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Cross-species comparisons
reveal resistance of human
skeletal stem cells to inhibition
by non-steroidal anti-
inflammatory drugs
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Noelle L. Van Rysselberghe1, Michael J. Bellino1, Julius A. Bishop1,
Michael J. Gardner1 and Charles K. F. Chan2,3*

1Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Stanford, CA, United States,
2Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine,
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Fracture healing is highly dependent on an early inflammatory response in which

prostaglandin production by cyclo-oxygenases (COX) plays a crucial role. Current

patient analgesia regimens favor opioids over Non-Steroidal Anti-Inflammatory

Drugs (NSAIDs) since the latter have been implicated in delayed fracture healing.

While animal studies broadly support a deleterious role of NSAID treatment to

bone-regenerative processes, data for human fracture healing remains

contradictory. In this study, we prospectively isolated mouse and human skeletal

stem cells (SSCs) from fractures and compared the effect of various NSAIDs on

their function. We found that osteochondrogenic differentiation of COX2-

expressing mouse SSCs was impaired by NSAID treatment. In contrast, human

SSCs (hSSC) downregulated COX2 expression during differentiation and showed

impaired osteogenic capacity if COX2 was lentivirally overexpressed. Accordingly,

short- and long-term treatment of hSSCs with non-selective and selective COX2

inhibitors did not affect colony forming ability, chondrogenic, and osteogenic

differentiation potential in vitro. When hSSCs were transplanted ectopically into

NSG mice treated with Indomethacin, graft mineralization was unaltered

compared to vehicle injected mice. Thus, our results might contribute to

understanding species-specific differences in NSAID sensitivity during fracture

healing and support emerging clinical data which conflicts with other earlier

observations that NSAID administration for post-operative analgesia for

treatment of bone fractures are unsafe for patients.

KEYWORDS

skeletal stem cells (SSCs), non-steroid antiinflamatory drugs, species specificity, bone
regeneration, inflammation, fracture healing
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Introduction

Non-steroidal anti-inflammatory drugs (NSAIDs) are

commonly used for pain relief after operative treatment of

fractures, and there is significant clinical interest as to whether

NSAID administration itself has a deleterious effect on fracture

healing in humans. NSAIDs inhibit cyclo-oxygenase (COX)

enzymes, including COX1 and COX2, that mitigate

prostaglandin production and pain. Whether NSAIDs affect

osteoblast progenitor differentiation, inhibit fracture healing,

and therefore increase the risk of nonunion, remains

controversial. Experimental rodent models overwhelmingly

have suggested that NSAID administration inhibits new bone

formation and fracture healing (1–4). However, the

corresponding generalizability of findings in murine models to

humans is uncertain. In humans, the role of NSAIDs on fracture

healing is inconclusive. In the clinical setting, historical

retrospective studies suggested an association between NSAID

use and fracture nonunion, but overall there is a lack of high

quality, prospective evidence to conclusively demonstrate a

relationship between NSAIDs and delayed union or nonunion

(5–8). Mixed data from isolated skeletal cell populations tested

for differentiation potential when treated with NSAID has

contributed to this dilemma (9, 10). One reason explaining

this dichotomy is the fact that bone marrow stromal cells are

isolated retrospectively by plastic adherence which yield

heterogeneous cell populations thereby leading to varying

results (11, 12). We recently demonstrated that mouse and

human osteochondrogenic cell types arise from a defined

skeletal stem cell (SSC), a self-renewing, multi-potential

population giving rise to a transient bone-cartilage-stromal-

progenitor (BCSP) that can be isolated by fluorescence-

activated cell sorting (FACS) from acute fractures based on

their differential expression of a combination of specific cell

surface markers. These cells show age-related functional

impairments and might also be useful for prospectively

assaying fracture healing outcome (13–17). Here, we reasoned

that if we compared the effect of NSAIDs on freshly purified,

functionally defined skeletal lineage cell types in mice and

humans, we might be able to delineate species-specific effects

on their response regarding bone-forming characteristics.
Materials and methods

Study approval

Studies involving the sourcing of human samples was

approved by the Stanford IRB. Animal experiments complied

with all relevant ethical regulations and were conducted under

approved protocols by Stanford’s Administrative Panel on

Laboratory Animal Care.
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Human tissue

hSSCs, human osteoprogenitors (hOPs), and human

chondroprogenitors (hCPs) were collected from acute human

fractures, and collected for transcriptomic analysis or expanded

in culture medium, and differentiated in the presence or absence

of NSAIDs or selective COX2 inhibitors as described before (13).

Tissues were collected from acute fractures undergoing direct

reduction and fixation. As per our previous observation that

hSSCs from different long bone fracture sites are functionally

identical, we have included specimens from tibial, humerus,

radius and ulna fractures of patients aged 18 to 74 years (16).

Any soft callus hematoma, which was impeding fracture

reduction and considered medical waste, was collected.
Mouse experiments

All animal experiments complied with all relevant ethical

regulations and were conducted under approved protocols by

Stanford’s Administrative Panel on Laboratory Animal Care.

Mice were maintained at the Stanford University Research

Animal Facility in accordance with Stanford University

guidelines. Animals were given food and water ad libitum and

housed in temperature-, moisture-, and light-controlled (12h

light/dark cycle) micro-insulators. Fracture experiments were

conducted on adult (10-12 weeks) male C57BL6/J mice.

Subcutaneous transplants of human SSCs were performed in

adult male NSG mice (NOD scid gamma; JAX: 005557).
Skeletal stem cell isolation

hSSC were collected as previously described (16). Briefly, the

tissue was initially minced with razor blades, collected in 0.22%

collagenase digestion buffer (Sigma-Aldrich, Cat#C6885), and

incubated at 37°C for 60 minutes under constant agitation. The

supernatant was collected and filtered through a 70 µm nylon

mesh and quenched in staining media (2% fetal calf serum, FCS,

in phosphate-buffered saline, PBS) for subsequent centrifugation

at 200 x g at 4°C and resuspension in staining media. Human

skeletal cells were separated from RBCs by ACK lysis and

washed with staining media. Cells were stained with

fluorochrome-conjugated antibodies against CD45, CD235,

CD31, TIE2, CD146, Podoplanin, CD164, CD73 (1:50;

eBioscience). Flow cytometry was performed on a FACS Aria

II. Gating schemes were established with fluorescence-minus-

one (FMO) isotype controls and DAPI was used for viability

staining. Human SSCs were isolated by CD45-CD235-CD31-

TIE2-CD146-PDPN+CD164+CD73+ and hOPs by CD45-

CD235-CD31-TIE2-CD146+PDPN- selection gated from

single living cells (DAPI-negative).
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Mouse SSCs were isolated from 10-day old femoral fracture

calluses. Stabilized mid-diaphyseal femoral bi-cortical fractures

were generated after inserting an intramedullary pin. Soft tissue-

free femurs were processed as described before (18), antibody

stained for CD45, Ter119, Thy1.1, Thy1.2, CD105, CD51, 6c3,

Tie2, CD200 (eBiosciences) prior to isolation by flow cytometry.

Mouse SSCs were isolated by CD45-Ter119-Thy1-CD105-CD51

+6c3-Tie2-CD200+ selection gated from single living cells

(Propidium Iodide-negative).
Tissue culture and in vitro differentiation

For mouse and human colony forming assays, cells were

plated at clonal density (defined number of 100 to 500 cells per

well of a 6-well plate depending on experiment) and cultured in

MEM alpha medium with 10% FBS and 1% pen strep (mouse) or

10% HPL, 1% pen strep, 0.01% heparin (human) maintained at

37°C incubator with 5% CO2. After two weeks cells were fixed,

stained with 0.5% Crystal Violet and examined under phase

microscopy and counted.

Osteogenic differentiation media (ODM) (MEM alpha

medium, 10% Fetal Bovine Serum, 1% pen strep, 100 nM

dexamethasone, 10 mM sodium b-glycerophosphate, 2.5 mM

ascorbic acid) was changed every 3 days for 14 days. Cells were

then stained with Alizarin Red to assess osteogenic potential.

Alizarin red staining was quantified using spectrophotometry.

Chondrogenesis assays were conducted in micromasses. Briefly,

cells were resuspended at a cell-density of 1.6x107 cells/ml. A 5 µl

droplet of the cell suspension was seeded under high humidity

conditions in a 24-well plate for 2 hr. After 2 hr, warmed

chondrogenic differentiation media was added to the culture

vessel . The growing micromass was fed with fresh

chondrogenesis media (DMEMhigh [Thermo Fisher Scientific,

Cat# 10569010] with 10% FBS, 100 nM dexamethasone, 1 µM

ascorbic acid 2-phosphate, and 10 ng/ml TGFb1 [Peprotech, Cat#
100-21C]) everyother day in a 37°C incubatorwith5%CO2.At day

14 the micromass was fixed and stained with Alcian Blue (Sigma-

Aldrich, Cat#A5268).
Non-steroidal anti-inflammatory
drugs (NSAIDs)

NSAIDs (Ibuprofen (Sigma; Cat#I4883), Ketorolac tris salt

(Sigma; Cat#K1136), Indomethacin (Sigma; Cat#I7378)) and the

selective COX2 inhibitor Celecoxib (Sigma; Cat# PZ0008) were

purchased, stored at RT, and diluted according to

manufacturer’s specifications. Concentrations were tested

according to previous studies based on pharmacokinetics of

plasma levels corresponding to typical and maximum intake.

NSAIDs were administered to cells in vitro at peak plasma levels

corresponding to therapeutic levels reported in pharmacokinetic

analyses and as indicated in the figures (19–21).
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Lentiviral overexpression

A lentivirus plasmid to overexpress COX2 with a dTomato tag

was constructed using Gibson cloning of pHIV-dTomato (Addgene

cat# 21374) and PTGS2 (Origene Cat#SC128243). HEK-293T cells

were transfected using calcium phosphate transfection with VSV-G

(addgene Cat #8454), psPAX2 (addgene Cat #12260), and either

ZsGreen (addgene Cat#18121) or PTGS2 dTomato. Lentiviral

particles were concentrated using Lenti-X concentrator (Takara,

Cat#631232) and then immediately used to transduce hSSCs plated

one hour prior at 80% confluency at a dilution of 1:100 with 1:1000

polybrene. Confluent cells were FACS sorted by fluorescence for

subsequent expansion and differentiation.
Subcutaneous transplantation of human
skeletal stem cells

Freshly sorted patient derived hSSCs were sorted and

expanded to confluency. 2x106 cells were mixed with 5 ul of

Matrigel and seeded on 20 mg anorganic cancellous bone graft

granulat (InterOss®, 0.25-1mm) at 4°C. The solution was

transferred to a round-bottom 96-well plate well and allowed

to solidify for 5 minutes at room temperature. The gelatinized

cell mixture was then transplanted subcutaneously in the

dorsum of NSG mice. PBS or Indomethacin was administered

at 2 mg/kg for the first 7 days after cell transplant. Grafts were

excised and analyzed 4- and 8-weeks later.
Micro-CT analysis of grafts

Graftsweredissected frommiceandfixed in2%PFAovernight.

The next day grafts were transferred to tubes containing sterile

water and scanned using a Bruker Skyscan 1276 (Bruker Preclinical

Imaging)with a source voltage of 85 kV, a source current of 200 µA,

a filter setting of AI 1 mm, and pixel size of 12 microns at 2016 x

1344. Reconstructed samples were analyzed using CT Analyser

(CTan) v1.17.7.2 and CTvox v3.3.0 software (Bruker). Sections

spanning the size of the graft were selected and upper (255) and

lower (60) grey threshold were set. The total mineralized volume

was measured for each graft assuming equal starting amounts of

anorganic cancellous bone graft granulat.
Transcriptomic analysis

Transcriptomic analysis was performed on highly purified,

double-sorted mSSCs, mBCSPs, hSSC, hOP, and hCP

populations either directly sorted into TRIzol LS (Invitrogen,

Cat#10296028) or expanded and differentiated towards the

osteogenic lineage for 14 days before collection in TRizol.

RNA was isolated with RNeasy Micro Kit (QIAGEN,
frontiersin.org
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Cat#74004) as per manufacturer’s instructions. For microarray

analysis RNA was twice amplified with an Arcturus RiboAmp

PLUS Kit (Applied Biosystems, Cat#KIT0521). Amplified cRNA

was streptavidin-labeled, fragmented, and hybridized to

Affymetrix arrays HG-U133+ (for human genome; Applied

Biosystems, Cat#901569). Arrays were scanned with a Gene

Chip Scanner 3000 (Affymetrix) running GCOS 1.1.1 software.

Raw microarray data was submitted to Gene Expression

Commons (https://gexc.riken.jp/models/2551 and https://gexc.

riken.jp/models/2552). On this platform data is normalized by

computing against the Common Reference, which is comprised

of a large number of array (mouse 11,939 and human 25,229)

experiments deposited to the National Institutes of Health Gene

Expression Omnibus (NIH GEO) database. GEXC assigns a

threshold value to each probeset using the StepMiner algorithm

and calculates a percentile value between -100% (inactive) and

+100% (active) for each available gene, allowing comparison of

human gene expression on a normalized, continuous scale. From

there, heatmaps were generated showing fold change in gene

expression of Cyclooxygenase mRNAs. For quantitative PCR

experiments the following primers were used for timecourse

experiments with hSSCs: COX-1 (PTGS1; NM_000962.4), F-

GATGAGCAGCTTTTCCAGACGAC, R-AACTGGACACCG

AACAGCAGCT; COX-2 (PTGS2; NM_000963), F- CGGTGA

AACTCTGGCTAGACAG, R-GCAAACCGTAGATGCTCAG

GGA.
Histochemistry

Cryo-sections were stained using Movat’s Pentachrome or

hematoxylin and eosin (H&E). Adjacent sections were used for

immunofluorescence (IF) with primary antibodies mouse anti-

human Human Nuclear Antigen (HNA; Abcam, Cat#ab191181)

and rabbit anti-human Osteocalcin (OC; Abcam, Cat#ab93876)

at 1:200 dilutions. The secondary antibodies goat anti-mouse

AF-488 (Abcam, Cat#ab150117) and donkey anti-rabbit AF-647

(Abcam, Cat# ab150075) were added at 1:500 dilutions and

sections counterstained with DAPI. Fluorescence microscopy

(Leica TCS Sp8) was used to capture images.
Immunocytochemistry

For immunocytochemistry, fixated cells in well plates were

permeabilized with 0.1% Triton X-100 solution and blocked with

3% BSA in PBS. After incubation with primary antibody for

Cox-2 [ThermoFisher, Cat#12375-1-AP]) overnight at 4°C,

secondary antibody was applied for 30 min at room

temperature. For nuclear staining specimen were treated with

DAPI (BioLegend, Cat# 422801). Fluorescence Quantification of

Cox-2 expression in cultured hSSCs was measured by Corrected

Total Cell Fluorescence (CTCF) and calculated using ImageJ for
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cells of five independent donors and for each time point. Each

CTCF value is the average of five cells that is the integrated

density minus the area of the selected cells multiplied by the

mean fluorescence of the background readings.
Statistics

Data are presented as mean + standard error of the mean

(SEM). Experiments were conducted at least in duplicate as

indicated in the figure legends. Statistical analysis between two

experimental groups was determined using two-tailed, unpaired

Student’s t-test. Normality was assessed by Shapiro-Wilk test

and corrected if failed by using Mann-Whitney test. If unequal

variances (F-test) were detected the t-test was adjusted with

Welch’s correction. For comparison of more than two groups

one-way ANOVA analysis was used with Tuckey’s posthoc test.

P-values were considered significant if p < 0.05. Statistical

analyses were performed using GraphPad Prism 9 (GraphPad).
Results

Microarray data of freshly purified skeletal lineage cell

populations from day-10 mid-diaphyseal femoral fractures

(Figures S1A, B) demonstrated that Cox-2 but not Cox-1

mRNA was abundantly expressed in freshly isolated mouse

SSCs (CD45-Ter119-Tie2-Thy1-6c3-CD51+CD105-CD200+)

and BCSPs (CD45-Ter119-Tie2-Thy1-6c3-CD51+CD105+)

(Figures 1A, B). Additionally, primary mouse SSCs (mSSCs)

cultured in vitro expressed high levels of COX2 (Figure 1C).

When we seeded freshly sorted fracture mSSCs at clonal density

and continuously treated expansion cultures with the common

NSAIDs Ketorolac (Keto), Indomethacin (Indo), or Ibuprofen

(Ibu) we did not observe any changes to the fibroblast colony

forming unit (CFU-F) ability as well as the size of the colonies

compared to controls (Figures 1D and S1C). This suggested that

proliferation of mSSCs was most likely not affected by NSAID

treatment. Next, we examined whether NSAIDs inhibited

chondrogenic and osteogenic differentiation capacity of mSSCs

in vitro. All three NSAIDs tested significantly inhibited

chondrogenic differentiation in mSSC compared to controls as

determined by Alcian Blue staining quantification (Figure 1E).

Similarly, in vitro osteogenic mineralization was strongly

diminished in the presence of Ketorolac and Indomethacin

(Figure 1F). These results extend the previously reported

inhibitory effect of Cox2-inhibition on bone biology in rodents

to the purified skeletal stem cell level, indicating a direct role in

perturbing endochondral bone formation processes.

Next, we examined whether COX enzymes played a

functional role in human SSCs (hSSCs). We purified human

hSSCs (CD45-CD235-CD31-TIE2-CD146-PDPN+CD164

+CD73+), as well as their downstream osteoprogenitors
frontiersin.org
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(hOPs) and chondroprogenitors (hCPs), from acute fractures at

the time of surgical open reduction and internal fixation

(Figure 2A and Figures S2A, B). Transcriptomic analysis

revealed that COX-1 mRNA was stably expressed in purified

uncultured and differentiating patient-derived hSSCs (Figure 2B

and Figure S2C). COX-2 expression, on the other hand, was high

in freshly isolated hSSCs but rapidly lost gene and protein

expression upon early commitment towards the osteogenic

lineage as shown by qPCR and immunocytochemistry time-

course analyses (Figures 2B–E). In line with this observation,

COX-2 expression was not detectable in freshly isolated

committed osteoprogenitors (hOPs; CD45-CD235-CD31-
Frontiers in Endocrinology 05
TIE2-CD146+PDPN-) (Figures S2D, E). Interestingly, early

chondrocyte progenitor cells (hCPs) maintained high levels of

COX-1 and COX-2 expression. To test the influence of the

presence of COX-2 in hSSCs during osteogenic differentiation

we lentivirally overexpressed primary hSSCs with a COX-2

construct and induced osteogenesis. Compared to GFP-

transduced cells, hSSCs from three different patients showed

strongly diminished in vitro mineralization when COX-2 was

continuously expressed (Figure 2F). Taken together, this data

indicates that primary bona fide hSSCs express COX-2 in an

undifferentiated state but, in contrast to mSSCs, might depend

on its downregulation for osteogenic differentiation.
A B

D

E

F

C

FIGURE 1

Mouse skeletal stem cells depend on Cox2 for functional osteochondrogenic differentiation. (A) The mouse skeletal stem cell (SSC) lineage tree
as defined by surface marker expression profiles with the SSC at the apex and the downstream bone cartilage stroma progenitor (BCSP) which
gives rise to committed bone, cartilage, and stroma progenitor cells. (B) Microarray analysis showing Cox-1 and Cox-2 expression of freshly
purified SSCs and BCSPs from fracture calluses of four different mice. (C) Representative immunocytochemistry (ICC) staining of Cox2 of
fracture-derived SSCs expanded in culture for five days. (D) Representative images of colony-forming unit assays of fracture-derived SSCs
stained with Crystal Violet expanded in the absence or presence of NSAIDs (left; Ketorolac 0.3 µg/ml, Ibuprofen 3 µg/ml, or Indomethacin 0.3
µg/ml) and quantification thereof (right). Replicates from n=3 mice. (E) Representative images of chondrogenesis assays of fracture derived SSCs
stained with Alican Blue differentiated in the absence or presence of NSAIDs (left) and quantification thereof (right). Replicates from n=4 mice.
(F) Representative images of osteogenesis assays of fracture derived SSCs stained with Alizarin Red S differentiated in the absence or presence
of NSAIDs (left) and quantification thereof (right). Replicates from n=4 mice. All data shown as mean + standard error of mean (SEM). Results
from at least two independent experiments. Statistical testing versus control group by unpaired Student’s t-test with Welch’s correction for
unequal variances and Mann-Whitney test for non-normality where necessary.
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Next, we surveyed reported peak plasma levels of common

NSAIDs in human patients and treated colony-forming unit

fibroblast assays with the average of these concentrations (Figure

S3A) (19–21). Ketorolac (3 µg/ml), Indomethacin (3 µg/ml), or

Ibuprofen (30 µg/ml) treatment did not alter clonogenicity of

hSSCs compared to controls (Figure 3A). In contrast to mSSCs,
Frontiers in Endocrinology 06
chondrogenesis of hSSCs was also unaffected in the presence of

these NSAIDs (Figure 3B). Using in vitro bone-forming assays

we tested low and peak plasma concentration levels of NSAID

and treated hSSC cultures either short-term (first three days) or

continuously (throughout differentiation) with NSAIDs.

Regardless of NSAID supplementation and duration of
A B

D E

F

C

FIGURE 2

COX2 downregulation is necessary for osteogenic differentiation of human SSCs. (A) The human skeletal stem cell (hSSC) lineage tree as
defined by surface marker expression profiles with the hSSC at the apex and the downstream bone cartilage stroma progenitor (hBCSP) which
gives rise to committed bone (hOP) and cartilage (hCPs) progenitor cells. (B) Microarray analysis showing COX-1 and COX-2 expression of
freshly purified (uncultured) hSSCs from human fracture callus tissue of three different patients as well as their expression after two-week
osteogenic differentiation from hSSCs. (C) Representative IHC images of COX2 staining in freshly purified hSSCs at different timepoints during in
vitro osteogenesis. (D) Related quantitative PCR of COX-2 expression in the same experiment. n=12 independent replicates of hSSCs from four
patients performed in triplicates. (E) Quantification of COX2 ICC staining by CTCF (corrected total cell fluorescence). n=20 independent
replicates of hSSCs from two patients (n=10 each). Statistical testing between timepoints by one-way ANOVA with Tukey’s posthoc test. (F)
Alizarin Red staining and quantification of hSSCs (with patient age; yo: years old) of lentivirally overexpressed COX2 or ZsGreen controls during
osteogenic differentiation. n=6 independent replicates of hSSCs from three patients performed in duplicate. Statistical testing by unpaired
Student’s t-test. All data shown as mean ± SEM. All results from at least two independent experiments.
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treatment, there was no effect on osteogenic potential of hSSCs

(Figure 3C and Figures S3B, C). Importantly, when we assayed

the effect of the commonly used selective COX2-inhibitor

Celecoxib at varying concentration, we could not observe any

effect on osteogenic differentiation either (Figure 3D). Since

NSAIDs could act downstream of the stem cell level or on a

putative distinct SSC lineage, we also asked if short-term or

continuous NSAID administration differentially affected

osteogenic differentiation of CD146-positive osteoprogenitors

(hOPs), previously described as a key source of bone formation

in humans (22). We found that neither low nor high doses of

NSAIDs added during differentiation, short-term or

continuously, inhibited bone mineralization in hOPs (Figures

S3D-F). This suggested a species-specific effect of COX-
Frontiers in Endocrinology 07
inhibition on bone-forming cell types between mice

and humans.

Lastly, we sought to explore if exposure to NSAIDs affects de

novo bone formation reflective of the fracture healing process in

vivo. SSCs are able to recreate skeletal structures, if transplanted

as purified single cell solution to ectopic sites, provided access to

vascular ingress (13, 14, 23). Thus, we transplanted primary

patient-derived hSSCs subcutaneously into immune-

incompetent NSG mice that were treated intraperitoneally

with Indomethacin or PBS as control daily for one week

(Figure 4A). We reasoned that the lack of adaptive immunity

in NSG mice would be well suited to assess a direct effect of

NSAIDs on the hSSC function. As expected, patient hSSCs

generated grafts complete with bone tissue at least in part
A B

D

C

FIGURE 3

NSAIDs do not alter in vitro functionality of human SSCs. (A) Representative images of CFU-F assays of fracture derived hSSCs stained with Crystal Violet
expanded in the absence or presence of NSAIDs (left; Ketorolac 3 µg/ml, Ibuprofen 30 µg/ml, or Indomethacin 3 µg/ml) and quantification thereof
(right). n=6 independent replicates from hSSCs of two patients performed in triplicate. (B) Representative images of chondrogenesis assays of fracture
derived hSSCs stained with Alican Blue differentiated in the absence or presence of NSAIDs (left) and quantification thereof (right). n=11 independent
replicates from hSSCs of five patients performed at least in duplicate. (C) Continuous NSAID treatment of osteogenic differentiation assays from hSSCs.
n=8 independent replicates from hSSCs of four patients performed in duplicate. (D) Osteogenic differentiation of hSSCs in the presence of COX2-
specific inhibitor Celecoxib. n=12-18 independent replicates from hSSCs of six patients performed at least in duplicates. All data shown as mean ±
standard error of mean (SEM). All results from at least two independent experiments. Statistical testing versus control group by unpaired Student’s t-test
with Welch’s correction for unequal variances where necessary.
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forming through a cartilage intermediate (Figures 4B–E and

Figures S4A–C). At four and eight weeks, µCT analysis showed

no differences in mineralization between hSSC-derived grafts

from seven independent patients either transplanted into mice

receiving NSAID doses or to patient-matched PBS controls

(Figure 4C). Histomorphometric quantification of bone tissue

in grafts confirmed these results. Importantly, immunostaining

revealed that osteocalcin-expressing cells in grafts were of

human origin and did not differ in frequency between groups

(Figures 4F, G). In summary, osteochondrogenic differentiation
Frontiers in Endocrinology 08
of fracture-derived hSSC lineage populations is facilitated in the

absence of COX2, providing a rationale for the discrepancy

observed between animal experiments and human studies.
Discussion

The effects of NSAIDs on osteogenic stem cell differentiation

and fracture healing remain controversial and appear to vary

with investigated species and cell type. Here, we compared
A

B

D E

F G

C

FIGURE 4

Indomethacin does not interfere with in vivo ossicle formation of human SSCs. (A) Experimental schematic for in vivo grafting of hSSCs and
treatment of mice with Indomethacin. (B) Three-dimensional microCT reconstruction of mineralized graft tissue. (C) Quantification of
mineralized graft tissues (total bone volume) at 4- (n=4) and 8-weeks (wks; n=3) post transplant between PBS and Indomethacin treated mice.
Results from seven experiments with hSSCs from distinct patients. (D) Representative Movat Pentachrome staining of sectioned grafts (B, Bone;
FC, Fibrocartilage; V, Blood vessel; GM, Graft material). (E) Histomorphometric quantification of graft bone volume (each data point represents
average of three non-adjacent sections per patient hSSC-derived graft). (F) Immunohistochemistry showing graft derived osteogenic cells are of
human origin. Human Nuclear Antigen (HNA; green), Osteocalcin (OCN; red), DAPI (blue). (G) Quantification of OCN-expressing cells of human
origin based on IHC. Data shown as mean + SEM. Statistical testing by paired Student’s t-test (n.s., not significant).
frontiersin.org

https://doi.org/10.3389/fendo.2022.924927
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Goodnough et al. 10.3389/fendo.2022.924927
prospectively isolated, highly purified, homologous populations

of skeletal stem cells from mice and humans and report that

COX enzymes may be dispensable for chondrogenic and

osteogenic differentiation in fracture-derived hSSCs but

not mSSCs.

In mice we found that NSAIDs repressed chondrogenic

and osteogenic differentiation of mSSCs from fractures. In

general, NSAIDs appear to inhibit murine fracture healing

based on previous evidence. Perhaps most convincingly,

genetic Cox-2 null mice demonstrate bone healing defects

(5). From the perspective of bone marrow stromal cells, it

has previously been reported that NSAIDs are inhibitory at the

osteogenic differentiation level, although in a non-cell

autonomous model (10). Although NSAIDs had no effect on

serum markers of fracture healing or biomechanical properties

of fracture callus in rat fractures (24), there is also evidence that

in rat long bone fractures, prolonged NSAID administration

inhibits BMSC differentiation and fracture callus formation

(25). We have extended these observations by demonstrating

an inhibitory effect of NSAIDs on osteochondrogenic

differentiation in the highly purified and characterized mSSC,

a bona fide skeletal stem cell, that has been shown to play an

essential part in fracture healing (14–17, 26, 27). However, the

limitations translating genetically homogenous mouse models

to complex multi-factorial disease processes are well-

documented (28, 29). Subsequently, we have also studied the

homologous human cell population, the hSSC, and made

distinct observations (13, 16).

We found no effect of NSAIDs on osteogenic and

chondrogenic differentiation of hSSCs, which is not fully

concordant with many previous human studies but is

consistent with the strongest available clinical evidence. A

previous analysis of human bone marrow stromal cells did

find a specific inhibitory effect of multiple NSAIDs on

chondrogenesis but not osteogenic differentiation (9), while

another study demonstrated an inhibitory effect of NSAIDs on

osteogenesis (30). These conflicting results might have several

explanations, including the fact that cells were derived from

uninjured tissue through bone marrow aspirates as well as pro-

longed selection and growth in culture. The present study used

flow cytometrically purified defined skeletal progenitor cell

types with minimal in vitro expansion. Our earlier work

could show that fracture-derived SSCs behave differently

than their steady-state counterparts (27) and that selection of

heterogenous cell populations by plastic adherence leads to

variations in experimental readout (11, 12, 31). Strikingly, in

this study we also observed a lack of effect of NSAIDs on

differentiation of lineage restricted osteoprogenitors (hOPs;

CD146-positive), which contain a previously described

populations of perivascular bone marrow stromal cells with

stem cell-like features (22). It is feasible to assume that by

initiating differentiation experiments at the hSSC level with
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cells undergoing maturation through more committed

lineage progenitor stages before terminal osteochondral

differentiation, our findings of a lack of effect of NSAIDs on

experimental outcome can be extrapolated to human BMSCs,

which contain a heterogeneous mixture of stem and progenitor

cell types. While COX1/2 are expressed at time of isolation of

hSSCs from fracture sites, COX2 expression becomes

attenuated during differentiation, suggesting an alternate role,

if any for this enzyme at sites of skeletal injury. We also

observed that lentiviral overexpression of COX2 in hSSCs

actually prevented in vitro mineralization. This could be a

consequence of superphysiological COX2 levels. Moving

forward this could be mitigated by using more specific

transcriptional control with other genetic models. We will

also have to test if the same results are obtained when a

catalytically inactive COX2 variant is used as a control.

Our work might have not covered cell types highly

enriched for “MSC”-like cells that have been shown to

modulate local and systemic inflammatory responses (32),

and may do so at sites of fracture as well. Future studies will

have a closer look at NSAID effects on angiogenesis and

immune cells during early fracture healing in humans.

However, our in vivo results suggest that even in a

monocyte/macrophage enriched environment, as present in

NSG mice, which have been implicated in NSAID mediated

suppression of osteogenesis, bone formation from SSCs is not

impaired in the presence of NSAID drugs (10).

In the clinical setting, there remains a lack of convincing

evidence, but not controversy, surrounding the use of NSAIDs

in fracture healing (5–7, 33). A recent meta-analysis concluded

that association of nonunion with NSAID use was

predominantly found in studies with insufficient cohort sizes,

unclear definition of outcomes and even fraud allegations,

stating that there were a dearth of high quality studies in

fracture literature (8). Another review cited lack of strong

evidence against NSAID use in fracture healing (34).

In conclusion, there is great interest in safe post-operative

analgesia, given the current opioid crisis, especially during

fracture care in orthopaedic surgery. Currently, much of our

understanding of the role of NSAIDs in fracture healing comes

from rodent models. Here, we demonstrate that NSAIDs have

disparate and species-specific effects on osteochondrogenic

differentiation of homologous populations of murine and

human fracture-derived SSCs, which are prospectively isolated

and a highly purified cell population. In contradistinction to the

mSSC, the hSSC is unaffected by NSAID administration. COX

enzyme-specific mechanisms in SSCs likely evolved to

synchronize priming of SSC-dependent regenerative responses

with recruitment of inflammatory cell types that may also

facilitate other aspects of the regenerative process. COX1

might be differentially regulated at the stem cell level in mice

while, for instance, recent findings have also shown that there are
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differences between humans and mice in their regulation of

COX2 expression (18). Finally, the expression of COX1 versus

COX2 in human versus mouse SSCs is a species-specific

regulatory switch that might serve to maintain stem cell

identity rather than promoting differentiation. Thus, caution

should be used in extrapolating mechanistic data from

experimental animal models to clinical practice. Our data

provides evidence from a mechanistic perspective that NSAID

does not appear to impair human skeletogenic stem and

progenitor cells and contributes to the hypothesis that NSAID

use might be safe after fractures in humans in some contexts.

Additionally, hSSCs isolated from acute human fractures

provide a model with which to study how common

medications may influence fracture healing.
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