal cells, 
immune cells, endothelial cells, and various secreted fac-
tors [83]. Because it interacts with tumor cells, promotes 

Fig. 1  Proposed scheme of the role of gut microbiota disorders in the progression of GC. The left picture showed how bacterial pathogens promote 
tumorigenesis. Middle picture showed chromosomal instability, activate oncogenic signals, and suppress immune responses. Right picture showed 
EBV-non coding RNA is linked to the downregulation of the miR-200 family, resulting in decreased E-cadherin expression. Published by Mingjin Yang in 
Interaction between intestinal flora and gastric cancer in tumor microenvironment. Front. Oncol. 2024; 14:1402483. Doi: ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​​o​r​​g​​/​​1​0​​.​3​3​​​8​9​​/​f​​o​n​c​.​2​​0​
2​4​.​1​4​0​2​4​8​3
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tumor growth and metastasis, and offers immune escape 
features, the TME’s immune cell population is extremely 
vital [84, 85]. Specific elements of the gut microbiota, 
such as distinct bacterial communities or distinct secre-
tory factors, have a variety of functions in controlling 
immune cells in the TME, which affects the prognosis 
and results of cancer therapies [83].

The intestinal microbiota impacts most cancers development 
through modulating T-cellular activity
Hp infection can change the immune response during 
the chronic inflammatory phase by replacing CD8 + T 
cells with CD4 + T cells and changing the tissue-resident 
memory phenotype of CagA-specific CD8 + T cells [86]. 
Programmed death ligand 1 (PD-L1) can be expressed by 
gastric epithelial cells in response to Hp. These modifica-
tions might make it easier for Hp-infected cells to evade 
immune surveillance and develop into GC cells [87]. Cer-
tain bacteria can inhibit cancer cells by promoting T-cell 
activation; their absence or downregulation may sub-
sequently aid in cancer development. Within the TME, 
microbiota can encourage the formation of tertiary lym-
phoid structures (TLSs), which are positive prognostic 
indicators for a range of solid tumors [88, 89].

The intestinal microbiota affects most cancers development 
through directing macrophage polarization
Tumor-associated macrophages (TAMs) have been 
classified into two subtypes: M1-like and M2-like [90]. 
M1-like macrophages stimulate type 1 helper T (Th1) 
cell immune responses, whereas they suppress type 2 
helper T (Th2) responses. In contrast, M2-like macro-
phages are involved in Th2 immune responses and Th1 
response inhibition, produce an extracellular matrix, and 
have anti-inflammatory characteristics [91]. TAMs in GC 
patients are closely linked to immune response changes 
and immune evasion by Hp [92]. Hp-macrophage inter-
action in the TME primarily consists of M2-like mac-
rophage polarization induction, antigen presentation 
impairment, and macrophage secretion factor modula-
tion, all of which promote GC invasion and progression 
[93].

The gut microbiota and other immune cells in the tumor 
microenvironment (TME)
Tumor growth in the TME is also facilitated by natural 
killer (NK) and dendritic cells (DCs). By impairing DC 
function, dysbiosis of the gut microbiota can increase 
tumor cell immune evasion. NK cells may have the abil-
ity to eradicate tumors after being influenced by the gut 
microbiota [83]. Intestinal flora can promote or inhibit 
tumor growth via bacterial products generation and 
interacting with TME through pattern-binding receptors. 
Bacterial genotoxins that cause DNA damage, genomic 

instability, and an increase in N-nitroso compounds, as 
well as bile acids, choline, neurotransmitters, and SCFA, 
are among the gene products and metabolites [94–96] 
from the gut flora that lead to chronic inflammation, 
impaired intestinal mucosal barriers, and altered immune 
responses. Lactic acid bacteria also produce lactic acid, 
which is used to create more harmful factors [97].The 
majority of the time, intestinal flora operates through 
pathogen-associated molecular patterns (PAMPs) and 
microbe-associated molecular patterns (MAMPs). This 
activates TLRs, whose signaling has been connected to 
the genesis of GC and are crucial for the innate immune 
response in the gastrointestinal tract. Myeloid differen-
tiation factor-88 (MyD88), which is primarily involved 
in innate immune signaling that is triggered by Hp, is 
shared by most TLRs. GC invasion and migration may be 
impacted by TLR/MyD88 signaling, which regulates the 
expression of many cytokines and immune cells that infil-
trate the TME [98].

Tumor and Bacterial Extracellular Vesicles (BEV)
Bacterial extracellular vesicles (BEVs) are small molecule 
active substances formed from bacteria, characterized by 
longer circulation times and structural stability [99]. They 
play a crucial role in mediating interactions between bac-
teria and the host, impacting a range of physiological and 
pathological processes in both organisms [100] including 
the transport of virulence factors, biofilm formation, and 
antibiotic resistance [101].

BEVs have the potential to play a significant role in 
gastrointestinal cancer by infiltrating gastric mucosa 
and epithelial cells [102]. BEVs produced from host cells 
infected with Hp affect inflammatory signaling pathways, 
which in turn affect immune cell modification, cytokine 
release, cell proliferation, apoptosis, and endothelial dys-
function, cause cytoskeletal reorganization, damage cel-
lular junctional structures, and significantly influence the 
course of subsequent immune-pathological reactions. 
These elements impact the course of GC and impede its 
pathogenesis [103]. Additionally, Hp liberates vesicles, 
referred to as outer membrane vesicles (Hp-OMVs), 
which contribute to atrophic and cell transformation in 
the gastric epithelium [104].

In order to promote antitumor immune responses in 
vivo for the treatment of cancer, BEVs can also act as 
strong immune stimulators. It has been demonstrated 
that OMVs released by bacteria cause anti-BFGF auto-
antibodies in tumor-bearing mice. These autoantibodies 
enhance tumor cell apoptosis, increase CTL responses, 
reverse tumor immunosuppressive microenvironments, 
inhibit tumor angiogenesis, and ultimately impede 
tumor growth [105]. By producing inflammatory media-
tors from gastric epithelial cells following their selective 
uptake by the cells, Hp EVs can cause inflammation and 
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potentially cancer in the stomach [106]. Furthermore, 
studies by Li et al. demonstrate that BEV-derived HSP60 
is essential for the emergence of Hp-related GC [107].

Via a biomimetic mineralization technique and utiliz-
ing a calcium phosphate coating on OMVs that dissolute 
in the acidic media upon arrival at the tumor location 
exposing the OMVs, this exposure successfully enhanced 
the tumor immune suppression microenvironment [108]. 
Guo et al. used BEVs as carriers to create a co-delivery 
system for chemical drugs [109].

With strong anti-tumor effects, E. Coli OMV may be 
a promising cancer immunotherapy agent [110]. Engi-
neered OMV promotes the accumulation of effector 
T cells in tumors by a dual mechanism of checkpoint 
inhibition and immune activation [111]. Three intesti-
nal bacterial strains were used to create novel nanoves-
icles (HNVs), which were linked to favorable immune 
checkpoint therapy outcomes. They also improve TME, 
encourage dendritic cell maturation and antigen presen-
tation, and trigger innate immune activation [112]. OMV 
immunotherapy and HP DA-mediated phototherapy 
(PTT) were combined to increase the antitumor efficacy 
against melanoma. Combining PTT with the anti-tumor 
immune response greatly enhances treatment and results 
in the total eradication of melanoma [113]. Through 
extracellular vesicles, bacteria release bioactive metabo-
lites that can change TME and selectively accumulate 
around tumor cells [114, 115]. TME-resident microbiota 
interactions are usually responsible for the presence of 
inflammatory carcinogenic metabolites in cancer cells 
[102]. Toxin-infected EV, which is released by certain 
intestinal bacteria, exacerbates inflammatory condi-
tions and contributes to the development of CRC. They 
postulate that BEVs are crucial in the progression from 
inflammation to cancer [116]. BEVs are highly immuno-
genic and can be used as adjuvants, vaccines, and dis-
ease-treating vectors, particularly when delivering tumor 
antigens or small molecule drug-targeted treatments. 
BEVs are an emerging biomarker that can be found using 
liquid biopsy, providing new avenues for disease diagno-
sis [117]. In comparison to healthy controls, Kim et al. 
discovered that BEVs isolated from stool samples of CRC 
patients had a noticeably higher abundance of Firmicutes 
[118].

Role of non-coding RNAs and gut microbiome in GI cancers
Non-coding RNAs (ncRNAs) have a pivotal role in 
gene expression, cancer progression, and cell-cell com-
munication through the involvement of extracellular 
vesicles (EV). The gut microbiota controls the expres-
sion of microRNAs and abnormalities in their expres-
sion can result in pathogenic processes linked to the 
initiation and spread of cancer [119]. Crosstalk among 
microRNA-microbiota within the intestine performs a 

pivotal function in intestine homeostasis [120]. NcRNAs 
can act as tumor suppressors and oncogenes in cancers 
and they may be dealt with as promising diagnostic and 
healing markers. The microbiota can affect the occa-
sion and development of most cancers by influencing 
the expression of ncRNA. MiRNAs play a vital role in 
the relationship in-between the host and the microbiota 
in cancer. Chang et al. in 2015 [121] showed that Hp-
positive gastric cancer patients had considerably greater 
levels of miR99b-3p, miR-564, and miR-638 compared to 
Hp-negative patients, despite exhibiting significantly less 
miR-204-5p, miR-338-5p, miR-375, and miR-548c-3p. 
MiR-18a-3p and miR-4286 levels had been drastically 
large in gastric cancers related to Hp, following the analy-
sis of Tsai et al. [79]. The gut microbiome and ncRNAs’ 
relation and pathway mechanisms are no longer known.

Clinical implications
Gut microbiome and cancer prevention
It is now established that abnormal DNA methylation 
in non-cancerous tissues, namely mutation and epimu-
tation loads, is linked to an increased risk of developing 
cancer [122, 123]. Several cross-sectional investigations 
found a correlation between the risk of gastric cancer 
and high methylation levels of several genes in the stom-
ach mucosa [124]. Even when Hp is eradicated, the DNA 
methylation marker may be able to identify those who 
can avoid stomach cancer screening. Instead of being 
screened for GC every two years as is the current recom-
mendation, the super-high-risk cohort identified by the 
DNA methylation marker will require screening annually 
[125].

Numerous studies have demonstrated that the micro-
biota and its metabolites can significantly influence 
anti-GC immunotherapy through cytokine release and 
increased T-cell infiltration [126]. Because antibiotics 
affect the gut microbiota, which plays a crucial role in 
enhancing the body’s immune response against tumors, 
their use reduces the effectiveness of cancer immuno-
therapy. Hp infection is a reliable predictor of worse 
outcomes during immunotherapy and a good sign of 
increased PD-L1 expression. Hp infection may be utilized 
as a marker to assess the effectiveness of immunotherapy 
in GC patients through unknown pathways since it has 
the ability to suppress both innate and adaptive immune 
responses [127]. By infiltrating CD8 + T-cells, the gut 
microbiota can affect how melanoma patients react to 
anti-PD-1/PD-L1 therapy. Additionally, they frequently 
have better progression-free survival [128]. Mice given 
probiotics along with antibiotics displayed improved 
5-FU’s anti-tumor properties [129]. Oh et al. claim that 
using probiotics in addition to Hp eradication treatment 
attenuated the alteration of gut microbiota brought on 
by antibiotics, which may have decreased the risk factors 
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associated with the emergence of GC [130]. In a mouse 
model of colitis-associated CRC, Song et al. [131] found 
that pretreatment with the probiotic mixture Bific altered 
the composition of the gut microbiota and reduced the 
expression of proinflammatory genes, improving colitis 
and reducing the formation of tumors. Turati et al. [132] 
discovered in a case-control study that eating a lot of 
galacto-oligosaccharide raffinose was associated with a 
lower incidence of GC. Using antibiotics to eradicate Hp 
may trigger the dysbiosis process. According to Wata-
nabe et al. [133], dysbiosis may continue long after Hp 
is eliminated. Probiotic therapy significantly and persis-
tently improved immune responses and reduced inflam-
mation in patients who had partial gastrectomy [134]. By 
causing damage to the stomach mucosa, bile acids play a 
crucial pathogenic role in the development of Precancer-
ous lesions of GC (PLGC). PLGC lesions of can be pre-
vented and treated in the majority of cases by protecting 
the function of the gastric mucosa through the promo-
tion or inhibition of specific mechanisms within the bile 
acids-gut microbiota interaction pathway [135].

Gut microbiome and treatment response
ICIs are a kind of cancer immunotherapy in which 
immune cells are reenergized to launch a powerful anti-
cancer attack by antibodies that inhibit ICI molecules. 
Blocking antibodies against lymphocyte activation gene 
3 (LAG3), cytotoxic T-lymphocyte associated protein 
4 (CTLA-4), programmed cell death protein 1 (PD-1), 
and programmed cell death ligand 1 (PD L1) make up 
the currently approved ICIs [136]. The effectiveness 
of ICIs is influenced by the gut microbiota. The micro-
biome of cancer patients who respond to ICIs differs 
from that of individuals who do not [137]. Although 
ICI has completely changed the way that GC is treated, 
only 11–15% of patients respond overall. Therefore, it is 
essential to determine which patients may benefit from 
immunotherapy beforehand using non-invasive tech-
niques. According to a 2024 study by Gao et al. [138], 
Dorea formicigenerans and Akkermansia muciniphila 
were important in correctly predicting the effectiveness 
of immunotherapy. They came to the conclusion that 
gut microbiome-based therapies might offer an option 
to boost immunotherapy’s efficacy. Gastrointestinal bac-
teria can directly or indirectly establish three distinct 
clinical outcomes: enhancing therapeutic side effects, 
avoiding anticancer effects, or promoting treatment effi-
cacy [139]. The gut microbiota is important for the gut 
microbiota-immune axis and can affect the effective-
ness of immunotherapy in several ways [140]. Treat-
ment with 5-Fluorouracil (5-FU) was less effective when 
antibiotics were used [129]. Probiotics did not consider-
ably improve the efficacy of the treatment as compared 
to 5-FU alone. Zheng et al. [134] found that a probiotic 

mixture comprising Bifidobacterium infantis, Lacto-
bacillus acidophilus, Enterococcus fecalis, and Bacillus 
cereus decreased inflammation, improved immunity, and 
improved gut microbial balance in GC patients who had 
undergone partial gastric surgery. Han et al. [140] found 
that in patients with HER2-poor GC, the appearance 
of the gut microbiota influences the efficacy of several 
therapies (chemotherapy, immunotherapy, and combina-
tion therapy). Both the progression-free survival (PFS) 
and the results of anti-PD-1/PD-L1 immunotherapy are 
enhanced by the boosted Lactobacillus levels.

Potential microbial interventions and future directions
Prebiotics  These are substrates that host bacteria fer-
ment and use specifically to provide health benefits [141]. 
The production of SCFAs can be increased by supplement-
ing with Lycium barbarum polysaccharides. Additionally, 
the relative abundances of Bacteroidaceae, Lactobacil-
laceae, Prevotellaceae, and Verrucomicrobiaceae were 
favorably correlated with immunological characteristics, 
which improved the effectiveness of chemotherapy [142]. 
There is currently insufficient evidence to support the use 
of prebiotics in the clinical patient population to combat 
cancer.

Postbiotics  These are metabolites that can enhance 
health by promoting the microbiota’s metabolic activi-
ties [143].One classic example of substances which has 
been shown to have anticancer potential is SCFAs [144].
Moreover, SCFAs have been associated with an aggres-
sive PD1/PDL1 response in a variety of GI cancer types 
[145].The gut microbiota’s tryptophan metabolites show 
great potential apostbiotic supplements. The dietary 
tryptophan catabolite indole-3-aldehyde that Lactobacil-
lus reuteri can release enhances the effectiveness of ICI 
therapy [146].

Antibiotics  The incidence of stomach cancer can be sig-
nificantly reduced by removing Hp infection, a major risk 
factor for the carcinogenesis of GC [147]. Antibiotic med-
ication can improve the efficacy of cancer treatment by 
lowering the therapeutic resistance brought on by micro-
biota [148].Antitumoral immunity is produced by bacte-
rial elimination, which creates microbial neoantigens that 
share host-specific epitopes with the host [149].

Phage therapy  Phage-based drug development signifies 
a revolutionary advancement in contemporary medicine, 
going well beyond conventional phage therapy for bac-
terial infections. This method leverages the adaptability 
of bacteriophages for a diverse array of uses, including 
cancer treatment, vaccine creation, and drug-delivery 
systems (DDS). By modifying phages to specifically tar-
get disease markers, transport therapeutic substances, 
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or provoke immune responses, researchers are finding 
innovative approaches to tackle intricate medical issues, 
such as improving therapeutic effectiveness, addressing 
a variety of pathogens, and surmounting conventional 
drug-delivery obstacles. Phage therapy utilizes viruses 
that specifically attack bacteria to treat infections. This 
technique has demonstrated success in numerous clini-
cal instances, especially for patients suffering from severe 
infections caused by bacteria resistant to multiple drugs. 
For instance, there have been instances of individuals suf-
fering from systemic infections due to multidrug-resistant 
Acinetobacter who experienced recovery after receiving 
phage treatment, as well as patients afflicted with panre-
sistant Pseudomonas aeruginosa who were successfully 
treated with phage therapy. A notable characteristic of 
phage therapy is its remarkable specificity. Phages selec-
tively infect particular bacteria and eliminate them. 
However, this specificity may also pose a challenge, as it 
requires meticulous selection of the right phage for the 
targeted bacteria. Moreover, bacteria have the potential 
to develop resistance to phages, which could diminish 
the effectiveness of treatment over time. Efforts are being 
made to identify, combine, and enhance phages to tackle 
these issues. The use of phage therapy in clinical settings 
is crucial for providing life-saving options for patients 
facing severe bacterial infections, and combining it with 
antibiotics may improve therapeutic outcomes [150, 151]. 
Phage therapy offers a hopeful method for treating cancer, 
providing targeted and diverse strategies to combat dif-
ferent forms of the disease. However, despite their poten-
tial, phage-based cancer treatments encounter various 
obstacles that need to be overcome to fully harness their 
advantages.

Drug delivery system  Because of their unique character-
istics, such as hypoxia tropism, certain microorganisms 
can be engineered to specifically target the hypoxic tumor 
tissues [152]. Myeloid-derived suppressor cells (MDSCs) 
are susceptible to infection by Listeria species, which then 
deliver the bacteria to the tumor sites and allow them to 
migrate from MDSCs into tumor cells [153]. Moreover, 
Listeria species can be engineered to deliver anticancer 
drugs by targeting tumors [154].

Genetically engineered microorganisms  Many 
research studies have demonstrated that bacterial-based 
therapeutic approaches are effective in treating can-
cer, notably reducing tumor growth and stimulating the 
immune response, all while ensuring a high level of safety 
and enhancing patient survival rates [155]. The existence 
of bacteria within tumors has been acknowledged for a 
long time, but their exact source remains uncertain. Three 
possible origins for the bacteria associated with tumors 
have been suggested: bacteria from mucosal locations 

that can breach the mucosal barrier and reach the tumor, 
bacteria from nearby healthy tissues, and bacteria that 
travel to the tumor site through the bloodstream. Bacte-
ria have a multifaceted role in the process of tumor pro-
gression, potentially functioning as both enhancers and 
inhibitors of tumor growth. The ways in which tumor-
associated microorganisms affect tumor progression are 
intricate and often contradictory. Substantial alterations 
can be made to modify surface composition and struc-
ture, decrease toxicity, or introduce therapeutic agents 
through genetic engineering. These adjustments allow 
bacteria to be modified into low-toxicity, high-efficiency 
micro/nanobots targeting tumors. With the help of 
chemical, physical, and genetic engineering techniques, 
bacteria have surpassed their inherent therapeutic limita-
tions, evolving into efficient delivery vehicles for a range 
of therapeutic drugs, functioning like precise “couriers” 
that convey medications directly to the tumor location 
[156, 157]. Bacteria can be genetically tailored to trans-
port a diverse array of personalized therapeutic agents, 
such as prodrug-converting enzymes, cytotoxic agents, 
immune modulators, cytokines, small interfering RNAs 
(siRNAs), and nanobodies [158–163]. Applications of 
engineered bacteria in cancer therapy include Living bac-
teria cancer-targeted therapy via metabolic modulation, 
engineered bacterial cancer-targeted therapy via syner-
gistic approaches, engineered bacteria cancer-targeted 
therapy with photodynamic therapy (PDT), engineered 
bacteria cancer-targeted therapy with photothermal ther-
apy (PTT), engineered bacteria cancer-targeted therapy 
with chemotherapy, engineered bacteria cancer-targeted 
therapy with radiotherapy [164].

Gene therapy, which holds great promise for the treat-
ment of cancer problems, has been implemented using 
several viral and non-viral gene delivery strategies. To 
transfer anticancer genes to areas with tumor hypoxia, 
for example, the gut probiotic E. coli Nissle 1917 has 
been adapted to act as a targeted transport vector [165]. 
By genetically altering the arginine inhibitory gene in 
E. coli Nissle 1917 to alter the quantity of L-arginine in 
tumors, PD-L1 immunotherapy can be made more effec-
tive [166].

Advantages and challenges of microbial interven-
tions  By enhancing risk-adapted therapy options and 
aiding in the stratification of cancer patients with differ-
ing degrees of severity, the development of an accurate 
microbiome-based evaluation regimen may lower cancer 
mortality [167–169]. Regional variances and microbial 
alterations show the largest connections. These regional 
variations restrict the extrapolations of a limited number 
of diagnostic models between districts, according to He et 
al. in 2018 [170]. This suggests that it is essential for clini-
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cal investigators to appropriately represent the informa-
tion of disease models that generate reference data.

Probiotics safety  According to certain case studies, 
taking live probiotics may cause a variety of negative 
side effects, such as sepsis, pneumonia, abscess, menin-
gitis, and endocarditis [171]. As a result, each probiotic 
strain’s hazards and risk/benefit ratios must be thoroughly 
assessed in clinical practice. Since only a few genera of 
probiotics have been shown to have beneficial effects, it 
is critical to screen and identify the strains that genuinely 
aid in therapy [172, 173].

Prebiotics/Postbiotics concern  Prebiotics and post-
biotics are safer and less likely to cause negative effects 
because they do not contain living bacteria. Consuming 
adequate dietary fiber is considerably more beneficial for 
cancer patients during ICI treatment than probiotic use 
[174]. Gut bacteria react differently to dietary prebiot-
ics because different fermentative routes are imposed on 
microbial collection [175]. According to Singh et al. in 
2018, SCFAs may increase the risk of hepatocellular car-
cinoma in some circumstances despite their anticancer 
impact [176].

Fecal microbiota transplantation-related adverse 
events  In total, 19% of significant incidents connected to 
FMT took place. The majority of these were gastrointesti-
nal problems, such as diarrhea (10%) and abdominal pain, 
discomfort, and cramping (7%). Only 1.4% of people expe-
rience serious side effects from FMT, including infections 
and death. This particular data comes from a population 
with many different conditions, but none of them are spe-
cifically for cancer patients. Patients with mucosal barrier 
damage are the only ones who experience serious side 
effects from FMT. To lower the risk of side effects, colo-
noscopy tests must be performed both before and after 
FMT treatment [177]. Washed microbiota transplanta-
tion (WMT) improves quality control, safety, and accu-
racy. The washing process removes the harmful substance 
[178]. Recipient parameters, not donor factors, determine 
strain dynamics particular to a species after FMT [179]. 
Strict protocols must also be adhered to while screening 
FMT recipients in order to protect donors and patient 
safety.

Antibiotic-related concern  As of right now, there is 
ongoing debate on the use of antibiotics in cancer treat-
ment. Certain antibiotic therapies can inhibit the growth 
of cancer brought on by microbial infections or dysbiosis 
[180] and reverse therapy resistance brought on by micro-
biota [148, 181, 182]. Antibiotic treatments, however, may 
disturb the gut ecology due to their detrimental effects on 
the native microbiota, which can result in a loss of diver-

sity and notable alterations in the microbial community’s 
composition [140]. They may also reduce the efficacy of 
chemotherapy [183, 184], radiation [185], and immuno-
therapy [186]. Antibiotics decrease their efficiency and 
raise the risk of illness by making microorganisms resis-
tant to them [187].

Conclusion
Through the use of impacting TME, the intestinal micro-
biota plays a crucial role in influencing the formation 
and analysis of GC. Through the release of extracellu-
lar vesicles, the gut microbiota exchanges information 
between cells. Liquid biopsies, which are microRNAs, 
have recently demonstrated their enormous potential as 
novel biomarkers for the majority of cancer diagnosis. 
A crucial and changeable component of the majority of 
cancer treatments is the gut flora. NcRNAs are intriguing 
avenues for future therapeutic and diagnostic research. 
Further research is required to completely understand 
the involvement of ncRNAs in GI cancer. By modifying 
drug metabolism and absorption, which have a substan-
tial impact on healing efficacy and serious impact pro-
files, the dynamic changes in gut microbiota also have a 
considerable impact on the results of anti-cancer treat-
ment. Bacterial extracellular vesicles change the tumor 
microenvironment, which may impact medication resis-
tance, metastasis, immunosuppression, and the course of 
cancer. Improved treatment approaches may arise from 
a better understanding of the role of the microbiome in 
gastric malignancies.
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