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Abstract
Purpose: An accurate and reliable target volume delineation is critical for the
safe and successful radiotherapy. The purpose of this study is to develop new
2D and 3D automatic segmentation models based on RefineNet for clinical tar-
get volume (CTV) and organs at risk (OARs) for postoperative cervical cancer
based on computed tomography (CT) images.
Methods: A 2D RefineNet and 3D RefineNetPlus3D were adapted and built
to automatically segment CTVs and OARs on a total of 44 222 CT slices
of 313 patients with stage I–III cervical cancer. Fully convolutional networks
(FCNs), U-Net, context encoder network (CE-Net), UNet3D, and ResUNet3D
were also trained and tested with randomly divided training and validation sets,
respectively. The performances of these automatic segmentation models were
evaluated by Dice similarity coefficient (DSC), Jaccard similarity coefficient,
and average symmetric surface distance when comparing them with manual
segmentations with the test data.
Results: The DSC for RefineNet,FCN,U-Net,CE-Net,UNet3D,ResUNet3D,and
RefineNet3D were 0.82, 0.80, 0.82, 0.81, 0.80, 0.81, and 0.82 with a mean con-
touring time of 3.2, 3.4, 8.2, 3.9, 9.8, 11.4, and 6.4 s, respectively. The generated
RefineNetPlus3D demonstrated a good performance in the automatic segmen-
tation of bladder,small intestine, rectum, right and left femoral heads with a DSC
of 0.97, 0.95, 091, 0.98, and 0.98, respectively, with a mean computation time of
6.6 s.
Conclusions: The newly adapted RefineNet and developed RefineNetPlus3D
were promising automatic segmentation models with accurate and clinically
acceptable CTV and OARs for cervical cancer patients in postoperative radio-
therapy.
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1 INTRODUCTION

Cervical cancer is one of the most common gynecologi-
cal malignancies and the second most prevalent cancer

This is an open access article under the terms of the Creative Commons Attribution License,which permits use,distribution and reproduction in any medium,provided
the original work is properly cited.
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in females.1 Radiotherapy is one of the main treatment
options for cervical cancer in both curative and adjuvant
settings. With the development of intensity-modulated
radiotherapy (IMRT) and volumetric modulated arc
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therapy (VMAT), the irradiation to surrounding normal
organs is reduced, as well as the associated acute
and chronic toxicity compared with conventional 2D
and 3D conformal radiotherapy.2,3 IMRT and VMAT
use numerous beam segments to modulate the beam
intensity to deliver steep dose gradients and shapes
to achieve conformal dose tightly to target volumes,
thereby sparing the normal tissue.3,4 Therefore, an
accurate and reliable target volume delineation is criti-
cal for the safe and successful application of IMRT and
VMAT in patients with cervical cancer.

There is a clear consensus regarding the clinical tar-
get volume (CTV) in radical and postoperative radiother-
apy settings using IMRT and VMAT for patients with
cervical cancer.5 Manual delineation is still the standard
practice in most clinics. However, manual delineation is
not only time-consuming, but also prone to intra- and
interobserver variations. CTV variations of up to 19-
cm differences and twofold volume differences were
reported, which resulted in significant dosimetric differ-
ences during IMRT and VMAT delivery.6 On the other
hand, with the adoption of image-guided and adaptive
radiotherapy, a fast and accurate automatic segmen-
tation of target volumes and organs at risk (OARs) is
urgently needed.

Previously, multi-atlas-based and hybrid techniques
have been considered the state-of -the-art for auto-
matic segmentation.7 Atlas-based methods used pre-
vious manually contoured targets to match the testing
images8 and achieved reasonable accuracy on OARs
segmentations, especially for head-and-neck cancer
patients.9 However, it relies heavily on the accuracy
of deformable image registration and selected atlases
and requires significant manual edition.10,11 On the
other hand, CTV contouring for cervical cancer is dif-
ferent from OARs as CTV contains the gross tumor and
subclinical malignant regions with unclear boundaries,
which is heavily depending on the clinical experiences
of oncologists. Torheim et al. used a machine learning
method (Fisher’s linear discriminant analysis) to con-
tour cervical cancer automatically based on MRI images
and achieved better results compared to each individual
classifier models.12 However, handcrafted features are
required for machine learning–based methods and may
not be robust for varying image appearances.13

With the development and wide application of deep
learning, deep learning–based automatic segmenta-
tion has shown a superior performance in the reduc-
tion of target volume delineation variation for many
tumors.14–16 As for cervical cancer, three paralleled
convolutional neural networks (CNNs) with the same
architecture trained following different image prepro-
cessing methods had been applied.17,18 However,CNNs
suffer from the problem of reducing the resolution
of original images while increasing the ambiguity of
object boundaries inevitably.19 Recently, the lightweight
RefineNet was introduced to refine object detectors for

autonomous driving, which generates high-resolution
semantic feature by fusing coarse high-level features
with finer grained low-level features.20 The purpose
of this study is to modify the RefineNet and develop
a RefineNetPlus3D for the automatic segmentation of
CTV and OARs for postoperative cervical cancer based
on computed tomography (CT) images, as well as to
investigate the accuracy of the RefineNetPlus3D-based
automatic segmentation algorithm by comparing it with
several other deep learning methods.

2 MATERIALS AND METHODS

2.1 Patients and contours

Patients with cervical cancer under postoperative IMRT
and VMAT in authors’ hospital from January 2018 to
September 2020 were retrospectively reviewed in this
study.All the patients were immobilized by a thermoplas-
tic abdominal fixation device in the supine position. CT
simulation was scanned from the iliac crest to the ischial
tuberosities with a 16-slice Brilliance Big Bore CT scan-
ner (Philips Healthcare, Cleveland, OH) at 3-mm thick-
ness. Intravenous contrast was injected during CT scan
to enhance the contrast of target volumes. CT images
were transferred using the Digital Imaging and Commu-
nications in Medicine format and reconstructed using a
matrix size of 512 × 512.

Manual segmentations of the CTV and OARs were
delineated and verified by two senior radiation oncolo-
gists with more than 10 years of clinical experience for
cervical cancer and were taken as a ground truth for
the evaluation of automatic segmentations. The target
contour guideline of the Radiation Therapy Oncology
Group (RTOG) 0418 and its atlas on the RTOG web-
site was followed.21 After the delineation, central vaginal
CTV and regional nodal CTV were interpolated into a
combined CTV for the sake of easy modeling of auto-
matic segmentation.

2.2 Automatic 2D and 3D segmentation
models

The adapted RefineNet in this study consists of an
encoder–decoder architecture, in which the left encod-
ing part uses a residual network (ResNet50) as a
backbone network to down-sample and extract tumor
features from original images progressively, and the
right decoding part consists of a residual convolu-
tional unit (RCU), chained residual pooling (CRP), and
fusion to recover the features in the final mask with the
same shape as in the original images,22,23 as shown in
Figure 1a. The ResNet layers in the encoding part can
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F IGURE 1 The architecture of 2D automatic segmentation models: (a) the architecture of lightweight RefineNet50; (b) the architecture of
FCN; (c) the architecture of U-Net; (d) the architecture of CE-Net. CE-Net, context encoder network; FCN, fully convolutional network

be naturally divided into four blocks according to the
resolution of the output feature maps. The resolution of
the feature map will be reduced to one half when pass-
ing from one block to the next. Typically, the final feature
map output ends up being 32 times smaller in each
spatial dimension than the original image. Figure 1b–d
demonstrates the encoder–decoder architectures of
fully convolutional networks (FCN), U-Net, and context
encoder network (CE-Net) for comparison.24–26

In order to use the layer thickness information more
efficiently for 3D medical images, a 3D automatic
segmentation model, RefineNetPlus3D, was developed
based on the 2D RefineNet model mentioned earlier
with all 2D operations replaced with their corresponding
3D counterparts. In the RefineNetPlus3D, the encoder
part aggregates semantic information by reducing spa-
tial information to learn features from part to whole.
The decoder part receives semantic information from
the bottom. We replaced the whole RefineNet decoder
part with the 3D Refine block. It combines the RCU,
CRP, and fusion block. In the 3D Refine block, many
ReLU activations and batch normalization were added
to solve the problem of gradient vanishing in the RCU,
CRP, and fusion. Additionally, the first layer of down-
and up-sampling layers was modified to a rate of 1/2
to decrease the feature loss problem. The RefineNet-
Plus3D has a shortcut connection that transfers low-
level features from the encoder to the decoder and
proposes an efficient and generic way of fusing coarse
high-level features (rich semantic information for clas-
sification) with finer grained low-level features (more

details information for clear boundary) to generate high-
resolution semantic features. An architecture of the
RefineNetPlus3D is shown in Figure 2. UNet3D and
ResUnet3D architectures were also applied in this study
for the evaluation of the performance of our developed
RefineNetPlus3D.27,28

The training and testing for all the models were imple-
mented using a GeForce RTX 2080 Ti graphics card.
The training sets (which consist of CT images and man-
ual segmentation labels) were used to tune the param-
eters of the networks with adopted data augmentation
methods, such as random rotate, to enlarge the training
sets. A weight decay of 0.8 and a learning rate policy
of poly with an initial learning rate of 2e−4 for 44 train-
ing iterations and 1e−4 for 300 training iterations were
applied for 2D and 3D models, respectively. The Dice-
coefficient and binary gross-entropy loss function were
used in the study for 2D and 3D models, respectively.
The optimizer chose Adam that can quickly converge
the network for 2D and 3D models. We chose 2 as the
final batch size for the three-dimensional network and
6 for two-dimensional selection under computer perfor-
mance constraints.

2.3 Model evaluation

The 2D and 3D models for CTV and OARs were
trained and validated with randomly divided train-
ing and validation cohorts. Dice similarity coefficient
(DSC), Jaccard similarity coefficient (JSC), and average
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F IGURE 2 The architecture of generated 3D automatic segmentation model: (a) the architecture of RefinenetPlus3D; (b) the detail of 3D
Refine block (RCU, CRP, and fusion) in the RefinenetPlus3D. CRP, chained residual pooling; RCU, residual convolutional unit

TABLE 1 Clinical characteristics of enrolled patients and images

Data sets
Characteristic Training sets Validation sets Testing sets p

Total number 251 31 31

Age 0.001

Mean 54.08 55.03 53.47

Median 55 55 53

Range 21–78 27–80 21–78

SD 10.98 10.59 8.80

Slice number 35 324 4394 4504

Histological type 0.21

Squamous cell carcinoma 209 24 26

Adenocarcinoma 22 7 4

Adenosquamous carcinoma 7 0 0

Unknown 13 0 1

Clinical stage 0.26

I 137 19 23

II 112 12 8

III 2 0 0

p Value is calculated from the univariate association test between subgroups.Mann–Whitney U-test for continues variables,Fisher’s exact test for categorized variables.

symmetric surface distance (ASSD) were applied to
evaluate the performance of automatic models by
comparing them with manual segmentations in the test
data sets.

The DSC is defined as

Dice similarity coefficient =
2 |||Vpre ∩ VGT

||||||Vpre
||| + |VGT| (1)

where Vpre represents the region of interest (ROI) auto-
matically contoured by the deep learning algorithm, and
VGT represents the ground truth ROI created by the
oncologist.A value of 1 indicates a perfect concordance
between two contours. ASSD is the average symmet-

ric surface distance from points on the boundary of
prediction to the boundary of ground truth and from
points on the boundary of ground truth to the boundary
of prediction29:

ASSD =
1|S (A)| + |S (B)|( ∑

A𝜖S(A)

minB𝜀S(B)d (SA, S (B)) +
∑

B𝜖S(B)

minA𝜀S(A)d (SB, S (A))

)

(2)

where A and B were the surface voxels. An ASSD
value of 0 mm indicates perfect segmentation. The
JSC is used to compare the similarities and differences
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F IGURE 3 Typical automatic delineation results from 2D models: (a) clinical target volume contours in comparison with manual contours;
(b) automatic delineation results of organs at risks in comparison with manual contours

between limited sample sets. The larger the JSC value,
the higher the sample similarity30:

Jaccard (A, B) =
|A ∩ B||A ∪ B| (3)

where A represents the ground truth, and B represents
the predictive image.

2.4 Statistical analysis

The models were built using Pytorch1.5.0, Keras 2.4.0
and Python 3.7. The characteristics of patients were
analyzed using Fisher’s exact test and the Mann–
Whitney U-test. Statistical analyses were performed
using SPSS version 19.0 (SPSS, Inc. IBM, Armonk, NY,
USA) with a p < 0.05 considered to be statistically
significant.

3 RESULTS

A total of 313 patients at a median age of 55 years
old (range 21–80 years) with stage I–III cervical can-
cer were enrolled in this study. Patients were randomly
divided into a training (251 patients) and validation set
(31 patients) and a testing set (31 patients), respectively,
with a total of 44 222 CT slices.Most patients were diag-
nosed as squamous cell carcinoma. Detailed character-
istics of enrolled patients are shown in Table 1.

Figure 3 shows the performance of 2D automatic
segmentation models in comparison with manual con-
tours for the CTVs and OARs. Quantitative evaluation
among four 2D models is shown in Table 2.The DSC for
RefineNet, FCN, U-Net, and CE-Net for CTV contouring
were 0.82, 0.80, 0.82, and 0.81 with a mean contouring

time for these four models being 3.2, 3.4, 8.2, and 3.9 s
respectively. The mean computing time of RefineNet,
FCN, U-Net, and CE-Net for these OARs was around
3.9, 8.2, 4.8, and 4.7 s, respectively.

Figure 4 shows the performance of 3D models
through the visualization of automatically segmented
CTV and OARs for one case of a cervical cancer patient.
Quantitative evaluation for these three 3D models is
shown in Table 3. The DSC for UNet3D, ResUNet3D,
and RefineNetPlus3D was 0.80, 0.81, and 0.82,
respectively, and a mean contouring time for these three
models was 9.8, 11.4, and 6.4 s, respectively. The gen-
erated RefineNetPlus3D demonstrated a good perfor-
mance with a DSC of 0.97, 0.95, 0.91, 0.98, and 0.98
for bladder, small intestine, rectum, right and left femoral
heads, respectively. The mean computing time of the
RefineNetPlus3D for these OARs was around 6.6 s.

4 DISCUSSION

Accurate and quick segmentations of target volumes
and OARs are critical to the precise IMRT and VMAT
optimization and delivery, as well as for the applica-
tion of adaptive radiotherapy. In this study, new 2D
and 3D automatic segmentation models were adapted
and generated based on RefineNet for the CTV and
OARs of patients with cervical cancer in postopera-
tive radiotherapy.Both adapted 2D RefineNet and devel-
oped RefineNetPlus3D achieved a better performance
in CTV segmentation and similar performance in OARs
segmentation in comparison with other generally used
deep learning algorithms with a shorter computing
time.

During IMRT and VMAT optimization, the radiation
dose is usually prescribed to tumor target volumes to
achieve adequate coverage, so as to maximize tumor
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TABLE 2 Performance evaluations of 2D automatic segmentation models for CTV and OARs

Parameters OARs/models RefineNet U-Net CE-Net FCN

JSC CTV 0.72 0.71 0.70 0.68

Bladder 0.92 0.91 0.91 0.92

SI 0.85 0.86 0.86 0.86

FR 0.95 0.95 0.95 0.94

FL 0.95 0.94 0.95 0.94

Rectum 0.83 0.81 0.82 0.82

DSC CTV 0.82 0.82 0.81 0.80

Bladder 0.95 0.95 0.94 0.96

SI 0.90 0.90 0.91 0.91

FR 0.97 0.97 0.97 0.97

FL 0.97 0.96 0.97 0.97

Rectum 0.88 0.87 0.89 0.88

ASSD CTV 4.17 4.18 4.30 4.58

Bladder 1.24 1.28 1.34 1.29

SI 2.64 2.44 2.42 2.59

FR 0.54 0.49 0.50 0.57

FL 0.49 0.48 0.49 0.50

Rectum 1.27 1.61 1.48 1.31

Contouring time (s) CTV 3.2 8.2 3.9 3.4

Bladder 3.9 8.3 3.8 3.8

SI 3.9 8.2 3.6 4.1

FR 3.9 8.2 4.2 3.6

FL 3.9 8.1 3.8 4.1

Rectum 3.9 8.0 3.9 3.3

Abbreviations: ASSD, average symmetric surface distance; CE-Net, context encoder network; CTV, clinical target volumes; DSC, Dice similarity coefficient; FCN, fully
convolutional network; FL, left femoral head; FR, right femoral head; JSC, Jaccard similarity coefficient; OARs, organs at risk; SI: small intestine.

control and minimize radiation toxicities.31 However, the
poorly defined tumor-to-normal tissue interface of cer-
vical cancer due to the lack of tissue contrast on CT
images makes CTV contouring a challenging task and
results in high intra- and interobserver variability.6 Deep
learning–based automatic segmentation is increasingly
investigated to improve the delineation consistency and
accuracy. In this study, both 2D (RefineNet, CE-net, U-
Net, FCN) and 3D (UNet3D, ResUNet3D, RefineNet-
Plus3D) automatic segmentation models based on deep
learning were investigated to segment automatically the
CTV of cervical cancer for postoperative radiotherapy
and achieved a DSC of 0.82, 0.81, 0.82, 0.80, 0.80, 0.81,
and 0.82, respectively. Similarly, Ju et al. reported a DSC
of 0.82 using a Dense V-Net for the CTV delineation for
cervix cancer radiotherapy.32 However, the DSC of our
models in this study is not as good as those of CNNs
CNNs in Rhee et al.,33 3D CNN in Wang et al.,34 and 2.5
CNN networks (DpnU-Net) in Liu18 with a reported DSC
around 0.86 for CTV of cervical cancer. This indicated
that there is a potential improvement of our adapted
2D and 3D RefineNet. Other factors that may affect the

contouring accuracy need further investigation, such as
image and manual contour quality.

Volume definition of OARs is a prerequisite for
meaningful 3D treatment planning and for accurate
dose reporting. Studies reported that the deep learn-
ing algorithm was superior to the other state-of -the-art
segmentation methods and commercially available soft-
ware in the automatic segmentation of OARs, such as
rectum and parotid.35 In this study, both the 2D and 3D
models demonstrated a good performance in automatic
segmentation for bladder, right and left femoral heads.
3D models performed a bit better than 2D models in
small intestine and rectum with a mean DSC of 0.90
versus 0.95, 0.88 versus 0.91, respectively, as shown in
Tables 2 and 3. As the RefineNetPlus3D developed in
this study employed more high-level feature extraction
hidden layers by using RCU, CRP, and Fusion modules
to aggregate contextual features, it improved the recog-
nition of the unclear boundaries of some parts of the
rectum and the small intestine.

Generally,automatic segmentation models performed
better in bladder and femoral heads with DSC higher
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F IGURE 4 Typical automatic delineation results from 3D models: (a)–(c) clinical target volumes in axial, sagittal and coronal views; (d)–(f)
contours of organs at risks in axial, sagittal, and coronal views, where yellow lines represent manual contours, purple for RefinenetPlus3D, blue
for 3DResUNet, and green for 3DUNet contours

than 0.97, which has obvious contour boundaries. The
relatively poor performance of these models in rectum
may be due to their small volume and unclear outlines.
Similarly, Elguindi et al. reported a DSC of 0.93 ± 0.04
and 0.82 ± 0.05 for bladder and rectum, respectively,
using a two-dimensional FCN and DeepLabV3+ with
MRI images.36 Balagopal et al. also presented a simi-
lar DSC of bladder (0.95) and rectum (0.84) with deep
learning–based auto-segmentation.37

Saving the contouring time of radiation oncolo-
gists is an inherent product of automatic segmen-
tation of the CTV and OARs. The average manual
CTV and OAR contouring time for one cervical can-
cer patient was 90–120 min.38 In this study, the pro-
posed algorithms took only half the computation time
spent when using U-Net under the same computer
configuration. Moreover, the contouring time was only
4 s for 2D RefineNet and around 6 s for RefineNet-

Plus3D, respectively. On the other hand, the current
results in cervical CTV and OAR contouring demon-
strate that RefineNetPlus3D is able to learn high-level
semantic features well, and this method may also have
the potential to be used for volume delineations in
other cancers; we will explore this possibility in future
studies.

The model analysis in this study was based on the
whole image for segmentation prediction, not just focus-
ing on the target area, which makes an automatic seg-
mentation of CTV for cervical cancer more challenging.
Images without target volumes acted as negative sam-
ples during modeling and affected the accuracy of the
models. A good balance between positive and negative
samples may further improve the performance of the
models. It would also be a good exploring direction to
improve the 2D and 3D models when more data were
collected.
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TABLE 3 Evaluation of 3D automatic segmentation models for CTVs and OARs

Parameters OARs/models UNet3D ResUNet3D RefineNetPlus3D

JSC CTV 0.67 0.69 0.69

Bladder 0.93 0.94 0.94

SI 0.88 0.90 0.90

FR 0.94 0.96 0.96

FL 0.95 0.96 0.96

Rectum 0.78 0.84 0.84

DSC CTV 0.80 0.81 0.82

Bladder 0.96 0.97 0.97

SI 0.93 0.95 0.95

FR 0.97 0.98 0.98

FL 0.97 0.98 0.98

Rectum 0.88 0.91 0.91

ASSD CTV 3.56 3.46 2.13

Bladder 0.59 0.48 0.30

SI 1.68 1.45 1.02

FR 0.34 0.23 0.16

FL 0.29 0.20 0.15

Rectum 1.37 0.92 0.61

Contouring time (s) CTV 9.8 11.4 6.4

Bladder 9.7 10.3 6.3

SI 10.5 11.0 6.7

FR 10.9 10.6 6.7

FL 10.3 11.0 6.7

Rectum 10.1 12.3 6.7

Abbreviations: ASSD, average symmetric surface distance; CTV, clinical target volumes; DSC, Dice similarity coefficient; FL, left femoral head; FR, right femoral head;
JSC, Jaccard similarity coefficient; OARs, organs at risk; SI, small intestine.

5 CONCLUSIONS

Deep learning–based automatic segmentation is criti-
cal for the accuracy and efficiency of radiotherapy. The
newly adapted RefineNet and developed RefineNet-
Plus3D in this study demonstrated that it is able
to learn high-level semantic features and achieve
accurate and clinically acceptable CTV and OARs
automatic segmentation for cervical cancer patients
in postoperative radiotherapy. The RefineNetPlus3D
may also be promising for volume delineations for
other cancers, which will be investigated in our future
studies.
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