
Journal of Cancer 2020, Vol. 11 
 

 
http://www.jcancer.org 

388 

Journal of Cancer 
2020; 11(2): 388-402. doi: 10.7150/jca.31636 

Research Paper 

TBX2 Identified as a Potential Predictor of Bone 
Metastasis in Lung Adenocarcinoma via Integrated 
Bioinformatics Analyses and Verification of Functional 
Assay 
Huajian Yu1*, Fangyu Zhao1*, Jing Li1, Kechao Zhu2, Hechun Lin1, Zhen Pan2, Miaoxin Zhu1, Ming Yao1, 
Mingxia Yan1,3 

1. State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 
Shanghai, China; 

2. Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China. 
3. Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China. 

*These authors contributed equally to this work. 

 Corresponding author: State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University 
School of Medicine, No. 25/2200, Xietu Road, Shanghai 200032, China. Tel: +86 2164183618; Fax: +86 21 64042002. Email: myao@shsci.org; mingxia_yan@126.com 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2018.11.19; Accepted: 2019.10.07; Published: 2020.01.01 

Abstract 

Objective: Bone metastasis from patients with advanced lung adenocarcinoma (LAC) is a very serious 
complication. To better understand the molecular mechanism, our current study sheds light on 
identification of hub genes mediating bone metastatic spread by combining bioinformatic analysis with 
functional verification.  
Methods: First, we downloaded a lung adenocarcinoma dataset (GSE76194) from Gene Expression 
Omnibus, analyzed differentially expressed genes (DEGs) through Limma package in R software and 
constructed a protein–protein interaction network. Based on that preliminary data, we further 
performed modular and topological analysis using Cystoscope to obtain biological connected genes. 
Through literature searching and performing mRNA expression analysis on the other independent public 
dataset (GSE10799), we finally focused on TBX2. Functional effects of TBX2 were performed in 
tumorigenicity assays including migration and invasion assays, cell proliferation assay, and cell cycle assay. 
In addition, mechanically, we found enriched pathways related to bone metastasis using Gene Set 
Enrichment Analysis (GSEA) and validated our results by western blot. 
Result: A total of 1132 significant genes were sorted initially. We selected common significant genes (log 
FC>2; p<0.01) from both the biological network data and microarray data. In total, 44 such genes were 
identified. we found TBX2, along with 10 other genes, to be reported with relevance to bone metastasis 
in other cancer types. Moreover, TBX2 showed significantly higher expression levels in patients that 
were found positive for metastasis to bone marrow compared to patients that did not exhibit this type of 
metastasis in the other separated cohort (GSE10799). Thus, we finally focused on TBX2. We found that 
TBX2 had detectable expression in LAC cell lines and silencing endogenous TBX2 expression in A549 
and H1299 cell lines markedly suppressed migration and invasion, cell proliferation and arrested 
cell-cycle. Pathway enrichment analyses suggested that TBX2 drove LAC oncogenesis and metastasis 
through various pathways with epithelial mesenchymal transition (EMT) figuring prominently in the bone 
metastatic group, which was evidenced by western blot. 
Conclusion: Collectively, TBX2 plays as a potential predictor of bone metastasis from LAC, yielding a 
better promise view towards “driver” gene responsible for bone metastasis. 
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Introduction 
Lung adenocarcinoma is the leading cause of 

cancer-related mortality among all cancers. Like other 
cancers, metastasis results in the highest lethality rates 
[1]. Bone is the preferential site of metastasis in lung 
adenocarcinoma (LAC). Bone metastasis develops in 
approximately 30 to 40% of patients with advanced 
lung cancer [2]. Many patients with lung cancer are in 
advanced stages of the disease at the time of 
diagnosis. The 5-year survival rate is lower than 20% 
and the mean survival after bone metastasis of lung 
cancer is 9.7 months [3]. Patients with bone metastasis 
of advanced LAC are faced with an increased risk of 
bone fracture, unbearable bone pain, loss of 
functional independence on daily life, in addition to 
diminished overall survival outcomes [4]. Once the 
sequence of events leading to the progression of 
tumor cell invasion and metastasis begins, bone 
metastasis will occur shortly [5]. Effective molecular 
biomarkers conferring robust dissemination activity 
for early diagnosis and therapeutic options are 
urgently needed.  

 The Gene Expression Omnibus (GEO) database 
is a public functional genomics data repository 
providing the opportunity to explore, analyze, and 
visualize expression data through the method of the 
data mining in various cancers [6]. Because of the 
limitation of large-scale functional screening method, 
many markers have already been proposed but the 
functional role rarely investigated. Bone metastasis is 
frequent with high rates of recurrence and mortality 
in LAC. In the present study, we found several high 
potential biomarkers for bone metastasis of LAC via 
integrating multiple bioinformatics approaches. Our 
present study uncovered the functional role of TBX2 
in LAC and confirmed that knockdown of TBX2 
inhibited cell migration and invasion, affected 
epithelial-mesenchymal transition (EMT), and also 
significantly suppressed cell growth through 
induction of cell-cycle arrest. Collectively, our 
innovative method and findings overcome the 
shortcomings of traditional analytical methods and 
will have suggestive effects on diagnosis and 
individualized treatment of advanced bone metastasis 
of lung cancer.  

Materials and methods 
Raw biological data  

Gene expression data of the microarray 
GSE76194 was obtained from Gene Expression 
Omnibus and probes were switched into gene 
symbols based on the platform of GPL570 (Affymetrix 
Human Genome U133 Plus 2.0 Array). RNA from five 

pairs of parental and corresponding bone metastatic 
lung cancer cell lines of Chinese origin were collected.  

Data preprocessing and normalization 
CEL files and the probe annotation files were 

downloaded and the gene expression profile was 
obtained, following robust multichip average 
background correction, quantile normalizing and 
calculation of expression using the affy package 
(Version 1.58.0) [7]. Subsequently, a linear model was 
fitted and empirical Bayes statistics were computed 
by Limma package (Version 3.36.2) [8]. Significant 
genes were sorted between groups of parental and 
bone metastatic cell lines. P<0.01 and |Log2(FC)|>0.7 
were considered as initial standard of screening.  

Protein–protein interaction network (PPI) 
construction  

To obtain functional links between proteins, we 
constructed a giant PPI network of the shortlisted 
genes by uploading preliminary screening results into 
The Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING; https://string-db.org/) 
database [9]. Subsequently, the PPI network was 
reconstructed with Cytoscape software (Version 
3.5.1). In current study, a combined MCS score of >0.4 
(Medium confidence score) was considered to be 
significant.  

Module identification and enrichment analysis 
A cluster search algorithm, the Molecular 

Complex Detection (MCODE) plugins were used to 
find highly interconnected regions clusters on the 
basis of vertex weighting by local neighborhood 
density and outward traversal from a locally dense 
seed protein, like protein complexes or parts of 
pathways in protein-protein interaction network [10]. 
Modules with scores ≥5, the number of nodes >20, 
node score cutoff≥0.4, K-core≥2 and max depth = 100 
were considered as significant [11].  

Identification of hub candidates from 
topological analysis 

To explore important nodes in biological 
networks, we employed a topological analysis 
strategy by making good use of CytoHubba plugin of 
Cytoscape. It came into the limelight as it played 
significant role in the exploration of central elements 
of biological networks by measuring nodes by their 
network features. Scores were granted to each node in 
a preloaded PPI network with eleven scoring methods 
in one stop shopping way including Degree, Edge 
Percolated Component, Maximum Neighborhood 
Component, Density of Maximum Neighborhood 
Component, Maximal Clique Centrality and six 
centralities (Bottleneck, EcCentricity, Closeness, 
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Radiality, Betweenness, and Stress based on shortest 
paths, of which MCC was plausible as its better 
performance on the precision of predicting essential 
proteins in the PPI network [12]. In this study, we 
chose the nodes with MCC>=6 as clue to finally find 
significant hub candidates [12]. 

Hub gene identification and functional 
enrichment analysis 

Funrich Software (Version 3.1.3, http:// 
funrich.org/index.html) was used to analyze the 
overlapping DEGs. A clustering analysis of up and 
down regulation genes was performed using the 
Pheatmap package in R statistical software. 
Functional enrichment analyses of Candidate DEGs 
including GO annotation analysis and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis of DEGs were carried 
out using DAVID [13, 14]. The genes were assigned to 
functional groups based on molecular function, 
biological processes and biological pathways. Gene 
counts≥3 was considered as the cut-off criterion. 
P-value <0.05 based upon hypergeometric test was set 
as significant and corrected by Benjamini and 
Hochberg FDR to test its significance. 

Validation of Clinical expression and survival 
analysis in silico 

Expression data of patients with bone metastases 
from lung cancer (GSE10799) including 16 bone 
marrow samples from lung cancer metastasis patients, 
9 of which were free of metastatic to bone marrow, 7 
of which was positive of metastatic to bone marrow 
was also downloaded for further study 
[15].Moreover, the Kaplan-Meier Plotter database 
(http://kmplot.com/analysis/) was used to evaluate 
the prognostic values with background lung cancer 
database. Patients were stratified into two groups 
according to the median mRNA level. Survival 
outcome for first progression (FP), HRs and p-values 
were summarized and the log-rank tests were used to 
analyze differences in survival time. 

Gene Set Enrichment Analysis (GSEA) of 
mRNA profiling  

Mounting evidence have shown that Gene Set 
Enrichment Analysis (GSEA) (Version 3.0) is play a 
pivot role in yielding additional insights into the 
common biologic pathways involved in various 
cancer pathogenesis [16]. Here, classified as bone 
metastasis and parental group, samples were 
analyzed for its biologic pathway by GSEA. The GO 
gene sets biological process database (c5.bp.v4.0) from 
the Molecular Signatures Database (MsigDB). The 
value of the False Discovery Rate (FDR) <0.25 was 

considered to be well-established cutoff to determine 
enrichment terms. The NES (Normalized Enrichment 
Score) was utilized to compare the analysis results 
across gene sets.  

Cell lines and cell culture 
Six human lung adenocarcinoma cell lines 

NCI-H1299、A549、NCI-H1975、PC-14、PC-9 were 
purchased from the American Type Culture 
Collection and were cultured using Dulbecco's 
modification of Eagle medium containing high 
glucose, supplemented with 10% fetal bovine serum 
(Biowest, South America Origin) with 100U/ml 
penicillin (Sigma- Aldrich, St Louis, MO, USA) and 
100 mg/ml streptomycin (Sigma-Aldrich). All the 
cells were incubated at 37℃ in a humidified air 
atmosphere containing 5% CO2. All cell lines were 
tested for the absence of mycoplasma contamination. 
Cells were used within 20 passages after thawing. 

Cell transfection and grouping assay  
Cells under good state were spread on 6-well 

plate. When the cell density reached 50%, the siRNAs 
(50 nmol/L) against human TBX2 were transfected 
into the human lung adenocarcinoma (A549, 
NCI-H1299) by Lipofectamine 2000 reagents 
according to the instructions (Invitrogen, CA). Cells 
were classified into three groups: i) si-TBX2#NC 
group (transfected with negative control); ii) 
si-TBX2#1 group (transfected with si-TBX2#1); iii) 
si-TBX2#2 group (transfected with si-TBX2#2). After 
transfection, cells were incubated for 48 hours and 
then collected to assess the specific silencing of TBX2 
expression using qRT-PCR and Western blot analysis. 
Also, we used this transfection cells for the later 
functional assay. Two small interference RNA 
targeted TBX2 mRNA level were designed and 
synthesized by RiboBio (Guangzhou, China). The 
target sequences showed as follows: scrambled 
negative siRNA was used as the control; si-TBX2 #1: 
GTACGAGGAGCACTGCAAA; si-TBX2#2: GCTGA 
CGATTGCCGCTATA. 

Quantitative real‐time PCR (qRT-PCR) assay 

Total RNA from cell lines were extracted using 
TRIzol reagent (Invitrogen, CA) and quantified with 
Nanodrop 2000 (Thermo, Japan). cDNA was 
synthesized by PrimeScript RT Master Mix (Takara, 
Japan). Real-time polymerase chain reaction 
(RT-qPCR) was performed with SYBR Green Premix 
Ex Taq (TaKaRa, Japan) and on an ABI Prism 7900 
System (Applied Biosystems, CA). Here were all the 
primers used in this study: TBX2: forward 
(5'-TATCCTGCTGAT-GGACATTG -3'); reverse 
(5'-CGTGCTTG-TCAGAGATGTTG -3') and β-actin: 
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forward (5'- TGTGGCCGAGGACTTTGATT -3'), 
reverse (5'-CCTGTGTG-GACTTGGGAGAG -3'). 
β-actin was amplified as an internal control. Relative 
expression differences were calculated using the 2‐
ΔΔCt method.  

Cell motility and invasion assays.  
Migration and invasion assays were conducted 

in a 24-well plate with 8-mm-pore size chamber 
inserts (Corning, USA). For invasion assays, Matrigel 
(BD Biosciences, CA) was diluted to 1 mg/mL with 
serum free DMEM and immediately applied to the 
upper chamber per well. 5×10^4 and 1×10^5 cells 
were resuspended in serum free DMEM into the 
upper chamber per well for migration and invasion 
assays respectively. Medium supplemented with 10% 
FBS was added to the bottom chamber as a 
chemoattractant. After 18 hours of incubation at 37°C, 
cells that migrated or invaded through the membrane 
(migration) or Matrigel (invasion) were fixed with 
100% methanol, stained with 0.1% crystal violet for 15 
minutes and washed three times by PBS. The number 
of cells from the bottom was counted in 9 random 
fields under magnification (×100). 

Wound-healing assays 
When monolayer A549 and NCI-H1299 cells 

grew to 100% confluent, a cell-free area was created 
by a sterile 200 μl pipette tip. Six microscopic fields of 
the migration into the gap was imaged over 0h, 24h 
(magnification, ×100), with an inverted microscopy 
equipped with a digital camera. The rate of gap 
closure was measured and calculated.  

Cell proliferation assay and cell-cycle analysis 
Cell proliferation was assessed by Cell Counting 

Kit-8(CCK8) (Dojindo, Japan). Briefly, control and 
treated lung cancer cells (1 × 10^3/well) were seeded 
onto a 96-well plate for 24h. At different time points 
(i.e. 0h, 24h, 48h, 72 h, 96 h, 120 h), cells were 
incubated in a mixture of 100ul DMEM containing 10 
ul CCK8 solution (Dojindo, Japan). After incubation 
for 2 hours, we recorded and quantified absorbance at 
450 nm at each time point. For cell cycle assay, cells 
were harvested, fixed in 75% ethanol for 24h and 
stained with propidium iodide (PI) in dark for 30 
minutes as provided by Cell Cycle Detection Kit 
(Kaiji, China) before flow cytometry analysis (BD 
Biosciences). Samples were analyzed on BD 
FACSCanto II (BD Biosciences) with data analyzed by 
Flow Jo (Tree Star Inc.) 

Western blot assay 
Cells were collected, lysed with lysis buffer, 

quantified by BCA protein assay, loaded on 8 % SDS 
polyacrylamide gels, transferred onto polyvinylidene 

difluoride (PVDF) membranes (Millipore, Billerica), 
blocked in 5% non-fat milk and then probed with 
TBX2 antibody (1:500,Proteintech), E-cadherin 
(1:500,Santa Cruz Biotechnology), Vimentin 
(1:1000,Santa Cruz Biotechnology, USA), ß-catenin 
antibody (1:500, Sigma-Aldrich), N-cadherin (1:250, 
Santa Cruz Biotechnology), Slug (1:1000, Cell 
signaling), followed by incubation with a horse radish 
peroxidase-conjugated anti-rabbit or anti-mouse IgG 
(Sigma-Aldrich) secondary antibody. β-actin 
(Sigma-Aldrich, USA,1:10000) was used as the 
internal control. Signals were detected using 
Enhanced Chemiluminescence (ECL) detection 
system (VIAGENE, USA). The fluorescence intensity 
was detected with SuperSignal West Femto Maximun 
Sensitivity Substrate (Thermo Fisher Scientific). 

Statistical analysis 
All statistical analyses were carried out using R 

statistical software (version3.4.2), Bioconductor 
packages (version 3.8), GraphPad Prism software 
(version 5.01) or SPSS (version 17.0.1) for Windows 
software. Quantitative variables were analyzed by 
Independent Student’s tests between two groups 
(two-tailed). The differences in survival were 
calculated using the Kaplan-Meier test. All the data 
were representative of two or more independent 
experiments. Error bars in the scatter plots and the bar 
graphs represented the standard error of the mean 
(SEM). Statistical significance was defined as P < 0.05. 
P<0.05 (*), P<0.01 (**), P <0.001 (***). 

Results 
Preliminary screening of the original data of 
bone metastasis in LAC 

The entire flowcharts represented whole 
procedure involved in our current analysis and 
screening for hub genes related to bone metastasis in 
LAC, showed in Figure 1A.  

We firstly obtained the gene expression profile of 
four pairs of LAC bone metastatic cell lines from GEO 
dataset (GSE76194) (Figure S1). Next, based on the 
differential gene analysis by Limma package in R 
statistical software [17], we obtained the gene 
expression matrix of samples. A total of 54,614 
transcripts and 20,461genes were identified. As a 
preliminary screening step, we found 1132 significant 
differentially expressed genes filtered using the 
criteria of P<0.01 and |Log2(FC)|>0.7, of which 447 
genes were upregulated and 685 genes 
downregulated. Here, the expression levels of 
differentially expressed mRNA profiling results are 
expressed as a heat map and volcano plot (Figure 1B, 
C). 
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Figure 1. The whole strategy and initial genetic screening for seeking hub genes. (A) The entire workflow representing analyses and screening; Heat map 
(B) and volcano plot (C) visualizing the initial screening of DEGs of GSE76194 as preliminary screening. Heat map (B) illustrating lower (white/blue) to higher 
(orange/red) gene expression levels with distinct profiles across lung cancer bone metastasis. Rows are clustered by genes. Bars at the top of each column indicating 
the following : Red= parental; Blue =bone metastasis; For the bottom one from left to right, each column respectively representing Chinese lung adenocarcinoma cell 
line _parental :CPA-Yang1, CPA-Yang2, CPA-Yang3, SPC-A-1 and matched lung adenocarcinoma cell line _bone metastasis; For volcano plot (C), the horizontal axis 
representing Log2 fold change and the vertical axis showing the reliability of -Log(P-value). The orange and blue points falling within region of interest in plot 
representing the differentially expressed genes, while the grey dots representing genes that are not differentially expressed, defined by| Log2(fold change) |>0.7 and 
P < 0.01. Blue, low expression; Orange, high expression. DEG, differentially expressed gene.  

 

Construction of PPI network and combination 
of modular analysis and topology analysis 

Protein-protein interaction (PPI) is one of the 
best appreciated tools in understanding biological 
processes or molecular functions in cancer occurrence 
and progression [18]. In the present study, we 
constructed a PPI network with 1415 nodes and 2018 
edges based on preliminary screening [19]. Next, we 

employed MCODE plugins in Cytoscape to find 
biologically essential highly connected region 
(subnets) and corresponding hub genes, which has 
been widely used in seeking hub genes in various 
cancer [20-22]. According to the screening criteria 
mentioned before, we constructed three top modules 
in the original network (Figure 2A; Left)- module 1 
had an MCODE score of 7.04 (nodes =28), module 2 
had an MCODE score of 6.517 (nodes =302), and 
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Module 3 had an MCODE score of 5.325 (nodes =265). 
In addition, we further carried out functional and 
pathway enrichment analyses of these top three 
highly connected regions (subnets) (Figure S2). 
CytoHubba is a well-known plugin which leads to 
new insights for inferring importance and central 
roles of biological networks via measuring and 
ranking nodes by eleven topology analysis strategies 
with their network features [12]. Here, we evaluated 
the importance of each gene by Maximal Clique 
Centrality (MCC) and Degree (Figure 2A; Right). 
MCC≥6 was proposed [12]. Nodes with the more 
forward ranking are represented. Top 10 essential 
nodes ranked by degree scores are shown (Figure S2). 

Identification of the overlapping genes 
In total, we identified 447 and 309 genes by 

modular and topology analyses, respectively. Then 

we chose 206 common differentially genes (Log FC>2; 
p<0.01) for further study (Figure S3). In total, we 
identified 44 overlapping genes, with 28 genes 
upregulated and 16 genes downregulated (Figure 2C). 
In order to find the enrichment functional terms, we 
carried out GO annotation analysis and KEGG 
pathway enrichment analysis of DEGs using DAVID. 
The results showed following pathways enriched: 
regulation of cell proliferation, transcriptional 
regulation, regulation of energy homeostasis, 
PI3K-Akt signaling pathway and cGMP-mediated 
signaling (Figure 2D). P<0.05 and gene counts≥3 were 
considered as the cut-off criterion. 

Validation of Clinical expression and survival of 
Key Candidate Genes in silico  

It would be ideal to obtain fresh clinical samples 
from paired bone metastatic patients. Unfortunately, 

 

 
Figure 2. Integrated bioinformatics analysis and functional enrichment analyses. (A) Combination of modular analysis by MCODE and Cytohubba plugin. Left panel 
showing top three modules. Module 1 with MCODE score of 7.04 (nodes =28), module 2 with MCODE score of 6.517 (nodes =302) and module 3 with MCODE 
score of 5.325 (nodes =265). Right panel displaying different size of label related with the MCC index; (B) Identification of overlapping DEGs. Venn diagram 
representing 44 common genes among modular (447 genes), topology analysis (309 genes) and significant DEGs (Log FC>2; p<0.01,206 genes); (C) Overview of 
upregulated and downregulated overlapping genes; (D) GO term and KEGG pathway enrichment analyses of the overlapping DEGs. GO terms classified into three 
groups: biological processes (BP)、cellular components (CC), molecular function(MF). Bars represent the value of -Log(p-value). 
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since the existing guidelines for lung cancer generally 
do not recommend surgery after bone metastasis, it is 
difficult to obtain bone metastases in clinical patients. 
Therefore, we carried out a systematic and 
comprehensive literature search in the PubMed 
database of 44 underlying hub genes without any 
language or publication date restrictions. After 
scrutinizing titles and abstracts, we downloaded a full 
text of related publications to find out whether a 
relationship between those genes and bone metastasis 
existed. In total, we identified eleven genes that were 
known to play a role in bone metastasis including 5 
downregulated genes-MMP7, PSMB9, SLPI, MST1R, 
CXCL16 and 6 upregulated genes -SDC2, CXCL5, 
HS3ST3A1, TCF4, TBX2, HGF (Figure 3A). We used a 
panel of 16 bone marrow samples from metastatic 
lung cancer patients (GSE10799) which included 7 
samples that were positive for metastasis to bone 
marrow and 9 samples were negative to validate the 
mRNA expression level of the above genes (Figure 3C, 
D). Among the upregulated genes, the expression 
levels of SDC2, HS3ST3A1, CXCL5, TCF4 were high 

compared to non-metastasis samples. As to the 
downregulated genes (including MMP7, CXCL16, 
PSMB9, SLPI, MST1R), we indeed confirmed their low 
expression levels in patients positive for borrow 
marrow metastasis. However, none of them showed 
statistical significance. As you can easily find that in 
Figure 3C, TBX2 was the only candidate gene with 
statistically significant higher expression level in 
patients positive for borrow marrow metastasis, 
which is consistent with the gene expression data 
(GSE76194). First progression is defined as the length 
of time from the date of diagnosis or the start of 
treatment for a disease until the disease initially starts 
to get worse or metastasize [23], which is tightly 
associated with survival. We also evaluated first 
progression (FP) of 982 patients with lung cancer 
using Kaplan-Meier plot for TBX2. We found high 
expression level of TBX2 was related with the first 
progression and indicated poor survival (Figure 3B). 
These results supported that TBX2 might represent as 
a pivotal predictor in bone metastasis of lung 
adenocarcinoma. 

 

 
Figure 3. Identification of 11 candidate target genes associated with bone metastasis of LAC in silico. (A) Transcriptome analysis revealing differentially expressed 
genes of GSE76194. (B) Kaplan-Meier survival analysis comparing the cumulative survival rate of all patients with different TBX2 expression levels (p=0.037). Patients 
stratified into two groups according to median value. Affy ID utilized for analysis showed respectively as TBX2(205993_s_at). Higher expression level (red line) of 
those six genes was correlated with poor prognosis compared to the lower one (black line). Differences between groups evaluated using the log-rank test. HR, hazard 
ratio. (C, D) mRNA expression levels of six upregulated candidate genes (C) and five down regulated genes (D) in GSE10799. Negative meaning 9 samples in 
GSE10799 were found free for metastasis to bone marrow. Positive meaning 7 samples found positive for metastasis to bone marrow.  
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Silencing TBX2 suppressed migration and 
invasion of lung adenocarcinoma cells in vitro 

COPA analysis is an analytical method, termed 
‘Cancer Outlier Profile Analysis Cancer Outlier 
Profile Analysis’, which was proposed by Tomlins for 
detecting profound changes in gene expression in 
cancer especially if the alterations occur in subsets of 
cases (Tomlins et al. Science 2005). As for its 
application, it has been reported that ERG and ETV1 
were found as oncogenic chromosomal aberrations in 
prostate cancer based on this bioinformatical 
approach [24]. Besides, SAFB was reported to be 
downregulated in colorectal cancer by COPA 
analysis, which sustained the NF-κB Pathway during 
the progression of colorectal cancer [25]. In addition, 
AGTR1 was recognized as a therapeutic target in 
ER-positive and ERBB2-negative breast cancer cases 
by performing this bioinformatical approach [26]. In 
our current study, we identified TBX2 as being 
markedly over-expressed in a subset of tumor 
samples in 20 out of 37 data sets available from 
Oncomine (Figure S4A) by COPA analysis. Besides, 
TBX2 had been reported to play a role in bone 
metastasis in prostate cancer. Therefore, we were 
interested if TBX2 was played similar functional role 
in bone metastasis of lung cancer. To determine 
whether the upregulation of TBX2 was a common 
event, we extended our analysis in a number of 
human lung cancer microarray data sets using 
Oncomine. Through COPA analysis, we found that 
TBX2 was significantly over-expressed in a subset of 
tumor samples in 20 out of 37 available data sets (gene 
rank, top 10%; fold change > 2; P < 1x 10-4) (Figure 
S4A). Besides, in a separate GSE29367 dataset that 
compares human squamous cell lung cancer line 
HARA with highly bone metastatic subline 
HARA-B4, we found it is also in concordant with our 
work. The expression levels of TBX2 with the presence 
of bone metastasis showed four times more than the 
parental cells, showed in Supplementary Figure S4C. 
Additionally, profiling from Fong’s cohort (GSE5123), 
which reported the gene expression associated with 
recurrence of lung cancer, implicated an obvious and 
significant upregulation in the recurrent group 
(p<0.05), showed in Supplementary Figure S4(D). 
Following bioinformatics analysis, we evaluated the 
mRNA and protein expression levels of TBX2 in a 
panel of five human NSCLC cell lines (NCI- H1299、
A549、NCI-H1975、PC-14、PC-9) by RT-PCR and 
western blot analyses (Figure 4A). We were able to 
detect TBX2 on both the mRNA and protein levels. In 
particular, the expression levels of TBX2 were higher 
in the A549 and NCI-H1299 cell lines than the others. 
To assess the functional role of TBX2 and reduce 

non-specific knockdown, we used two RNA 
interfering fragments to knock down TBX2 in A549 
and H1299 cells. As illustrated in Figure 4B, we can 
easily find that the mRNA and protein expression 
levels of si-TBX2 cells have significantly suppressed 
compared to control in A549 and NCI-H1299 cell 
lines. Based on that, we evaluated the ability of 
migration and invasion in A549 and NCI-H1299 cell 
lines comparing si-TBX2#NC group and knockdown 
group. We found that the ability of migration and 
invasion were markedly suppressed (Figure 4C). 
Besides, in the scratch wound healing assay, we 
discovered that interfering with the expression of 
TBX2 significantly decreased the motility of 
NCI-H1299 and A549 cells, further suggesting that the 
importance of TBX2 in regulating metastasis of LAC 
(Figure 4D). 

Functional role of TBX2 in epithelial–
mesenchymal transition 

To gain further insight into the biologic 
pathways involved in bone metastasis of lung cancer, 
we performed GSEA analysis of the GSE76194 
dataset. Gene Ontology analysis in GSEA revealed 
significant enrichment of gene sets related to 
epithelial-mesenchymal transition in bone metastasis 
group (Figure 5A). To validate the result of GSEA 
analysis, we measured the protein expression of EMT 
markers using western blot. Obviously, We observed 
markedly increased expression levels of epithelial 
biomarker E-cadherin(E-cad), ß-catenin(ß-cat), 
whereas the mesenchymal biomarkers 
N-cadherin(N-cad), Vimentin (Vim) as well as the 
EMT related transcription factor Slug were 
significantly lower in the experimental interference 
(si-TBX2) group than that in the negative control 
group, showed in Figure 5B, suggesting the 
significance of TBX2 in driving oncogenesis and 
metastasis.  

Silencing TBX2 suppressed cell proliferation 
and blocked cell cycle progression 

Gene ontology and pathway enrichment 
revealed that the most significantly enriched 
categories were regulation of cell proliferation and 
TBX2 was in this category. In order to evaluate the 
effect of TBX2 on cell growth, a five-day growth curve 
analysis was carried out using CCK-8 assay (Figure 
6A, B). We found that cell proliferation in TBX2 
siRNA group was much weaker compared with the 
negative control group in both two cell lines, 
indicating TBX2 might play a key regulator in cell 
proliferation of lung cancer. Besides, we also 
indicated that TBX2 elicit a role in cell cycle. As 
illustrated in (Figure 6C, D), we found that silencing 
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of TBX2 dramatically resulted in a reduced G2/M 
population in both A549 and NCI-H1299 cells 
comparing with si-NC in A549 and NCI-H1299 cells, 
suggesting that the reduction of cell proliferation in 

TBX2 knockdown cells may occur through 
modulating cell cycle dynamics, particularly in the 
G2/M phase. 

 

 
Figure 4. The endogenous levels of TBX2 in human LAC cell lines and reduction of aggressive cancer phenotype after knockdown of TBX2 in LAC cells in vitro. (A) 
TBX2 displaying frequently expression in five human LAC cell line panels (NCI-H1299、A549、NCI-H1975、PC14、PC9) in both levels of mRNA (A) and 
proteomic expression (B )by RT-PCR and Western blot analysis; β-actin was used as an internal control.  

 
Figure 5 (A,B) Validation of TBX2 knockdown A549 at mRNA and proteomic levels after TBX2 -specific siRNAs transfection by RT-PCR and Western blot, 
respectively; (C) Reprehensive images and quantification of number of cells that migrated through a membrane or invaded through a Matrigel-coated membrane to 
determine the ability of migration and invasion in A549 cells after TBX2 -specific siRNAs transfection and negative control; (D) Representative images of initial and 
final wounds in A549 cells after transfection with TBX2 -specific siRNAs and negative control by wound-healing assay. Data are representative of results from three 
independent experiments. Error bars represent SEM *P<0.05; **P<0.01; ***p<0.001. 
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Figure 6 (A,B) Validation of TBX2 knockdown H1299 at mRNA and proteomic levels after TBX2 -specific siRNAs transfection by RT-PCR and Western blot, 
respectively; (C) Reprehensive images and quantification of number of cells that migrated through a membrane or invaded through a Matrigel-coated membrane to 
determine the ability of migration and invasion in H1299 cells after TBX2 -specific siRNAs transfection and negative control; (D) Representative images of initial and 
final wounds in H1299 cells after transfection with TBX2 -specific siRNAs and negative control by wound-healing assay. Data are representative of results from three 
independent experiments. Error bars represent SEM *P<0.05; **P<0.01; ***p<0.001. 

 

Discussion 
Lung adenocarcinoma is one of the most fatal 

causes of cancer-related deaths worldwide, especially 
when metastasis occurs [27]. Though modern cancer 
therapies are getting better, the 1-year and the 5-year 
survival rates among patients having lung cancer 
with bones metastasis are not optimistic. The rates are 
around 20%, 16% respectively, with a median overall 
survival of 9–13 months [28, 29]. Skeletal related 
events (SRE) can seriously affect patients' quality of 
life and survival [30]. The most captivating clinical 
applications of bone metastasis research is to identify 
“high-risk”-patients at an earlier stage. However, in 
the last decade biomarkers are still under intensive 
investigation [31]. Nowadays bioinformatics 
programs are widely used in almost all human 

cancers, but different algorithms will have different 
results, which determine the reliability of the 
implementation [32]. Through decades of 
bioinformatic analysis and studies had been 
performed, many of them still only provide a model 
for prediction. It is hard to discern between beneficial 
and detrimental effects of biological results or the 
truth just from a predictive model. In addition, 
though metastasis is known as one of biological the 
hallmarks of cancer [33], few bioinformatical analyses 
of metastasis and fewer on bone metastasis of lung 
cancer have been reported, which is inconsistent with 
the high mortality rate of bone metastasis of lung 
cancer. Therefore, with the conceptual progress of 
precision medicine, more research is needed to 
discover and develop new therapeutic targets for lung 
cancer with bone metastasis. 
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Figure 7. Functional role of TBX2 in epithelial–mesenchymal transition. (A) GO analysis in GSEA comparing bone metastasis group (red) against parental group 
(blue) in the GSE76194 dataset, illustrating enrichment of gene signature in epithelial–mesenchymal transition between both subgroups. FDR (False Discovery Rate) 
<0.25 was considered to be well-established cutoff. NES (Normalized Enrichment Score) was utilized to compare the analysis results across gene sets; (B) Western 
blot analysis of TBX2 and EMT marker expression in negative control and si-TBX2#1 group in both A549 and NCI-H1299 (E-cad = E-cadherin; ß-cat = ß-catenin; Vim 
= Vimentin; N-cad = N-cadherin). 

 
Figure 8. Knockdown of TBX2 abrogating cell proliferation and arresting normal cell cycle. (A, B) Growth curve of indicating cell lines after siRNA transfection by 
Cell Counting Kit-8 (CCK-8) cell proliferation assay; (C, E) Cell-cycle arrest after TBX2 knockdown in A549 and H1299 lung cancer cells was assessed by flow 
cytometry; (D, F) Diagrams showing the results of cell cycle assay in both indicated cell after siRNA transfection. Data and images are representative of results from 
three independent experiments. Error bars in the scatter and bar plots represent SEM. N=3 *P<0.05; **P<0.01; ***p<0.001. 
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Considering all the above reasons, we performed 
bioinformatics-based genetic screen to identify driver 
genes in bone metastasis of LAC and well-designed 
experiments were performed for further verification. 
As a preliminary screening, firstly, we downloaded 
LAC with bone metastasis related microarray 
GSE76194 from GEO and analyzed DEGs. A total of 
1132 significant genes with 447 genes upregulated 
and 685 genes downregulated. In order to visualize 
the data properly, we constructed a protein–protein 
interaction network. Through MCODE plugins, we 
identified the most significant three modules from the 
PPI network and by combining this data with the 
result of CytoHubba plugin, we obtained 44 
overlapping genes.  

To strengthen our data in a more convincing 
way, we searched literature for all the 44 genes and 
found that most of them have been reported to elicit a 
key role in cancer and cancer progression. For 
example, overexpressed A1BG has been reported in 
both the blood level and tumor sections of lung cancer 
[34]; High expression of APLN is shown to 
significantly stimulated tumor growth and micro 
vessel densities; RSPO3 aberrantly expressed at high 
levels showed to promotes tumor aggressiveness [35]; 
ZNF185 is investigated to inhibit growth and invasion 
of lung adenocarcinoma cells through inhibition of 
the AKT /GSK3β pathway [36]. More importantly, we 
identified 5 downregulated genes (MMP7, PSMB9, 
SLPI, MST1R CXCL16) and 6 upregulated genes 
(SDC2, CXCL5, HS3ST3A1, TCF4, TBX2, HGF), which 
has been highlighted in bone metastasis. Conor C et 
al. has reported MMP-7 expressed at the tumor-bone 
interface and demonstrated a molecular mechanism 
between MMP-7 and osteolysis [37]. PSMB9 has been 
investigated as molecular subgroups for therapy 
selection in prostate cancer, which had significantly 
lower mRNA level in malignant compared to 
nonmalignant prostate tissue and were even lower in 
bone metastasis tissue [38]. SLPI has been reported to 
be deregulated with bone metastasis of lung cancer in 
a model that co-cultured HARA cells with calvariae 
[39]. Alana L et.al identified that MST1R played a role 
in promoting osteolytic bone metastasis in breast 
cancer [40]. SDC2, one of the cytoskeleton modulators, 
was reported to functioning in EMT and homing to 
bone [41]. CXCL5 has been reported to be of great 
value in mediating inflammation and tumor growth 
in patients with bone metastasis in prostate cancer 
[42]. CXCL16 has been described this year to play an 
important role in C5aR1 signaling related 
osteoclastogenic activity in lung cancer cells, 
impairing osseous colonization [43]. In cell lines with 
high potential to multiple organs including bone, 
HS3ST3A1 has been reported to express highly in 

lung cancer tissue[44]. HGF produced by osteoblasts 
has been validated to induce migration of cancer cells 
from sinusoidal capillaries to bone marrow space and 
stimulates growth of cancer cells in the bone 
microenvironment [40]. TCF4 has been validated to 
play a role in the regulation of breast cancer-induced 
bone lesions by β-catenin protein signaling [45]. TBX2 
has been recently underscored as a novel therapeutic 
biomarker in bone metastasis of prostate cancer by 
targeting at the TBX2-WNT signaling axis [46].  

We next evaluated the expression patterns and 
clinical significance among them in the other 
independently dataset. We found that the mRNA 
expression levels of the above-mentioned genes 
related to bone metastasis were mostly consistent 
with the results of the GSE76194 dataset, showing a 
tendency to promote or inhibit bone metastasis. 
However, no statistically significant difference was 
identified due to the small sample size. TBX2 has 
statistically high expression levels in patients that 
were found positive for metastasis to bone marrow 
compared to patients that did not exhibit this type of 
metastasis in lung adenocarcinoma (GSE10799). Most 
importantly, Kaplan-Meier plotter revealed that 
higher TBX2 expression was tightly correlated with 
appreciably poor prognosis. In addition, gene 
ontology and pathway enrichment analyses 
suggested that the most significantly enriched 
category was regulation of cell proliferation in which 
TBX2 was found in this category. Thus, TBX2 became 
an obvious candidate gene of interest and we finally 
decided to focus on TBX2.  

To our knowledge, bone metastasis of LAC is not 
unusual [47]. T-box 2 (TBX2) is a member of the T-box 
family of transcription factors and involved in the 
morphogenesis and development of bone [48]. 
Besides old studies have established the significant 
role of TBX2 in clinical cases, which showed high 
expression in 416 NSCLC clinical tissues and 
associated with highly aggressive phenotype of 
NSCLC [49, 50]. Many reports has highlighted its role 
in enhancing of motility and invasiveness in various 
cancers and reported it to be a biomarker to predict 
poor prognosis in human cancers [46, 51, 52]. In 
addition, it has been recently underscored as a novel 
therapeutic biomarker in bone metastasis in prostate 
cancer [46], but so far, the key role of TBX2 in bone 
metastasis of LAC had never been understood. Hence, 
we were interested if TBX2 was played a role in bone 
metastasis in LAC. Following the bioinformatics 
analysis, we conducted experimental verification in 
vitro. Our current study showed that TBX2 had 
detectable expression in LAC cell lines and in a 
number of human lung cancer microarray data sets. 
Through functional studies using siRNA transfection 
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systems, we found silencing endogenous TBX2 
expression in A549 and H1299 cell lines markedly 
suppressed migration and invasion, proliferation and 
arrest cell-cycle.  

 Mechanistically, here is some molecular 
mechanisms we hypothesized involved in TBX2 
promoting bone metastasis. KEGG pathway 
enrichment and GSEA analysis showed the 
enrichment in PI3K/AKT pathway, pathway in 
cancer, ECM receptor iteration and 
epithelial-mesenchymal transition. We proved that 
TBX2 driving LAC oncogenesis and metastasis 
through epithelial mesenchymal transition (EMT) by 
western blot. And consistently the role of TBX2 in 
EMT has already been reported as well as ERK 
signaling pathway, triggering cell proliferation and 
invasion [53]. Besides, there are also other pathways 
TBX2 involved that might promote bone metastasis. 
An old study implicated its role to induce tumor 
formation and muscle cell differentiation by 
repressing PTEN/PI3K/AKT pathway [54]. 
Additionally, TBX2 has also been shown to regulate 
Wnt signaling pathway in canonical means and as a 
result of leading to metastasis and reducing bone 
colonizing capability [46]. In addition to the above 
pathway, recent work has shown that TBX2 is a core 
regulatory circuitry component enhancing 
MYCN/FOXM1 reactivation of DREAM targets in 
neuroblastoma [55]. More works need to be done to 
make it clear if there are other important pathways, 
which also represent a mechanism for the TBX2 
overexpression in bone metastasis of LAC. 

As TBX2 is a transcription factor, we also 
performed some prediction analysis on potential 
interacting genes that it might regulate downstream 
targets based on the literature and data mining. 
Firstly, through literature searching, we found TBX2 
has been proposed to be a novel therapeutic target 
and as an upstream of WNT3A in metastasis for 
skeletal complications in patients of prostate cancer 
[46]. It has been widely known that WNT signaling 
substantially impacts NSCLC tumorigenesis, 
prognosis, and drug resistance [56]. Thus, based on 
this, our initial hypothesis is that TBX2 may also 
regulate WNT pathway during the progression of 
lung cancer. Consistently, we found positive and 
significant correlations between the mRNA 
expression of TBX2 and WNT3A, MMP2 in lung 
adenocarcinoma data of TCGA, including 515 patients 
of lung adenocarcinoma, illustrated in Supplementary 
Figure S5A, B. Additionally, high levels of MMP2 and 
MMP9 in the plasma of lung cancer patients have 
been shown to correlate with distant metastasis of 
lung cancer [57]. Taken together, these reports and 
data gave our team a hint that one of the proteins of 

WNT pathway might be interact with TBX2. Further 
study has been planned and more works will be done. 
Besides, we have also performed some other analyses 
based on ENCODE, GTRD, CistromeMap datasets, 
which are the most complete collection of uniformly 
processed Chip-seq data to identify transcription 
factor binding sites for human and mouse. In 
Supplement Figure S5, we also showed the top 10 
putative targets and their positive correlations with 
TBX2. In our future works, more functional role 
between TBX2 and the above predicted genes will be 
established.  

With the development of new therapeutic 
strategies, this study provides the first view of 
screening hub genes in the pathological progression 
development of lung cancer with bone metastasis, by 
combining high-throughput data analysis and 
functional assays. Though we have not elaborated the 
specific mechanism or the microenvironmental 
changes when TBX2 was knocked down, further 
studies have been planned in our future work. 
Collectively, in our current study, we linked multiple 
bioinformatics to the biological characteristics of bone 
metastasis in lung cancer, yielding a more promising 
view towards “driver” genes responsible for bone 
metastasis. 
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