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Abstract: The high operating cost is currently a limitation to industrialize microbial lipids produc-
tion by the yeast Lipomyces starkeyi. To explore economic fermentation technology, the two-stage
fermentation of Lipomyces starkeyi using yeast extract peptone dextrose (YPD) medium, orange peel
(OP) hydrolysate medium, and their mixed medium were investigated for seven days by monitoring
OD600 values, pH values, cell growth status, C/N ratios, total carbon concentration, total nitrogen
concentration, residual sugar concentration, lipid content, lipid titer, and fatty acids profiles of
lipids. The results showed that two-stage fermentation with YPD and 50% YPD + 50% OP medium
contributed to lipid accumulation, leading to larger internal lipid droplets in the yeast cells. However,
the cells in pure OP hydrolysate grew abnormally, showing skinny and angular shapes. Compared to
the one-stage fermentation, the two-stage fermentation enhanced lipid contents by 18.5%, 27.1%, and
21.4% in the flasks with YPD medium, OP medium, and 50%YPD + 50%OP medium, and enhanced
the lipid titer by 77.8%, 13.6%, and 63.0%, respectively. The microbial lipids obtained from both
one-stage and two-stage fermentation showed no significant difference in fatty acid compositions,
which were mainly dominated by palmitic acid (33.36–38.43%) and oleic acid (46.6–48.12%). Hence, a
mixture of commercial medium and lignocellulosic biomass hydrolysate could be a promising option
to balance the operating cost and lipid production.

Keywords: two-stage fermentation; microbial lipids; biodiesel; oleaginous yeast; waste-to-resource;
orange peel hydrolysate

1. Introduction

Imminent energy shortages, organic wastes management, and the environmental
impacts of fossil fuels are the dilemmas we face currently [1]. To mitigate these issues,
many renewable energy technologies (e.g., microbial fermentation, gasification, and py-
rolysis, etc.) using organic wastes as raw materials have been investigated with a hope
of replacing non-renewable fossil fuels. Among these technologies, the production of
microbial lipids through fermentation of oleaginous yeasts coupled with organic wastes
consumption is being investigated globally for its potential to simultaneously treat huge
amounts of organic waste and produce microbial lipids (i.e., triacylglycerols, TAG) that
can be easily converted to fatty acid methyl esters (FAME), namely, a clean renewable fuel,
biodiesel [2,3]. Compared to the traditional biodiesel, the microbial-lipids-based biodiesel
produced from organic wastes provides several advantages such as lowering production
cost, increasing sustainability, and saving land for oil crops [4,5].

Hitherto, microbial fermentation of organic wastes for microbial lipids (i.e., single
cell oil) production has been studied using many kinds of oleaginous yeasts (e.g., Lipomyces
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starkeyi, Rhodotorula glutinis, and Rhodosporidium toruloides) and several organic wastes
(e.g., hemicellulosic hydrolysate, sugar beet residue, and rice straw) as feedstock [6–8].
As a major class of organic wastes in global megacities, lignocellulosic biomass wastes
(LBW) such as orange peel wastes are generated in huge amounts annually and could be a
promising carbon source for yeast fermentation [9–11]. Among various oleaginous yeasts,
Lipomyces starkeyi is considered as one of the most promising oil producers, due to its
higher oil-producing ability, higher ability to assimilate a broad range of feedstock [12],
and ability to tolerate inhibitors in cellulosic hydrolysates [13]. The lipid accumula-
tion in Lipomyces starkeyi has been investigated in several aspects such as fermentation
mode, strategies for enhancing lipid accumulation [14], transesterification methods [13],
lipid metabolism [15], and potential biotechnological applications [16]. To achieve high
lipid accumulation, Lipomyces starkeyi should be cultivated under several specific condi-
tions, including temperature (e.g., 30 ◦C) [13], aeration (e.g., 0.25–1 vvm) [17], and pH
(e.g., 5–6.5) [18].

During the Lipomyces starkeyi growth, the cells tend to proliferate when the carbon, ni-
trogen and other nutrients are sufficient, while the cells only enter into a lipid accumulation
stage when the available nitrogen is sufficiently low [17]. Hence, two-stage fermentation
was proposed for Lipomyces starkeyi fermentation for a higher lipid accumulation. Indeed,
the first-stage fermentation with a relatively low C/N ratio and rich nutrient can allow
fast growth and reproduction of yeast cells, while the second-stage fermentation with a
relatively high C/N ratio and nitrogen limitation can induce the cells to rapidly accumu-
late lipids. However, the two-stage fermentation of Lipomyces starkeyi has been merely
investigated using commercial sugars and chemicals as nutrition sources, resulting in a
relatively high operating cost and limitations to subsequent biodiesel production. The
development of the biodiesel industry is hampered by the relatively high feedstock costs
that covers around 60 to 70% of the total production cost [19]. Fortunately, the low-cost
lignocellulosic hydrolysates mainly contain glucose and xylose, which can be used in the
two-stage fermentation to partially replace the expensive commercial sugars. Nevertheless,
the feasibility of a two-stage fermentation of Lipomyces starkeyi grown on sugars derived
from LBW for production of microbial lipids and biodiesel remains unclear.

Therefore, this study aims to fill the aforementioned knowledge gap by investigating
two-stage fermentation of Lipomyces starkeyi using commercial sugars and sugars derived
from LBW, respectively, for the production of microbial lipids and biodiesel. The OD600
values, pH values, yeast growth status, C/N ratios, total carbon concentration, total
nitrogen concentration, residual sugar concentration, lipid content, lipid titer, and fatty
acids profiles of lipids were focused on. The findings of this study would contribute to
orange peel waste management and the cost-effective production of microbial lipids and
biodiesel, as well as potential environmental benefits.

2. Materials and Methods
2.1. Feedstock

Orange peel waste (OP) were obtained from Bengawan Solo Company in Singapore.
The OP were dried at 55 ◦C for 3 days to lower the moisture content. The dried OP
was then ground into smaller particles using a blender (Model: AD-G85, X2 Labwares
Private Limited, Singapore). Prior to use, the ground OP was sieved using a flatbed sieving
machine to obtain the fine particles with diameters <1 mm. Detailed characteristics of the
OP used for hydrolysis are presented in Table 1.
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Table 1. Detailed characteristics of the orange peel used for hydrolysis.

Characteristics Unit Orange Peel

Extractives 1 wt% 2 88.76 ± 4.76
Cellulose wt% 2 2.98 ± 0.68

Hemicellulose wt% 2 5.79 ± 1.11
Lignin wt% 2 0.47 ± 0.10

Volatile solids (VS) wt% 3 18.01 ± 0.37
Total solids (TS) wt% 3 23.96 ± 0.15

VS/TS ratio - 0.752
Carbon wt% 2 41.14 ± 1.73

Hydrogen wt% 2 5.63 ± 0.19
Nitrogen wt% 2 1.00 ± 0.04
C/N ratio - 41.14

1 Extractives represent organic compounds (e.g., protein, carbohydrate, and lipid, etc.) extracted from the sample
using the neutral detergent (3% SDS). 2 On dry basis. 3 On wet basis.

2.2. Pretreatment of OP for Recovery of Soluble Sugars

To obtain the soluble sugars used as carbon source in yeast fermentation, microwave-
assisted alkaline pre-treatment of OP was conducted according to the method reported by
Kamalini et al. [20] using a mid-size microwave oven (Panasonic Corporation NN-ST651M,
Japan). The microwave pre-treatment was operated at 600 W with 3% (w/v) of NaOH
solution at an agitation rate of 50 rpm. The reaction time and substrate to liquid ratio were
3 min and 1:62 g/mL, respectively. The microwave-pre-treated OP was cooled down to
room temperature for measurement of the concentration of glucose and xylose. Finally,
4 M of HCl solution was used to adjust the pH of the hydrolysate to 6.0.

2.3. Yeast Strain and Medium

The oleaginous yeast Lipomyces starkeyi (NRRL Y-1388) was purchased from the Bio-
REV PTE LTD and then stored at −80 ◦C. The yeast extract peptone dextrose (YPD) liquid
medium (pH = 6) contained 10 g/L yeast extract, 20 g/L peptone, and 20 g/L glucose. The
YPD liquid medium was used as the one-stage fermentation medium (pH = 6.0). All the
commercial chemicals were of analytical reagent grade and purchased from the Sigma-
Aldrich Pte Ltd. All the media were sterilized by autoclaving at 121 ◦C for 20 min before
the cultivation experiment. To prepare seed culture, Lipomyces starkeyi was pre-cultured in
250 mL flasks containing 50 mL YPD medium for 4 days to reach logarithmic phase.

2.4. One-Stage and Two-Stage Fermentation of Yeast Using Commercial Sugars (YPD Medium)
and OP Hydrolysate

The pre-cultured Lipomyces starkeyi cells were then transferred into the 250 mL flasks
(50 mL in working volume) for one- and two-stage fermentation at 30 ◦C and 200 rpm
for 7 d (Table 2). Initial pH values for both one-stage and two-stage fermentation were
adjusted to around 6.0 by using 4 M HCl solution and 4 M NaOH solution.

Regarding the two-stage fermentation of yeast using commercial sugars, YPD medium
was used in the first-stage bioreactor to cultivate the yeast for 5 d (Table 2). The time
duration of 5 d for the first-stage fermentation was selected based on a previous study
on the yeast cell concentration at different fermentation periods by Yamazaki et al. [21],
who found that the cell concentration of Lipomyces starkeyi reached the highest point at
day 5. Subsequently, yeast cells were harvested through centrifugation at 8000 g for
5 min and were washed twice with sterile distilled water before being re-suspended in
the second-stage bioreactor. The medium for the second-stage fermentation was 60 g/L
glucose solution according to a previous study [22]. Regarding the one-stage fermentation
using bio-wastes-derived sugars, OP hydrolysate was supplemented with a certain amount
of xylose and glucose to achieve identical xylose and glucose concentration to the YPD
medium in Section 2.3. Regarding two-stage fermentation of bio-wastes-derived sugars,
the first stage used the modified OP hydrolysate for 5 days of fermentation, while the
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second stage used 60 g/L glucose solution (Table 2). Other experimental conditions of
one-stage and two-stage fermentation using bio-wastes-derived sugars were identical to
the fermentation with YPD medium. Initial pH was adjusted to around 6.0 by 4 M HCl
solution and 4 M NaOH solution. To guarantee the repeatability, all the experiments were
carried out in triplicate under the same experimental conditions. During the fermentation
processes, 15 mL of fermentation broth was sampled once per two days from each flask
to measure the parameters including optical density at 600 nm (OD600), pH, microscopic
examination, TC, TN, sugar concentration, lipid titer, and lipid content. At the end of
the fermentation, all the yeast cells were harvested by centrifugation of the collected
fermentation broth. The collected yeast cells were washed twice and then dried using a
freeze dryer for 24 h. The dried cells were used for lipid extraction.

Table 2. Experimental design of one-stage and two-stage fermentation.

Flask Label Fermentation Type
Fermentation Medium and Time

First-Stage Second-Stage

One-stage (YPD) One-stage fermentation of
commercial sugars YPD medium; 7 d; Cell collection Not applicable

Two-stage (YPD) Two-stage fermentation of
commercial sugars

YPD medium; 5 d; Cell collection;
Transfer to the second stage 60 g/L glucose; 1 d

One-stage (100% OP) One-stage fermentation of
bio-wastes-derived sugars

Modified bio-wastes-derived OP
hydrolysate (with identical xylose and
glucose concentration to YPD medium)

1; 7 d; Cell collection

Not applicable

Two-stage (100% OP) Two-stage fermentation of
bio-wastes-derived sugars

Modified bio-wastes-derived OP
hydrolysate (with identical xylose and

glucose concentration to YPD medium);
5 d; Cell collection; Transfer to the

second stage

60 g/L glucose; 1 d

One-stage (50% YPD + 50% OP)
One-stage fermentation of

commercial sugars and
bio-wastes-derived sugars

50% YPD + 50% OP; 7 d; Cell collection Not applicable

Two-stage (50% YPD + 50% OP)
Two-stage fermentation of

commercial sugars and
bio-wastes-derived sugars

50% YPD + 50% OP; 5 d; Cell collection;
Transfer to the second stage 60 g/L glucose; 1 d

1 The modified bio-wastes-derived OP hydrolysate was supplemented with certain amount of xylose and glucose to achieve the identical
sugar concentration to YPD medium.

2.5. Extraction of Microbial Lipids and Production of Biodiesel

The total lipids were extracted using a modified Bligh & Dyer method [23]. Briefly,
400 mg of dried yeast cells were weighed and digested with 10 mL of 4 M HCl at 60 ◦C
for 1 h to achieve cell membrane lysis. Afterward, 15 mL of 1:1 (v/v) chloroform: methanol
mixture was used to extract lipids for 1 h. The mixture was then centrifuged using a
high speed refrigerated centrifuge (Model 6000, KUBOTA Corporation, Osaka, Japan) at
5000 rpm for 10 min, followed by transferring the organic phase to a new container. For
the residue, a second extraction was performed. Subsequently, the chloroform layers in
the extracts were evaporated at 40 ◦C for 24 h. To convert lipids to FAME, 70 mg lipid was
weighed and transferred to a 100 mL round-bottomed flask, followed by adding 15 mL
of 5% (w/v) NaOH in methanol. The round-bottomed flask was placed in a fume hood
to carry out the transesterification process at 65 ◦C for 50 min. After cooling down, 2 mL
n-Hexane was added to the mixture, vortexed thoroughly, and centrifuged to separate the
organic layer.

2.6. Analytical Methods

Standard curves of measuring concentration of glucose and xylose were established
according to the dual-wavelength spectroscopic method reported by Chi et al. [24]. The
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calculation Equations (1–3) of standard curves for total sugar concentration, xylose concen-
tration, and glucose concentration were obtained below.

CT

(
mmol

L

)
= 113.636 ∗ A425 (1)

Cxylose

(
mmol

L

)
= 4.272 ∗ A553 (2)

Cglucose

(
mmol

L

)
= 113.636 ∗ A425 − 4.272 ∗ A553 (3)

where CT, Cxylose, and Cglucose were the total sugar concentration, xylose concentration, and
glucose concentration, respectively. A425 and A553 were absorbance values at 425 nm and
553 nm, respectively.

Total biomass concentration (g/L) was defined through the Equation (4):

Total biomass concentration =
Dry cell weight (g)

Culture medium volume (L)
(4)

To obtain the dry cell weight, 5 mL culture suspension was transferred to a pre-
weighed pellet and centrifuged at the speed of 10,000 rpm for 8 min. The pellet was washed
with distilled water to remove the impurities (e.g., salts), and was then dried until constant
weight at 60 ◦C for weighing dry cell weight.

Lipid titer (g/L) was defined and calculated via the following Equation (5):

Lipid titer =
Lipid weight (g)

Culture medium volume (L)
(5)

To obtain the lipid weight, the intracellular lipid was extracted by the previously
reported lipid extraction method [25–27].

Lipid content (%) was calculated according to the Equation (6):

Lipid content =
Lipid weight (g)

Dry cell weight (g)
(6)

pH and elemental compositions were determined according to the corresponding
methods described by Zhang et al. [28]. VS and TS of the samples were determined via
the weighing method described by Lin et al. [29]. The cellulose and hemicellulose contents
were determined using the method reported by Van Soest et al. [30]. The obtained FAME
was filtered twice using the 0.45 µm filters and then transferred into sample vials for
the analysis of the fatty acid compositions in FAME using a GC system (Clarus 580 GC,
PerkinElmer, Waltham, MA, USA). All the obtained peaks were subjected to an analysis
against the standard curves for peak identification and quantitation.

2.7. Statistical Analysis

A computer-assisted statistics program, the SAS System for Windows (version 6.1,
SAS Institute Inc., Cary, NC, USA), was utilized to analyse the variance (ANOVA) of the
parameters (e.g., fatty acid percentages) among different treatments, with a significance
level of 5% (p-value < 0.05).

3. Results and Discussion
3.1. OD600, pH, and Microscopic Images of the Yeast Cells during Fermentation

The values of OD600 can represent the dynamic growth rates of the microbial
cells [31,32]. From Figure 1a, it was found that the values of OD600 at day 1 during fermen-
tation with various media were appropriately 0.14 ± 0.01. After two days, the values of
OD600 increased to 1.93 ± 0.02, 0.43 ± 0.01, 1.44 ± 0.01 in flasks with YPD, 100% OP, and
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50% YPD + 50% OP, respectively. The results indicated that the YPD medium was more
beneficial than 50% YPD + 50% OP for the growth of Lipomyces starkeyi, followed by pure
OP (i.e., orange peel waste hydrolysate). The slowest growth rate in the medium of pure
OP might be ascribed to the relatively high pH value (i.e., 7.43 ± 0.16, Figure 1b), which
was beyond the appropriate pH range of 3 to 6.5 [17,18]. From the 3rd to 5th day, the flasks
with YPD and 50% YPD + 50% OP showed a slight increase in OD600, while the flasks with
pure OP kept a relatively stable OD600. The results indicated that the yeast cell growth
from the 3rd to 5th day was extremely slow. The yeast cells in the two-stage fermentation
groups were collected at day 6 and then re-suspended in the second-stage flasks with pure
sugar solution.
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Figure 1. OD600 values (a) and pH values (b) during fermentation with various media. For two-stage
fermentation, the yeast cells were collected and re-suspended in a mixture solution of xylose and
glucose at day 6.

From Figure 1a, after re-suspension at day 6, the OD600 values of all the second-stage
fermentation flasks decreased compared to those before re-suspension, which might be
mainly attributed to the lighter colour of the sugar solution than the original fermentation
media. However, after one day of second-stage fermentation, the OD600 values increased
significantly (p values < 0.05) from 1.53 ± 0.01 to 2.13 ± 0.02 for the flasks with YPD and
from 1.06 ± 0.00 to 1.68 ± 0.01 for the flasks with 50% YPD + 50% OP. Nevertheless, no
obvious increase in the OD600 value (i.e., 0.21) in the flasks with pure OP hydrolysate was
observed. The cell growth status reflected by the OD600 results were consistent with the
results shown in the microscopic images. At the end of the fermentation (i.e., 7th day), the
microscopic images (Figures 2–4) of the yeast cells in different flasks were obtained. It was
found from the microscopic images that the yeast cells grew normally in the flasks with
YPD or 50% YPD + 50% OP medium, showing round or oval shapes; however, the yeasts
cells in pure OP hydrolysate grew abnormally, showing skinny and angular shapes. These
results demonstrated that the second-stage fermentation of Lipomyces starkeyi was effective
in medium YPD and 50% YPD + 50% OP, but ineffective in medium of pure OP hydrolysate.
On the one hand, the poor cell growth in medium of the pure OP hydrolysate could be
attributed to the lack of necessary trace elements (e.g., Fe, Zn, Mn, Co and Cu) compared
to the YPD medium. To tackle this issue, bioaugmentation with essential trace nutrition
could be a promising method to enhance the fermentation process using OP hydrolysate as
feeding [33,34]. On the other hand, the microwave-assisted alkaline pre-treatment of OP
could produce some inhibitory substances such as D-limonene, which could inhibit the
fermentation process [35].

Furthermore, from Figure 2b,d, the internal lipid droplet in two-stage fermentation
with YPD was bigger than that in one-stage fermentation. A similar phenomenon was
also observed in two-stage fermentation with 50% YPD + 50% OP. However, the two-
stage fermentation with pure OP hydrolysate failed to show the similar enhancing effects.
The results showed that an additional second-stage fermentation contributed to the lipid
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accumulation in the yeast cells with normal growth conditions. Previously, Liu et al. [22]
reported that the two-stage fermentation method could be a promising method to enhance
lipid production from lignocellulose hydrolysates. The present study not only confirmed
the advantage of the two-stage fermentation in enhancing lipid accumulation, but further
showed that the advantage relied on the normal growth of yeast cells as a prerequisite.
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3.2. C/N Ratio, TC Concentration, TN Concentration, Residual Sugar Concentration
during Fermentation

To investigate the effects of carbon/nitrogen source and sugar concentration on yeast
cell growth and lipid accumulation in Lipomyces starkeyi, the C/N ratio, TC concentration,
TN concentration, and residual sugar concentration in each flask were monitored. Figure 5a
displays the changes of the C/N ratios along with production of yeast cells and lipids.
From day 1 to day 5, no significant difference (p values > 0.05) in the C/N ratios among
different flasks was observed. The relatively stable C/N ratios indicated that the carbon
source and the nitrogen source were consumed in a relatively consistent pace between
day 1 and day 5. The dynamic changes of TC and TN concentrations shown in Figures 5b,c
also supported the above-mentioned results. In the meantime, the sugar concentration
decreased from 103.83 ± 7.24 to 55.79 ± 1.68 mmol/L due to consumption by cells. After
cell collection and re-suspension, the second-stage flasks showed the higher C/N ratios
(Figure 5a), which was attributed to the nitrogen limitation of new sugar solution in
the second-stage flasks (Figure 5b–d). After one day fermentation, the carbon source
was significantly (p values < 0.05) consumed by the yeasts for lipid accumulation at the
second-stage flasks, which was consistent with the relatively larger internal lipid droplets
(Figures 2d and 4d). It has been found that, yeast cells only entered a lipid accumulation
phase when the available nitrogen concentration was sufficiently low [36]. By harvesting
the cells at day 6 and re-suspending the cells in a nitrogen-limited sugar solution, the
cells entered a lipid accumulation phase by consuming extra sugar, leading to a higher
lipid content (see Section 3.3). Moreover, two-stage flasks with different media showed
diversified C/N ratios, TC concentration, and TN concentration, but with similar changing
tendency. The results further demonstrated that the two-stage fermentation method was of
great potential in lipid production by Lipomyces starkeyi.
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3.3. Lipid Content and Lipid Titer during Fermentation

Figure 6 shows the lipid content and lipid titer in different flasks. In general, the
lipid contents and lipid titer in all the flasks showed a continuously increasing tendency,
indicating that the cell growth and lipid biosynthesis kept active throughout the entire
fermentation process. Specifically, at day 1, the lipid contents in flasks with YPD, 100%
OP, and 50% YPD + 50% OP were 9.8–12.3, 9.4–10.5, 8.5–9.3, respectively. After 4 days of
fermentation, these values increased to 45.13–47.8, 19.1–20.3, and 29.3–30.0, respectively.
Furthermore, these values increased to 52.0–61.6, 21.34–27.13, and 38.18–46.35, respectively,
at the end of the fermentation. More specifically, at day 7, the lipid contents in two-stage
flasks with YPD, 100% OP, and 50% YPD + 50% OP were 18.5%, 27.1%, and 21.4% higher
than those of the corresponding one-stage fermentation. The relatively higher lipid contents
in two-stage fermentation were consistent with the relatively larger internal lipid droplets
of the yeast cells in the second-stage flasks (Figures 2d and 4d). It has been reported that the
adaptation of the yeast to the hemicellulosic hydrolysate contributed to better fermentation
performance with no lag phase [37]. Hence, in order to enhance the yeast fermentation
using OP medium, the adaptation approach deserves to be incorporated into the two-stage
fermentation in future studies.
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Regarding the lipid titer, from Figure 6b, it was found that the harvested lipids from
the one-stage fermentation flasks were 9.89 g/L for YPD medium, 2.42 g/L for OP medium,
and 4.65 g/L for the 50% YPD + 50% OP medium, respectively. After the two-stage
fermentation, the corresponding values increased to 17.58 g/L, 2.75 g/L, and 7.58 g/L,
respectively. In contrast, the two-stage fermentation enhanced the lipid titer by 77.8%,
13.6%, and 63.0% for YPD medium, OP medium, and the 50% YPD + 50% OP medium,
respectively. The increased lipid titer in two-stage fermentation can be mainly ascribed to
the enhanced microbial growth (i.e., OD600 in Figure 1a) and the enhanced lipid content
(Figure 6a). Therefore, in order to achieve the highest lipid production, yeast cells can be
firstly cultivated in a nutrient-rich medium to achieve the highest cell numbers. Afterward,
the substantial number of cells are harvested and transferred into a nitrogen-limited sugar
solution to further storage lipid. In addition, it can be concluded from the diversified values
in Figure 6 that the lipid contents and lipid titer can be greatly affected by the fermentation
media. This finding is also supported by previous studies. For instance, Matsakas et al. [38]
obtained a lipid content of 29.5% (w/w) using juice from saccharified sweet sorghum stalks
as feedstock. Di Fidio et al. [39] successfully converted paper mill waste to single cell oil by
the yeast Lipomyces starkeyi with a lipid content of 37 wt% and a lipid titer of 3.7 g/L. A
lipid content of 21.3% was achieved by Islam et al. [40], who adopted palm oil mill effluent
as feedstock for Lipomyces starkeyi for lipid production. Huang et al. [41] used corncob acid
hydrolysate for microbial oil production by the yeast Lipomyces starkeyi and achieved a
lipid content of 47% and a lipid yield of 8.1 g/L. Overall, Lipomyces starkeyi is a promising
strain for microbial oil production using sugars derived from organic wastes; however, the
fermentation process needs continuous efforts to optimize before achieving the maximized
lipid production.

3.4. Fatty Acids Profile of the Lipid Samples of Lipomyces starkeyi after Fermentation

The fatty acids profiles of the lipid samples of Lipomyces starkeyi in different fermen-
tation processes were determined. The results showed that the fatty acid compositions
were mainly dominated by two fatty acids, namely, palmitic acid (C16:0) and oleic acid
(C18:1). The relative contents of palmitic acid and oleic acid in various flasks were approxi-
mately 33.36–38.43% and 46.6–48.12%, respectively. The remaining fatty acids included
stearic acid (C18:0) with a content of 4.59–5.97%, palmitoleic acid (C16:1) with a content
of 3.01–3.96%, and linoleic acid (C18:2) with a content of 1.12–2.93%, respectively. Such a
fatty acids profile, similar to the main components of vegetable oil, was consistent with
several previous studies [42–44]. The differences in fatty acids profiles among different
fermentation flasks were analysed by significance analysis. The results showed that there
was no significant difference (p values > 0.05) between any two flasks, which demonstrated
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that the environmental factors had limited influence on the fatty acids profiles in microbial
lipids of the yeast Lipomyces starkeyi.

To go a step further, several studies can be performed based on the findings of this
study. First, the supplementation of trace elements into OP hydrolysate prior to use should
have a great potential to contribute to the two-stage fermentation of yeast Lipomyces starkeyi
using non-expensive feedstock for microbial lipid production. Second, the large-scale
test-bedding of the two-stage fermentation using Lipomyces starkeyi should be explored to
provide pivotal technical supports for potential pilot- and commercial-scale biorefinery
plants. Thirdly, the integration between the adaptive laboratory evolution approach and
rational genetic engineering of the Lipomyces starkeyi strain holds great potential to obtain
the artificially evolved yeast cells and genetically engineered yeast strains, which could
utilize wider carbon sources and tolerant more inhibitors, leading to a better performance
on cell growth and lipid accumulation.

4. Conclusions

The excellent ability of lipid accumulation of the oleaginous yeast Lipomyces starkeyi
has been well demonstrated. The present study aims to reduce the operating cost by explor-
ing the feasibility of a two-stage fermentation of Lipomyces starkeyi grown on YPD, orange
peel hydrolysate medium, and mixture medium of YPD and orange peel hydrolysate for
production of microbial lipids and biodiesel. In the fermentation process for seven days,
microscopic image analyses confirmed the advantage of the two-stage fermentation with
YPD and 50% YPD + 50% OP medium in accumulating larger internal lipid droplets in the
yeast cells. In contrast, the growth status of the yeasts cells in pure OP hydrolysate was not
satisfied, which might be due to the lack of certain trace elements and the existence of some
inhibitors in OP hydrolysate. Compared to one-stage fermentation, the lipid contents were
increased by 18.5–27.1% and the lipid titer was enhanced by 13.6–77.8% by a two-stage
fermentation. The microbial lipids obtained from both one-stage and two-stage fermenta-
tion were dominated by two fatty acids, namely, palmitic acid (C16:0, 33.36–38.43%) and
oleic acid (C18:1, 46.6–48.12%) and showed similar fatty acids components to vegetable oil.
The results from this study not only confirmed the significance of nutrition formulation
in yeast fermentation media, but also provided a two-stage fermentation approach as a
promising way to facilitate lipid accumulation in the oleaginous yeasts. The findings of
this study would be beneficial to economically manufacture biodiesel by using microbial
lipids as a feedstock and to resource recovery of orange peel waste, which would jointly
contribute to the environmental protection. Next, to help realize the industrialization of
microbial lipids from yeast Lipomyces starkeyi, the supplementation of trace elements into
OP hydrolysate, the large-scale test-bedding of the two-stage fermentation, and the incor-
poration of the adaptive laboratory evolution approach and rational genetic engineering
can be investigated.
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