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Inflammatory bowel disease (IBD), comprising Crohn’s disease and Ulcerative colitis, is
a relapsing and remitting disease of the gastrointestinal tract, presenting with chronic
inflammation, ulceration, gastrointestinal bleeding, and abdominal pain. Up to 80% of
patients suffering from IBD experience acute pain, which dissipates when the underlying
inflammation and tissue damage resolves. However, despite achieving endoscopic
remission with no signs of ongoing intestinal inflammation or damage, 30–50% of IBD
patients in remission experience chronic abdominal pain, suggesting altered sensory
neuronal processing in this disorder. Furthermore, effective treatment for chronic pain is
limited such that 5–25% of IBD outpatients are treated with narcotics, with associated
morbidity and mortality. IBD patients commonly present with substantial alterations to
the microbial community structure within the gastrointestinal tract, known as dysbiosis.
The same is also true in irritable bowel syndrome (IBS), a chronic disorder characterized
by altered bowel habits and abdominal pain, in the absence of inflammation. An
emerging body of literature suggests that the gut microbiome plays an important role
in visceral hypersensitivity. Specific microbial metabolites have an intimate relationship
with host receptors that are highly expressed on host cell and neurons, suggesting that
microbial metabolites play a key role in visceral hypersensitivity. In this review, we will
discuss the techniques used to analysis the metabolome, current potential metabolite
targets for visceral hypersensitivity, and discuss the current literature that evaluates the
role of the post-inflammatory microbiota and metabolites in visceral hypersensitivity.

Keywords: visceral pain, inflammatory bowel disease, irritable bowel syndrome, microbiome, metabolomics

INTRODUCTION

Inflammatory bowel diseases (IBD), including Crohn’s disease and ulcerative colitis (UC), as well
as irritable bowel syndrome (IBS) are some of the most commonly diagnosed gastrointestinal
disorders (Rakoff-Nahoum and Medzhitov, 2006). IBD are chronic debilitating illnesses, with
increasing global incidence (Kaplan and Windsor, 2021). IBS is characterized by chronic abdominal
pain associated with a change in bowel habits, affecting 11% of the population worldwide (Lacy
et al., 2016). Both disorders have an associated high socioeconomic burden, poor quality of life and
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are associated with chronic abdominal pain (Piovani et al.,
2020). The gut microbiome is known to affect a wide variety of
gastrointestinal processes (Thursby and Juge, 2017) and plays
a role in the pathogenesis of several gastrointestinal disorders,
including IBD and IBS (Morgan et al., 2012; Pittayanon et al.,
2019). Dysbiosis, or a change in the abundance and composition
of bacteria, is characteristic of several gastrointestinal disorders,
including IBD (Khan et al., 2019) and IBS (Pittayanon et al.,
2019), although it is unknown whether these changes are causal
to the disease or a consequence of changes in gastrointestinal
motility, diet and gut inflammation. In humans with IBD and in
animal models of colitis, sequencing of the intestinal microbiota
(metagenomic or amplicon) has characterized phyla level shifts
in the proportion of microbial species (Peterson et al., 2008;
Tong et al., 2013). Whereas a healthy microbiota consists of
the four major phyla, Firmicutes, Bacteroidetes, Proteobacteria,
and Actinobacteria, this is often shifted in patients with IBD
to a composition that is more abundant in Gram-negative
species, such as Proteobacteria and Bacteroidetes (Peterson
et al., 2008). As a result of these phyla level shifts, a decrease
in overall species diversity within the colonic microbiome is
commonly associated with IBD (Peterson et al., 2008). While
these shifts in the composition of the gut microbiota have
been extensively characterized in IBD, our understanding of the
impact that these changes have on the intestinal metabolome
is still developing. An emerging body of literature suggests
that microbial metabolism plays a role in the pathogenesis of
visceral hypersensitivity, through the production of neuroactive
molecules such as neurotransmitters (Tsavkelova et al., 2000;
Mawe and Hoffman, 2013; Pokusaeva et al., 2017) and microbial
products of metabolism such as SCFA (Esquerre et al., 2020)
(see Figure 1).

The metabolome refers to a collection of roughly 5,000
low molecular weight (<1 kD) molecules that are produced
by microbes and host cells as a result of cellular metabolism
(Bowling and Thomas, 2014). Metabolic processes play a
fundamental role in all biological processes and an emerging
body of literature suggests that host/microbiome dynamics can
directly affect immune function (Mager et al., 2020; Yang and
Cong, 2021), modulate the clinical presentation of diseases
(Chu et al., 2019; Schirmer et al., 2019; Lavelle and Sokol,
2020), and may play a direct role in visceral pain. Although
an emerging body of literature suggest that metabolism affects
epithelial, neuronal, and immune function, the molecular
mechanisms underlying these associations remain unclear.
However, systematic interrogation of host/microbial dynamics
using metabolomics approaches is proving new insights into
how gut microbiota can modulate gastrointestinal diseases
via metabolism.

One of the most common symptoms experienced by patients
with IBD and IBS is abdominal pain (Brierley and Linden,
2014). Pain can be sub-divided into two sub-categories; visceral
pain, which refers to the pain response originating within
internal organs such as the intestine, while somatic pain refers
to pain originating from muscle, bone, and soft tissue. In the
context of IBD, 80% of patients report acute abdominal pain,
which is associated with disease flares and increased intestinal
inflammation and/or obstruction (Hurtado-Lorenzo et al., 2021).

However, 30–50% of IBD patients experience chronic abdominal
pain which can persist despite achieving endoscopic remission
(Hurtado-Lorenzo et al., 2021). Individuals with IBD can
also present with widespread somatic pain in the absence
of inflammation (Regueiro et al., 2017), indicating altered
sensory neural processing in this disorder. Most importantly,
chronic abdominal pain in the absence of inflammation is a
severe burden to patients, with significant associated anxiety,
depression, and decreased in quality of life and increased
healthcare utilization (Gracie et al., 2018). Studies investigating
the pathophysiological mechanisms underlying chronic pain in
IBD patients in remission are lacking, and effective treatments
are just as limited (Hurtado-Lorenzo et al., 2021).

Chronic pain is a disorder of the brain gut axis, and
both central and peripheral mechanisms contribute to its
pathogenesis (Regueiro et al., 2017). Painful sensation from the
gut is relayed to the central nervous system by nociceptors
or pain-sensitive neurons with peripheral nerve terminals in
the wall of the intestine (Brookes et al., 2013). Nociceptors
have their cell bodies located in dorsal root ganglia and central
terminal that synapse in the dorsal horn of the spinal cord;
the colon is innervated by thoracolumbar and sacral afferents
(Hockley et al., 2019), as well as vagal afferents (Borgmann
et al., 2021; Jia et al., 2021). Nociceptors can be “sensitized,”
defined as a decrease in the threshold for stimulation and an
increase in the magnitude of the response, by neuropeptides and
inflammatory mediators released by tissue damage (Gold and
Gebhart, 2010). Nociceptor sensitization can lead to hyperalgesia,
or an exaggerated pain response, as well as allodynia, or pain
caused by what would be innocuous stimuli under normal
conditions (Gold and Gebhart, 2010).

In both the clinical setting and in animal models, visceral pain
can be assessed through the response to colorectal distention,
where balloon distention of the colon is performed using a
barostat to measure pain tolerance (Keszthelyi et al., 2012).
In animal models, pain is measured quantitatively by either
measuring the heart rate or the visceromotor response, which
uses electrodes to measure abdominal contractions (Keszthelyi
et al., 2012). Visceral hypersensitivity to colorectal distention is
a hallmark pathophysiologic characteristic of chronic abdominal
pain in IBD and IBS (Keszthelyi et al., 2012).

The current literature (Tsavkelova et al., 2000; Mawe and
Hoffman, 2013; Pokusaeva et al., 2017; Esquerre et al., 2020)
strongly implicates a role for the intestinal microbiota in the
development of visceral hypersensitivity in the absence of active
inflammation, suggesting that crosstalk between the host and
the microbiota via microbial metabolites can result in visceral
pain. Herein, we review the current state of the literature linking
visceral pain to microbial metabolism and systematically review
the proposed molecular mechanisms linking pain in the absence
of active inflammation in IBD and IBS to microbial metabolism.

Challenges in Studying
Microbiome-Mediated Phenotypes
One of the primary challenges in studying the role that the
microbiota plays in visceral pain is the significant logistical
and biological complexities inherent to microbiome research.
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FIGURE 1 | Diagram demonstrating the suggested pathway by which microbiota-derived metabolites are transferred across the epithelium to either (a) directly
interact with nociceptors to modulate hypersensitivity or (b) indirectly act via immune stimulation to modulate hypersensitivity. SCFA, short chain fatty acids; GABA,
Gamma-aminobutyric acid; ECC, enterochromaffin cell; CNS, central nervous system.

Microbes can have diverse metabolic capacities and the species-
to-species differences in their ability to consume specific
nutrients can have a profound impact on the metabolic
composition of the gastrointestinal tract. Consequently,
perturbations in the microbiome community can dramatically
reshape the molecules that are ultimately passed along to the
host. Although host- microbe interactions are known to play an
important role in pain and many other physiological functions,
unraveling this complexity is challenging in the context of
microbiota studies.

Studying these metabolic phenomena is analytically
challenging due to the broad chemical diversity of molecules that
can potentiate host-microbe interactions. Short-chain fatty acids
(SCFA) (Brestoff and Artis, 2013; Neis et al., 2015), amino acids
(Wu et al., 2021), bile acids (Ridlon et al., 2014; Wahlström et al.,
2016), hormones (Martin et al., 2019), secondary metabolites
(Wang et al., 2019), and complex carbohydrates (Flint et al., 2012)
are just a few examples of microbial metabolites that modulate
host-metabolism. These broad chemical classes cannot all be
captured on a single analytical platform and thus the selection
of instrumentation can have a direct impact on biological
mechanisms that can be investigated (see metabolomics
platforms below).

Another factor which affects the complexity of microbiota
profiling is that microbial community composition and its
metabolome varies along the gastrointestinal tract (Kozik et al.,
2019; Zhu et al., 2021). Thus, the microbial community
composition is different between ileal luminal samples from
colonic and fecal samples (Crespo-Piazuelo et al., 2018), as well
along the length of the colon itself (Flynn et al., 2018). Within

the colon, studies have demonstrated that fecal sampling does not
fully capitulate the luminal microbial community of the proximal
colon (Gu et al., 2013; Zhu et al., 2021). Furthermore, studies have
demonstrated striking differences between luminal and mucosal
samples within the colon itself, specifically regarding mucosa-
associated bacteria such as Bifidobacterium, Lactobacillus, and
Akkermansia (Heinsen et al., 2015; Kozik et al., 2019). In a study
by Miyauchi et al. (2022) lavage samples were collected from
20 healthy donors, where the microbial community composition
was compared to respective fecal samples. Substantial difference
in microbial community composition within patients was
observed between the two sample-types, with the lavage
samples containing significantly more Bifidobacteriaceae and
Coriobacteriaceae (Miyauchi et al., 2022). Given the substantial
differences in the microbial community structure along the
gastrointestinal tract, it can be expected the metabolome would
also be different, thus adding to the challenges of mapping
changes to the luminal metabolome. Furthermore, epithelial
uptake of such metabolites along the intestinal tract would
further impact the metabolomic composition within the fecal
sample.

Another major challenge in studying microbial phenotypes
is that the metabolic composition of the gastrointestinal tract
and other sites results from the cumulative metabolic activity of
the entire microbial community. Although individual microbes
can produce unique molecules, most metabolites present in
the gut can be consumed by a range of species. Moreover,
the waste products generated through microbial metabolism
can frequently be further metabolized by other gut microflora,
thus creating complex chains of cross-feeding interactions that
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can obscure individual contributions to a host phenotype
(Henriques et al., 2020).

An additional layer of complexity inherent to studying
microbiome impacts on host physiology is that the metabolites
produced by the gut microflora can have distal effects on
a wide variety of host tissues. As has been shown in
studies by Claus et al. (2008) and Wikoff et al. (2009),
where the gut microflora has direct impact on the metabolic
composition of peripheral tissues. Microbial metabolites are
diffused or transported across the epithelium and can be
detected throughout the body, such as in feces/intestinal
biopsies (Rivera-Chávez et al., 2016), urine (Khamis et al.,
2017), blood (Bi et al., 2020), liver (Raja et al., 2021),
brain (Quintero et al., 2021), cerebral spinal fluid (Quintero
et al., 2021), saliva (Chen and Yu, 2019), spleen (Jang et al.,
2018), lymph fluid/nodes (Lee et al., 2019), muscle tissue
(McGarrah et al., 2018), and lungs (Roque and Romero, 2021).
Thus, unraveling pain phenotypes requires analysis of both
the local and distal effects that could potentially arise from
microbial metabolites.

The Importance of Omics Research and
Metabolomics in Evaluating the
Microbiome
Over the last decade, analytical technology for tracking host-
pathogen dynamics at the genomic, transcriptomic, proteomic,
and metabolomics level has advanced considerably, and these
tools now serve as the foundation for understanding complex
phenotypes such as visceral pain (Moloney et al., 2016; Lucarini
et al., 2022). Although whole genome sequencing of individual
microbes remains an important element in understanding
complex disease (Hollister et al., 2019; Minerbi et al., 2019),
there has been an increasing shift toward using genomics to map
microbial phylogenetic changes in the microbiome (Liu et al.,
2021) via amplicon sequencing (16S rRNA) (Liu et al., 2021)
or metagenomic (shotgun) sequencing (Peterson et al., 2008).
Both of these approaches allow complex microbial communities
to be mapped phylogenetically and can provide insights into
how these populations change in response to complex human
diseases, such as IBD (Amos et al., 2021). Though powerful,
metagenomics is frequently limited in its ability to identify
individual species and cannot distinguish between live and dead
microbes. Consequently, this tool provides a definitive view of the
overall phylogenetic composition of samples, but a limited view
of biological activity (e.g., what proteins or metabolites are being
secreted, and the host’s response to these molecules).

Limitations in genomics have been increasingly addressed
via transcriptomic approaches, which can be used to map the
mRNA, non-coding RNA, and micro-RNA present in the gut
microenvironment. These studies are largely done through RNA
sequencing (RNA-seq) strategies, which borrow heavily from
metagenomics and are advantageous because they can capture
transcripts from both host and microbe and thus can be used
to map a comprehensive collection of genes that are activated
or deactivated in response to IBD and other complex diseases
(Lloyd-Price et al., 2019).

Proteomics approaches are also emerging as an important
strategy for studying microbial environments (Aakko et al., 2020).
Modern proteomics methods can quantify thousands of proteins
in samples and recent advances in data independent acquisition
(Aakko et al., 2020) and metaproteomics strategies (Kleiner,
2019) have dramatically improved the utility of this strategy
for complex investigations of host/microbiome interactions.
Proteomics strategies are particularly relevant in the context of
researching metabolic mechanisms, as secreted enzymes (both
from the host and the microbes) play a major role in catabolizing
complex carbohydrates, lipids, proteins, and other nutritional
sources from the gut and therefore have a direct impact on the
composition of each microenvironment.

Metabolomics has emerged as a mainstream strategy for
investigating metabolism on a systems-biology scale. Recent
advances in mass spectrometry and informatics have made
metabolomics much more accessible in recent years and these
tools have been applied with increasing frequency to unravel
complex host/microbiome metabolic interactions. A rapidly
growing body of literature has shown that these intraspecies
dynamics play a direct role in modulating the availability of
nutrients (Claus et al., 2008; Wikoff et al., 2009; Koh et al., 2016;
Putnam and Goodman, 2020), the pharmacokinetics of certain
drugs (Taylor et al., 2019; Klünemann et al., 2021), and can
modulate the clinical presentation of a wide range of diseases
(Han et al., 2015; Blacher et al., 2019; Canfora et al., 2019;
Mager et al., 2020). Importantly, several studies (Cai et al., 2022)
have shown host/microbiome/metabolic connections may play a
role in Parkinson’s disease (Mulak and Bonaz, 2015), depression
(Painsipp et al., 2009), autism (Sharon et al., 2019), Alzheimer’s
disease (Govindarajan et al., 2011), dementia (Liu et al., 2015),
and a variety of other disorders that affect neuronal function (De
Vadder et al., 2014; Strandwitz, 2018; Dalile et al., 2019). Although
these microbial/host interactions appear to influence a wide
spectrum of metabolic functions (e.g., amino acid, nucleotide,
lipid, carbohydrate, vitamin/cofactors, and energy metabolism),
much of the literature has centered on the role that SCFA and
bile acids play in these complex diseases. However, this relatively
narrow metabolic focus is beginning to broaden as a greater
diversity of molecules are found to play a role in immunity
(e.g., inosine Mager et al., 2020), dysbiosis (e.g., H2S; Sultan
et al., 2021), and chronic disease (e.g., trimethylamine N-oxide;
TMAO; Morgell et al., 2021).

Modern metabolomic studies are typically conducted using
nuclear magnetic resonance (NMR) spectroscopy (Jacobs et al.,
2008), gas chromatography mass spectrometry (GC-MS) (Hoving
et al., 2018), and liquid chromatography mass spectrometry (LC-
MS) (Chen et al., 2019). The relative merits, shortcomings, and
pitfalls of each analytical platform has been extensively reviewed
elsewhere (Lu et al., 2017). Briefly, GC-MS is most effective
for analyzing volatile compounds and lipids, LC-MS is most
effective for analyzing water-soluble compounds, and NMR is
most appropriate when absolute quantification (Lewis et al., 2007;
Markley et al., 2017) for unbiased detection of diverse molecular
classes is paramount (Lewis et al., 2012).

Beyond these generalized characteristics, there are range
of factors that affect the utility of each platform in the

Frontiers in Neuroscience | www.frontiersin.org 4 June 2022 | Volume 16 | Article 917197

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-917197 June 21, 2022 Time: 13:15 # 5

Shute et al. Microbial Metabolites and Visceral Pain

context of microbiome studies. Most importantly, the
broad diversity of chemical classes involved in microbiome
projects can significantly complicate the analytical strategy.
SCFAs, for example, which are the subject of intense
research in microbiome research, are most amenable to
analysis by GC-MS (Zhang et al., 2019). Carbohydrates and
alcohols, on the other hand, are most easily analyzed by
NMR (Karu et al., 2018), while polar compound are most
easily resolved by LC-MS using hydrophilic interaction
liquid chromatography (HILIC) (Iturrospe et al., 2021).
Consequently, no one technique can serve as a generalized
platform for microbiome metabolomics. To address this,
researchers either use a combination of techniques or will
employ specialized analytical methods, generally involving
chemical derivatization of the metabolites to improve their
analytical properties for a particular platform. For example,
aniline derivatization can be used to enable SCFA analysis
by reverse phase (C18) LC-MS (Bihan et al., 2022), benzyl
chloroformate can be used to improve the retention of amino
acids via reverse phase chromatography (Peoples et al., 2018)
and silylation can be used to improve the volatility of water-
soluble analytes for analysis by GC-MS (Villas-Bôas et al.,
2006). In summary, no single analytical platform is ideally
suited to microbiome metabolomics and researchers must
use combinations of techniques to capture the full breadth of
chemical diversity inherent to this field. Despite these challenges,
most project can be satisfactorily completed on either LC-MS or
GC-MS platforms.

Although NMR is playing an increasingly smaller role in
metabolomics due to its limited sensitivity (Markley et al., 2017;
Karu et al., 2018), it still has important merits for microbiome
analyses. One consideration is that NMR performance does not
degrade over long cohorts. All MS-based platforms (especially
LC-MS) suffer from progressive fouling of the electrospray source
and ion optics that degrade instrument performance over time
(Kang et al., 2017). In contrast, NMR samples are external
to the electronics and thus are not subject to carry over or
progressive fouling. This can help improve the reproducibility
(Reade et al., 2014) of projects, especially in studies involving
dirty samples (e.g., feces) which can lead to problems in MS
analyses (Reade et al., 2014).

Metabolomics and Microbial Community
Dynamics
As expected, it is evident that alterations to microbial community
diversity results in parallel changes in the metabolomic milieu
of the intestinal microenvironment. Alterations to the intestinal
microbiota resulting in changes to the metabolome occurs for a
variety of reasons, such as dietary changes (Tang et al., 2019),
antibiotic use (Theriot et al., 2014), disease states [i.e., IBD
(Heinken et al., 2021), IBS (Mars et al., 2020), obesity (Cirulli
et al., 2019), type 2 diabetes (Arneth et al., 2019)], host-genetics
(Imhann et al., 2018), age (Houtkooper et al., 2011), breast
feeding (Henrick et al., 2021), and mode of birth (Carter et al.,
2019). With the rapid increase of sequencing technology over the
last decade, studies highlighting the impact that these factors have

on the intestinal microbiota is extensive, however, analysis on the
impact that these alterations have on the metabolome are limited.

In the first 3-years of life, the host’s microbiota is developing
rapidly to achieve a permanent state of homeostasis (Milani
et al., 2017). During these first 3-years, alterations to the
developing microbiota can result in life-long impacts on both
the microbiome and metabolome (Milani et al., 2017). It is
well known that microbes have diverse metabolic preferences.
These differences have profound impacts on the complement
of molecules that are taken up or secreted by the microbiota,
which in turn changes both the community composition of
the microbiota and host-metabolism (Le Chatelier et al., 2013;
David et al., 2014). Studies have also demonstrated that the
birth route, either vaginal or c-section, results in dramatic
differences in the resident microbiota of the nasopharyngeal,
skin, gut, and oral cavities (Shao et al., 2019). Babies that were
delivered by c-section were found to have a microbiota that was
dominated by Staphylococcus and Streptococcus, whereas vaginal
delivery resulted in an increased abundance of Lactobacillus
species (Marchioro et al., 2019). The differences in delivery
methods were later shown to have profound changes to the
infant metabolome. For example, cesarean-delivered babies had
substantially lower glucose, inulin, non-esterified fatty acids, and
acylcarnitine levels when compared to vaginal-delivered babies
(Marchioro et al., 2019). Community differences within the
intestinal microbiota is also observed between babies that were
breast-fed and formula-fed, where breast-fed babies were found
to have a greater abundance of species belonging to Lactobacillus
and Bifidobacterium when compared to formula-fed infants
(Phan et al., 2019). Combining the results of 12 studies that
compared breast-fed and formula-fed infants, found a total of
261 fecal metabolites of which 151 were considered significantly
different between the two feeding modalities. However, only
10 (acetate, alanine, creatine, glutamine, lactate, urea, citrate,
formate, threonine, and glycine) of the 151 metabolites were
consistently altered between the two feeding modalities (Phan
et al., 2019). The majority of intestinal microbiome studies have
been performed to evaluate the impact that diet has on both
the microbiota and metabolome. A study by Schnorr et al.
(2014), demonstrated that individuals who consumed a diet
which was high in plant-derived fibers had a substantial increase
in microbial community abundance in the stool, while in a later
study, individuals who consumed a low-fiber diet were found
to have lower intestinal microbial diversity (Sonnenburg et al.,
2016). An increase in gut microbial diversity, via a high-fiber
diet, also results in substantial increases in fermented metabolite
products, such as SCFAs (Sonnenburg et al., 2016).

Antibiotics have a large impact on the intestinal microbiota,
thus leading to substantial decreases in metabolites that are
essential energy sources within the colon for colonocytes
(Antunes et al., 2011). Several studies have demonstrated that
treatment with antibiotics abolishes the overall community
diversity within the intestinal tract (Antunes et al., 2011; Korpela
and de Vos, 2016; Haak et al., 2019). The immediate and
long-term impact that a 2-day treatment of broad-spectrum
(ciprofloxacin, vancomycin, and metronidazole) antibiotics have
on the intestinal microbiota is a decrease in species richness
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paired with a marked change in the community composition
(Haak et al., 2019). Significant increases in Gram-negative
bacteria, particularly proteobacteria, and decreases in obligate
anaerobes were also seen after antibiotic treatment (Haak
et al., 2019). Thirty one-months after broad-spectrum antibiotic
treatment, there was partial but not full recovery in the
diversity index (Haak et al., 2019). Thus, aggressive broad
spectrum antibiotic treatment can have a long-lasting impact
on the microbiota.

As expected, antibiotic treatment leads to equally long-term
changes in the metabolome. Several studies have demonstrated
the impact that antibiotic treatment has on the metabolome,
where SCFAs and bile acids are commonly depleted in human
and animal models (Theriot et al., 2014; Zhang Y. et al., 2014;
Kuno et al., 2018; Zarrinpar et al., 2018). Clostridia represents
one of the largest classes of anaerobic bacteria in the mammalian
intestinal microbiota and are highly sensitive to antibiotics.
Families within this class, particularly Lachnospiraceae, are
well known butyrate-producing commensals (Theriot et al.,
2014). This demonstrates the impact that aggressive antibiotic
use has on not only the microbiota but on gut microbiota-
derived metabolites.

As discussed earlier, environmental factors such as diet and
antibiotic use have profound influences on the composition of
the gut microbiota. Host genetics also has a significant impact
on microbial composition. Genome-wide studies of both the host
and the microbiota have identified variants in several human
genes that are responsible for signaling, immunity, and epithelial-
function which can in turn have a significant impact on overall
gut microbial composition (Seregin et al., 2017; Imhann et al.,
2018; Hu et al., 2021). Recent studies have also identified several
genetic variants within individuals that can predispose a host
to the onset of disease, such as IBS and IBD, and which are
furthermore linked to increased visceral pain (Bonfiglio et al.,
2021; Ledergerber et al., 2021; Vollert et al., 2022). A full
discussion of these genetic alterations are beyond the scope of
this review, however, a full discussion on host genetics and the
microbiota in IBD was recently published by Qiu et al. (2022).

The Microbiome and the Metabolome in
Inflammatory Bowel Disease and
Irritable Bowel Syndrome
Inflammatory Bowel Disease
One of the most explored gastrointestinal diseases when it
comes to changes in microbial and metabolome composition
in the last decade has been IBD. As described earlier, dysbiosis
is common in patients suffering from IBD, where extensive
community profiling studies describe phylum level shifts within
the intestinal microenvironment of patients suffering from this
disease. These studies, followed up with extensive targeted and
untargeted metabolomics, found that patients with ulcerative
colitis and Crohn’s lack microbiota-derived metabolites that
are essential to maintaining proper gut health (Heinken et al.,
2021). It remains unclear whether these changes to both the
microbiota and metabolome are a cause or a result of intestinal
inflammation. However, several studies demonstrate that these

metabolomic changes are at the very least, preventing the host
from achieving homeostasis within the intestinal tract (Lloyd-
Price et al., 2019). A multi-omics study from the Human
Microbiome Project which followed 132 individuals [consisting
of patients with ulcerative colitis (UC), Crohn’s disease (CD),
and healthy participants] for 1 year demonstrated that the fecal
microbial community of UC patients with active disease was
significantly different when compared to the control cohort
(Lloyd-Price et al., 2019). UC patients demonstrated a significant
reduction in community diversity and had a lower abundance
of obligate anaerobes, specifically those belonging to the genus
Roseburia and Clostridium clusters IV and XIVA. The effect of
reduced anaerobes was evident in their metabolomic profiling,
as UC patients had reduced levels of butyrate within their stool
(Lloyd-Price et al., 2019).

Given the data that IBD-induced dysbiosis has a deleterious
effect on the intestinal microenvironment, there have
been several efforts to re-establish a “healthy” intestinal
microenvironment in this disease. Although commonly used for
the treatment of recurrent C. difficile infection, fecal microbiota
transplant (FMT) is currently being explored as a preferred
treatment option for active inflammation in UC and CD (Kelly
C. R. et al., 2015). To date, studies have not demonstrated a
significant benefit of FMT in either UC or CD, as only 28%
of patients were able to achieve remission (compared to 9%
in the placebo group), with 49% achieving a clinical response
with treatment (compared to 28% in the placebo group)
(Levy and Allegretti, 2019). In order to improve upon these
lackluster findings, newer studies have incorporated prebiotic
supplementation prior to FMT with some encouraging results
(Scaldaferri et al., 2013). Additional studies with larger number
of patients need to be performed to confirm these findings.

Another approach to restore the microbial microenvironment
within the intestinal tract is through the use of pre- and/or
probiotics. A prebiotic, such as high fiber supplementation,
is a dietary nutrient that will enhance the growth of specific
commensal bacteria and their metabolites in an effort to achieve
intestinal homeostasis (Scaldaferri et al., 2013). In contrast, a
probiotic is a single species or consortium of live strain specific
bacteria that are cultured in vitro and are ingested by an
individual to colonize the gastrointestinal tract (Scaldaferri et al.,
2013). Probiotic treatment for active UC has been ongoing for
several years, with the most commonly utilized strains being
species within Clostridia, Lactobacillus, and Bifidobacterium
(Jakubczyk et al., 2020). Various combinations of these microbes
are currently in clinical trials, where their specific goal is to
increase butyrate production within the colon in UC (Lavelle
and Sokol, 2020). It is possible that these microbial-directed
therapies will be used as adjuncts alongside biologic therapies
in the induction and maintenance of remission in UC, although
further studies are needed.

The positive impact that SCFAs have within the colon have
been heavily characterized throughout the literature (Hinnebusch
et al., 2002; Kim et al., 2014; Bachem et al., 2019). Butyrate
is the primary energy source for colonocytes, but SCFAs
have further positive effects beyond energy metabolism, such
has decreasing luminal pH to enhance nutrient absorption
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(Lupton and Kurtz, 1993); maintaining microbiota composition
via stimulating phagocytic activity (Wu et al., 2020); activating
G-protein coupled receptors on neurons (Nøhr et al., 2015),
epithelial (Al Mahri et al., 2020), enteroendocrine (Reimann and
Gribble, 2016) and innate immune cells (Smith et al., 2013);
inhibiting intracellular histone deacetylase activity (Hinnebusch
et al., 2002); enhancing barrier function via tight junction
protein stimulation (ZO-1 and Occludin) (Wang et al., 2018);
stabilizing hypoxia-inducible factor (Kelly C. J. et al., 2015), and
increasing Muc-2 mucin production (Gaudier et al., 2004). All
these functions are pivotal in achieving homeostasis within the
intestinal tract, primarily the colon.

It is clear that microbial metabolites play a significant
contribution in limiting intestinal inflammation; in addition,
the beneficial effects of metabolites, in particular SCFAs, can be
observed systemically (Zaiss et al., 2015). Over 90% of SCFAs
are absorbed by the colonic epithelium as a primary energy
source for host cells, however, 10% are taken up by capillaries
and transported via the portal vein to the liver prior to entering
the systemic circulation (Topping and Clifton, 2001). Several
systemic immune cells, epithelial cells and neurons express G
protein coupled receptors for SCFAs including the free fatty acid
receptor 2 (FFAR2), FFAR3, and G protein-like receptor 109A.
Through these receptors, SCFAs are able to enhance metabolic
activity and immune regulatory effects throughout the body (den
Besten et al., 2013). The immune regulatory effects of SCFAs is
an emerging field, and a full discussion of these findings can be
found in a review by Parada Venegas et al. (2019).

Irritable Bowel Syndrome
IBS remains the most common reason for referral to
gastroenterology and is associated with poor quality of life,
anxiety, depression, and considerable economic burden (Ma
et al., 2021; Shah et al., 2021). The pathogenesis of IBS is
complex, with aberrant brain-gut interactions being at its
center (Black and Ford, 2020). Several observations suggest
that dysbiosis may play a key role in the pathophysiology of
IBS. Patients can develop IBS after an episode of infectious
enteritis, termed post-infectious IBS, with a range of bacterial
pathogens including campylobacter, salmonella and shigella,
being implicated. Both host and pathogen factors play a role
in this process, with the severity of the illness and presence of
elongating toxin being those associated with considerable relative
risk (Barbara et al., 2016). Antibiotic therapy for non-enteric
infections is also associated with an increased risk of developing
IBS (Paula et al., 2015), suggesting that dysbiosis is an important
risk factor in IBS pathogenesis. A recent systematic review
demonstrated that there may be a “microbiome signature” in
IBS, with an overall decrease in uncultured Clostridiales, in
particular Bifidobacterium and Faecalibacterium genus, and an
increase in Lactobacillaceae, Bacteroides, and Enterobacteriaceae
when compared to controls, although there was considerable
heterogeneity in the studies examined (Pittayanon et al., 2019).
Faecalibacterium, in particular F. prausnitzii, are known to be
anti-inflammatory, as well as major butyrate producers strongly
associated with gut health (Lopez-Siles et al., 2017). Interestingly,
F. prausnitzii was identified as a source of an anti-nociceptive

serine protease that was able to decrease the excitability of
mouse dorsal root ganglia neurons through a protease activating
receptor -4 (PAR-4) dependent pathway (Sessenwein et al.,
2017). It is tempting to speculate that a decrease in baseline
F. prausnitzii may play a role in abdominal pain in IBS. However,
given the correlative nature of these studies, it is difficult to
know whether these microbial changes are causative to the
disorder, or are secondary to changes in GI motility, diet, use of
medications etc.

Given the link between symptom severity and the gut
microbiome, it is not surprising that therapies targeting dysbiosis
are being used to treat IBS. A recent systematic review and
meta-analysis identified that probiotics, in particular multi-strain
formulations, have a modest effect on IBS symptom severity
(Ford et al., 2018) but the mechanism of action for the most part
remains unclear. There is some speculation that probiotics and
bacterial metabolites can signal directly to the brain to improve
central symptoms associated with IBS (termed “psychobiotics,”
reviewed in Sarkar et al., 2016). A recent randomized controlled
trial of 44 adults with IBS with diarrhea-predominance or mixed
bowel habits and mild to moderate anxiety and/or depression
compared treatment with the probiotic Bifidobacterium longum
NCC3001 to placebo (Pinto-Sanchez et al., 2017). Patients treated
with B. longum showed a significant reduction in depression
scores and an associated improvement in quality of life, with
functional MRI studies showing reduced responses in regions
of the brain that process negative emotion. Evaluation of urine
metabolomics demonstrated an increase in methylamines and
aromatic amino acids, including the host-bacterial co-metabolite
4-cresol sulfate, decreased levels of which are associated with
depression. Interestingly, no change in IBS symptom severity or
fecal microbiota profiles were seen in B. longum-treated patients,
suggesting direct signaling of B. longum metabolites to the central
nervous system (Pinto-Sanchez et al., 2017). These data suggest
that probiotics may play a complex role in the treatment of IBS.

Other strategies to normalize the intestinal microenvironment
including antibiotics, FMT and prebiotics/dietary modification
have also been used to treat IBS. The non-absorbable antibiotic
rifaximin is approved for the treatment of diarrhea-predominant
IBS patients and has modest effects on IBS symptom severity
(Pimentel et al., 2011; Lembo et al., 2016). However, the
mechanism of action of rifaximin is unclear, with only minimal
changes in the composition of gut microbiota being observed
(Ford et al., 2018; Pimentel and Lembo, 2020). FMT has
been evaluated in randomized controlled trials in IBS, but a
recent systematic review and meta-analysis did not demonstrate
significant improvements in symptom severity when compared
to placebo, although there was some heterogeneity depending on
the modality of FMT delivery (Ianiro et al., 2019).

Perhaps the best studied microbial strategy to treat IBS
is dietary modification. Patients often associate gut symptoms
with food consumption and show a preference toward dietary
treatment (Sturkenboom et al., 2022). The low FODMAP
(fermentable oligo- di- mono-saccharide and polyol) diet has
gained considerable traction to treat IBS and is superior to
other dietary interventions (Black et al., 2021). FODMAPs are
fermentable prebiotics, which are thought to increase colonic
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gas production, causing visceral hypersensitivity to colonic
distention in IBS patients (Major et al., 2017). Interestingly, the
low FODMAPs diet has also been shown to be effective for
abdominal pain in IBD patients in remission (Prince et al., 2016;
Cox et al., 2020), suggesting that “saccharolytic-rich dysbiosis,”
may be a common microbial cause that contributes to the
pathogenesis of visceral hypersensitivity in both IBD and IBS
patients (Chumpitazi et al., 2015; Rossi et al., 2018).

Metabolomics can be used to predict the response to the
low FODMAPs diet. The presence of certain volatile organic
compounds in fecal samples was able to discriminate responders
from non-responders in a randomized cross-over trial of IBS
patients (Rossi et al., 2018). Another study that randomized IBS
patients to either a low or high FODMAPs diet found significant
differences in urine metabolite profiles after the 3-week study.
Amongst the altered metabolites was histamine, which was
elevated at baseline and was significantly decreased after the low
FODMAPs diet (McIntosh et al., 2017). The source of histamine
may be either host- or microbial-derived; histamine is known
to participate in the pathogenesis of visceral hypersensitivity via
sensitization of nociceptors through the histamine-1 receptor (De
Palma and Bercik, 2022). These data suggest that metabolomics
may allow the identification of patients who will benefit from this
type of treatment strategy.

There are concerns, however, regarding the long-term
use of this restrictive diet in IBS, as the low FODMAPs
diet leads to a decrease in SCFA-producing species, such
as Bifidobacteria (Halmos et al., 2015). Even after dietician
guidance and careful reintroduction, fecal SCFA content remains
decreased despite a more “personalized” FODMAPs restriction,
the long-term consequences of which are not known. However,
this “personalized” approach results in long term symptom
improvement and patient satisfaction in IBS (Staudacher et al.,
2022). Interestingly, there are data that suggest SCFAs may
be involved in the pathogenesis of visceral hypersensitivity, as
discussed below.

Microbial Metabolites Play a Role in
Visceral Pain
Although several studies have demonstrated the beneficial impact
that SCFAs have on host metabolic function and immune
regulation, studies investigating the effect that these and other
microbial metabolites have on the nervous system, specifically
with regards to pain, are still emerging. Microbes can produce
neuroactive molecules, such as toxins (Chiu et al., 2013; Blake
et al., 2018; Yang et al., 2021), neurotransmitters (Tsavkelova
et al., 2000; Mawe and Hoffman, 2013; Pokusaeva et al., 2017),
proteases [which stimulate neuronal protease-activated receptors
(PAR)] (Sessenwein et al., 2017), and metabolites including
SCFAs (Baj et al., 2019; Lomax et al., 2019). Bacterial products
can signal directly to nerves, or can act indirectly through
the immune system, epithelial cells, or enteroendocrine cells to
activate nociceptors (Lagomarsino et al., 2021) (see Figure 1).
Both vagal (Borgmann et al., 2021; Jia et al., 2021) and spinal
afferents are involved in nociception.

The gut-brain axis is a bidirectional signaling pathway
between the central nervous system and the gut (Lomax et al.,

2019). Indeed, several studies have shown that neurological
diseases can alter the gut microbiota (Quigley, 2017), while a
dysbiotic microbiota has also been shown to change behavior
(Pinto-Sanchez et al., 2017). This data highlights a key role of the
microbiota in the gut-brain axis, in which bacterial metabolites
play a crucial role in this bidirectional communication. As
described below, there are several studies that have shown a role
for the microbiota in the pathogenesis of visceral hypersensitivity,
however, studies exploring the role of the metabolome are
limited. Thus far, there have been a handful of studies
characterizing metabolite interactions with the nervous system.

Previous studies using germ-free models (Luczynski et al.,
2016) and antibiotic-treated (Verdú et al., 2006; Hoban et al.,
2016) models have shown that the microbiota plays a role
in visceral pain. Germ-free mice are mice that were breed
under sterile conditions and remain sterile their entire life; their
intestinal tract lacks a microbiota (Bhattarai and Kashyap, 2016).
Antibiotic treatment depletes and alters the intestinal microbiota.
It is important to note that antibiotic-treated and germ-free
models each have their own advantages and disadvantages.
Germ-free mice are considered immunocompromised with
distinct physiological and metabolic deficits (Bhattarai and
Kashyap, 2016); these animals also demonstrate an altered
enteric nervous system (Collins et al., 2014; Filipe et al., 2018).
Antibiotic-treated mice have a competent immune system and
GI physiology that is unaltered from naïve mice, however,
antibiotics can have off-target effects, including causing low-
grade intestinal inflammation, as well as increasing visceral
hypersensitivity alone (O’Mahony et al., 2014). A study by
Vicentini et al. (2021) demonstrated that broad spectrum
antibiotic treatment in mice affected the structure and function
of the GI tract, resulting in a loss of enteric neurons in both the
submucosal and myenteric plexuses. However, supplementation
with SCFAs post-antibiotic treatment restored enteric neuronal
loss (Vicentini et al., 2021).

Using a germ-free model, Luczynski et al. (2016) demonstrated
that male mice had increased visceral hypersensitivity to
colorectal distention when compared to their specific pathogen
free (SPF) littermates. Furthermore, recolonization could reverse
this visceral hypersensitivity. Interestingly, germ-free females
did not have increased visceral hypersensitivity when compared
to SPF counterparts; estrous-cycle induced changes in visceral
pain were abolished in the germ-free animals (Tramullas et al.,
2021). Visceral hypersensitivity to colorectal distention was
also observed in mice treated with broad-spectrum antibiotics;
this change was accompanied by increases in substance P
immunoreactivity (Verdú et al., 2006). In another study, the
fecal microbiota transplant model was used to evaluate the
role of the microbiota in visceral hypersensitivity. Crouzet
et al. (2013) colonized gnotobiotic rats with a microbiota that
replicated IBS dysbiosis (consisting of more sulfate-reducing
bacteria and Enterobacteriaceae and less Bifidobacteria). It was
found that the rats who received IBS-like microbiota had
increased visceral hypersensitivity when compared to gnotobiotic
rats that received a healthy microbiota, suggesting that IBS-
associated hypersensitivity is in part caused by changes to the
intestinal microbiota (Crouzet et al., 2013; De Palma et al.,
2017).
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TABLE 1 | Role of microbial metabolites in visceral pain.

Metabolite Role and mechanism Model system References

SCFA Direct sensitization of TRPV1 expressing nociceptors,
increases visceral hypersensitivity via a MAP-K
dependent pathways

Cultured mouse nociceptors; post-inflammatory
DSS mouse; rat model

Xu et al., 2013; Esquerre et al., 2020

Butyrate enemas decrease visceral
hypersensitivity—mechanism not defined

Healthy patients, mice, rats Tarrerias et al., 2002; Vanhoutvin et al., 2009;
Russo et al., 2016

Indirect mechanism whereby SCFA stimulate L-cells to
release GLP-1 which reduces visceral hypersensitivity

Mouse model and mixed colonic cell culture Gong et al., 2014; Psichas et al., 2015

Indirect mechanism—SCFA induces 5HT release from
EC which can then increase visceral hypersensitivity

Germ-free mouse, Human EC cell line Reigstad et al., 2015

DCA Direct increase in excitability of nociceptors Mouse model; cultured mouse nociceptors Yu et al., 2019

Indirect increase in nociceptor excitability via 5HT3
dependent release

Mouse model Yu et al., 2019

Indirect increase in visceral pain via NGF release from
mast cells

Rat model Li et al., 2019

GABA Synthesized by Lactobacillus and Bifidobacterium
species and decreases visceral hypersensitivity

Rat fecal retention model, Mouse model Hara et al., 1999; Pokusaeva et al., 2017

Metabolites which play a putative role in pain neurotransmission (e.g., microbial-derived endocannabinoids, tryptophan metabolites, catecholamines) are not included.
For a full discussion see pages 26–33. SCFA, Short Chain Fatty Acids; TRPV1, transient receptor potential vanilloid-1; DCA, deoxycholic acid; NGF, nerve growth factor;
EC, enterochromaffin cells.

Metabolites and Visceral Pain
See Table 1 for a simplified description of studies demonstrating
the role and mechanism of metabolites in visceral pain.

Short-Chain Fatty Acids
The post-inflammatory dextran sodium sulfate (DSS) colitis
model is an established model of chronic visceral pain, mimicking
chronic pain in the post-inflammatory state in IBD. Mice are
allowed to recover for 5 weeks after exposure to chemically
induced colitis, and then develop visceral hypersensitivity
to colorectal distention (Esquerre et al., 2020). Esquerre
et al. (2020) demonstrated that FMT of post-inflammatory
DSS stool into antibiotic-treated mice resulted in visceral
hyperalgesia compared to antibiotic treatment alone; FMT
of control stool dampened visceral hypersensitivity (Esquerre
et al., 2020). Post-inflammatory mice exhibited changes in
the microbiome, with significant increases in SCFA-producing
species, such as Lachnospiraceae and Ruminococcus, and stool
SCFA content when compared to control mice. Importantly,
SCFAs were able to sensitize transient receptor potential
vanilloid-1 (TRPV1) expressing nociceptors, suggesting that
microbial-derived metabolites play a role in post-inflammatory
pain (Esquerre et al., 2020).

Esquerre et al. (2020) showed a pro-nociceptive effect of
SCFA, which is at odds with the ability of SCFAs to reduce
colonic inflammation and immune activation. Interestingly,
another study investigated the ability of SCFA enemas to improve
visceral hypersensitivity in a haptenizing model of colitis, 2,4,6-
trinitrobenzenesulfonic acid solution (TNBS), in rats (Tarrerias
et al., 2002). Although visceral hypersensitivity was reduced in
control rats that received butyrate enemas, visceral pain remained
unchanged in rats that were exposed to TNBS and treated with
butyrate enemas (Tarrerias et al., 2002). In healthy patients
and mice, butyrate enemas caused a reduction in abdominal

pain to colorectal distention (Vanhoutvin et al., 2009; Russo
et al., 2016). In contrast, butyrate enemas increased visceral
hypersensitivity through a MAP kinase dependent pathway in
rats (Xu et al., 2013).

SCFAs can also modulate visceral hypersensitivity through an
indirect mechanism. The SCFA receptors, FFAR2 and FFAR3
are highly expressed on intestinal L cells which contain GLP-
1 (Chimerel et al., 2014). When stimulated by SCFAs, L-cells
release glucagon like-peptide-1 (GLP-1) (Psichas et al., 2015).
This increased secretion was not observed in mice lacking FFAR2
or FFAR3 (Psichas et al., 2015). Activation of the GLP-1 receptor
on neurons can reduce visceral hypersensitivity (Gong et al.,
2014). Taken together, these data show that SCFAs play a role
in visceral hypersensitivity, but further studies are needed to
understand the mechanism behind this and to reconcile data
showing both pro- vs. anti-nociceptive roles.

Bile Acids
Bile acids are thought to play a role in the pathogenesis of IBS
as a subset of patients with diarrhea-predominant IBS have an
increase in colonic bile acids and can be treated with bile acid
sequestrants (Wadhwa et al., 2015). Bile acids are traditionally
associated with their role in lipid absorption. Primary bile acids
are synthesized by the liver and undergo deconjugation by
colonic bacteria to form multiple secondary bile acids, including
deoxycholic acid (DCA; recently reviewed; Ní Dhonnabháín
et al., 2021). DCA may play a role in visceral hypersensitivity. In
a mouse model, DCA was able to increase afferent nerve firing
by stimulating 5HT release from EC cells. In the proximal colon,
the effect of DCA was inhibited by a 5HT3 receptor antagonist.
However, DCA was also able to increase the excitability of
nociceptors directly, in a 5HT-independent manner (Yu et al.,
2019). In a separate study, colonic DCA enemas increased visceral
pain to colonic distention in a rat model, an effect which involved

Frontiers in Neuroscience | www.frontiersin.org 9 June 2022 | Volume 16 | Article 917197

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-917197 June 21, 2022 Time: 13:15 # 10

Shute et al. Microbial Metabolites and Visceral Pain

the release of mast cell-derived nerve growth factor (NGF) (Li
et al., 2019). NGF was able to increase the expression of neuronal
TRPV1, a key receptor involved in nociception. Mast cells are
known to form close contacts with nerve terminals in seminal
biopsy studies of IBS patients and participate in the pathogenesis
of visceral hypersensitivity (Barbara et al., 2007, 2004; Hasler
et al., 2022). Interestingly, studies report an increase in secondary
bile acids in diarrhea-predominant IBS, due to an excess of
Clostridia-rich microbiota in this disease (recently reviewed;
Gu et al., 2022). Thus, it is possible that secondary-bile acid
induced visceral hypersensitivity contributes to the pathogenesis
of abdominal pain in vivo.

Serotonin and Tryptophan Metabolism
Serotonin is a major neurotransmitter within the gastrointestinal
tract, that plays an essential role in GI motility. Indeed, drugs
targeting the serotonin receptor 5HT3, which is expressed on
nociceptors, have been extensively studied for the treatment of
visceral hypersensitivity (Mawe and Hoffman, 2013). Serotonin
also plays a key role in microbial sensing via enterochromaffin
(EC) cells, which are specialized neuroendocrine cells lining the
intestinal epithelium that are responsible for GI motility and
enzyme secretion (Mawe and Hoffman, 2013; Legan et al., 2022).
A study by Reigstad et al. (2015) demonstrated that the rate
limiting enzyme for serotonin synthesis, tryptophan hydroxylase
(TH) was increased in germ-free mice colonized with human
stool compared to germ-free mice alone. In vitro treatment
of a human EC cell line with SCFA increased TH production
(Reigstad et al., 2015). This data demonstrates that bacterial-
derived luminal SCFAs can be detected by EC cells, which in turn
secrete basolateral serotonin when activated. A study performed
by El-Ayache and Galligan (2019), determined that disrupting the
serotonin reuptake transporter (SERT) in female rats increased
visceral hypersensitivity, through increased serotonin signaling at
dorsal spinal 5HT3 receptors. However, the same phenomenon
was not seen in male rats (El-Ayache and Galligan, 2019),
suggesting a sex-dependent pain pathway which has been
previously reported before in the CNS (Kogler et al., 2016;
Mapplebeck et al., 2017). Although these studies do not show
that the microbiota directly cause visceral hypersensitivity, there
is clear evidence to suggest that communication between the
microbiota and the host facilitates visceral hypersensitivity.

Dietary tryptophan is metabolized to 5HT in EC cells but is
a substrate for the kynurenine pathway in the epithelium and
immune cells, and the indole pathway in gut microbes. Indole
derivatives bind to the aryl hydrocarbon (AhR) receptor (Agus
et al., 2018). Dysbiosis and a subsequent alteration in tryptophan
metabolism is thought to contribute to the pathogenesis of several
GI diseases, including IBD and IBS (Kennedy et al., 2017; Agus
et al., 2018). Peripheral kynurenine activity was shown to be
correlated with the severity of IBS symptoms (Fitzgerald et al.,
2008). In an animal model of IBS, decreased activity of the indole
pathway and AhR-dependent IL-22 production, was correlated
with anxiety-like behaviors; visceral pain was not evaluated in this
report (Maëva et al., 2022). However, dysregulated tryptophan
metabolism may contribute to the pathogenesis of visceral pain
through altered central serotonergic functioning, and subsequent

changes in central pain perception (Labus et al., 2011). Thus,
microbial tryptophan metabolism may modulate 5HT-dependent
visceral pain through both central and peripheral pathways.

Gamma-Aminobutyric Acid
The microbiota has the capacity to synthesize and secrete
functional neurotransmitters. Gamma-aminobutyric acid
(GABA), it is the main neurotransmitter within the central
cortex and spinal cord (Pokusaeva et al., 2017). Species belonging
to Lactobacillus and Bifidobacterium have been identified
as a source of intestinal GABA production (Yunes et al.,
2016). In rats, agonists of GABA receptors have demonstrated
the ability to inhibit colorectal distention induced visceral
pain (Hara et al., 1999). In a study by Pokusaeva et al.
(2017), Bifidobacterium dentium was shown to produce
GABA via enzymatic decarboxylation of glutamine. Probiotic
supplementation of Bifidobacterium suppressed neuronal
activity resulting in reduced visceral hypersensitivity in a rat
fecal retention model (Pokusaeva et al., 2017). Thus, signaling
through GABA receptors via microbial-derived GABA can
prevent visceral hypersensitivity. Interestingly, analysis of the
fecal metabolome in individuals suffering from IBD as well
as IBS demonstrated a depletion in GABA levels (Aggarwal
et al., 2018; Heinken et al., 2021), suggesting that this may
represent a key mechanism whereby the dysbiotic microbiota
can modulate visceral pain.

Catecholamines
Catecholamines are monoamine neurotransmitters or hormones
used to induce stimulation and response within the mammalian
body. There are three main catecholamines: epinephrine,
norepinephrine, and dopamine. Dopamine is the major
neurotransmitter involved in reward-motivation behavior and
is a precursor for the other catecholamines: norepinephrine and
epinephrine. Norepinephrine and epinephrine are responsible
for the “fight or flight” response. The release of norepinephrine
in response to heterotypic chronic stress in rats demonstrated
a direct role for this neurotransmitter in increasing visceral
hypersensitivity to colorectal distention. Norepinephrine was
able to increase the expression of nerve growth factor along the
colonic epithelium, which was then able to sensitize nociceptive
nerves in the absence of inflammation (Winston et al., 2010).
Commensal bacteria that reside within the microbiota have
demonstrated the ability to respond to and produce these
catecholamines. A study by Freestone et al. (2002) demonstrated
that the growth rate of pathogenic enterohemorrhagic E. coli
was increased in the presence of norepinephrine and dopamine.
This effect was commonly observed in other pathogenic bacteria
as well (O’Donnell et al., 2006). Several commensal bacteria,
particularly Bacillus sp., have demonstrated the ability to produce
norepinephrine and dopamine (Tsavkelova et al., 2000). Thus, it
is possible that microbial-produced neurotransmitters may play
a role in the pathogenesis of visceral pain.

Endocannabinoids
Cannabinoids have long been used to treat abdominal
pain and disorders of GI motility (Izzo and Sharkey, 2010;
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Goyal et al., 2017) and are extensively utilized by patients with
IBS and IBD (Adejumo et al., 2019; Nasser et al., 2020; Bogale
et al., 2021; Hryhorowicz et al., 2021). There is evidence that the
body’s endogenous cannabinoid system, the endocannabinoid
system, which is involved in the control of gastrointestinal
motility, sensation and visceral pain, is altered in both IBS
(Camilleri et al., 2008, 2013; Fichna et al., 2013; Zhang S.-C.
et al., 2014) and IBD (Storr et al., 2009, 2010; Alhouayek and
Muccioli, 2012; Strisciuglio et al., 2018). Interestingly, the
gut microbiome interacts with the endocannabinoid system
(Hosseinkhani et al., 2021; Iannotti and Di Marzo, 2021), while
endocannabinoids have been shown to modulate microbiota-
driven changes in pain neurotransmission (Rousseaux et al.,
2007; Aguilera et al., 2013; Cani et al., 2016; Rea et al., 2021).
For example, the probiotic Lactobacillus acidophilus was able
to induce the expression of the cannabinoid CB2 receptor as
well as the µ-opiate receptor in epithelial cells both in vitro as
well as in vivo in rodent models, which in turn led to a decrease
in visceral sensitivity (Rousseaux et al., 2007). Commensal
bacteria can produce endocannabinoid-like molecules, such as
the anandamide-like N-acyl amides (Cohen et al., 2017) and the
linoleic acid metabolite 10-oxo-12(Z)-octadecenoic acid (Kim
et al., 2017). 5HT3 receptor-dependent release of anandamide
in the duodenum is known to be anti-nociceptive (Feng et al.,
2014) in a rat model, while linoleic acid metabolites have been
reported to sensitize TRPV1, and increase both mechanical and
thermal hypersensitivity (Sisignano et al., 2016). It remains to be
determined whether a microbial source of endocannabinoid-like
molecules plays a role in visceral hypersensitivity.

Vagal Afferent Stimulation by the
Microbiota
Recently, there has been exciting data indicating that vagal
afferents may be involved in nociception. Vagal afferents are
known to modify central pain processing in the spinal cord
and brain (Bonaz et al., 2016). Vagal afferents express TRPV1
(Dworsky-Fried et al., 2020), SCFA receptors FFAR3 (Nøhr
et al., 2015), as well as TLR4 (Jia et al., 2021), suggesting that
microbial metabolites released within the gastrointestinal tract
can modulate visceral pain within the host. In a recent study by Jia
et al. (2021), it was demonstrated that lipopolysaccharide (LPS)
was able to activate TLR4 on vagal afferents, which stimulated
the release of calcitonin gene-related peptide (CGRP) release
from vagal ganglia. They found that Tlr4 mRNA was enriched
in vagal afferents expressing the sodium channel Nav1.8, which
is well known to play a role in pain neurotransmission (Nguyen
and Yarov-Yarovoy, 2022). These afferents also co-expressed
CGRP (Jia et al., 2021). Although this particular study did not
evaluate visceral pain, it is well known that CGRP signaling
may be involved in afferent nerve sensitization and visceral
organ hypersensitivity (Plourde et al., 1997; Delafoy et al., 2006;
Noor-Mohammadi et al., 2021). Patients with IBD and IBS
are reported to have a decrease in vagal tone (Pellissier et al.,
2010). Subdiaphragmatic vagotomy as well as the application
of lidocaine to abdominal vagal nerves was shown to blunt the
response to colorectal distention, suggesting a potential anti-
nociceptive role of vagal afferent stimulation (Chen et al., 2008).

For a full discussion on this topic, the reader is referred to an
excellent recent review on vagal/microbial interactions that was
recently published by Bonaz et al. (2018).

CONCLUSION AND FUTURE
DIRECTIONS

The staggering increase in IBD diagnoses each year across
the developed regions of the world has been a large focus of
research and drug development, as there is a dire need for new
therapies with limited side effects. With this rapid increase in
cases, patients that achieve endoscopic remission have persistent
abdominal pain and visceral hypersensitivity. Studies to date
have shown that the microbiota are involved in the pathogenesis
of visceral hypersensitivity. However, the majority of these are
strictly observational, where germ-free or antibiotic models are
paired with amplicon sequencing to characterize a role for
the microbiota in visceral hypersensitivity. Few studies have
evaluated changes to the human metabolome in patients with
visceral hypersensitivity, with even fewer studies taking these
observed metabolomic changes and evaluating the interaction
that these metabolites have on the host pain response in both
the periphery and the central nervous system. In the last decade,
the field of metabolomics has made great advancements, and
the current techniques of targeted and untargeted analysis of
a heterogenous samples (such as the feces or biopsies) can
be utilized to identify specific metabolites unique to patients
suffering from visceral hypersensitivity. These can in turn be
tested in animal models and in vitro systems to evaluate putative
mechanisms underlying visceral pain and hypersensitivity.
This may in turn lead to future targeted treatments for
visceral pain, either through the use of FMT, pro/prebiotics,
dietary therapies, targeted antibiotics, or metabolite receptor-
agonists/antagonists. Future studies need to move away from
current observational based community profiling experiments
and investigate direct and indirect mechanisms whereby
microbial metabolites sensitize nociceptors.
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