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Abstract: MXene quantum dots (QDs), with their unique structural, optical, magnetic, and electronic
characteristics, are promising contenders for various pharmaceutical and biomedical appliances
including biological sensing/imaging, cancer diagnosis/therapy, regenerative medicine, tissue engi-
neering, delivery of drugs/genes, and analytical biochemistry. Although functionalized MXene QDs
have demonstrated high biocompatibility, superb optical properties, and stability, several challenging
issues pertaining to their long-term toxicity, histopathology, biodistribution, biodegradability, and
photoluminescence properties are still awaiting systematic study (especially the move towards the
practical and clinical phases from the pre-clinical/lab-scale discoveries). The up-scalable and opti-
mized synthesis methods need to be developed not only for the MXene QD-based nanosystems but
also for other smart platforms and hybrid nanocomposites encompassing MXenes with vast clinical
and biomedical potentials. Enhancing the functionalization strategies, improvement of synthesis
methods, cytotoxicity/biosafety evaluations, enriching the biomedical applications, and exploring
additional MXene QDs are crucial aspects for developing the smart MXene QD-based nanosystems
with improved features. Herein, recent developments concerning the biomedical applications of
MXene QDs are underscored with emphasis on current trends and future prospects.

Keywords: MXenes; MXene quantum dots; biocompatibility; toxicity; smart nanosystems; biomedical
applications

1. Introduction

The rise of MXenes and their (nano)structures with fascinating physical and chemical
features such as photo-thermal stability, hydrophilicity, multimodal sensing/imaging ca-
pacities, large surface area, and thermal/electrical conductivity has astounded researchers
worldwide [1–3]. Two-dimensional materials such as black phosphorus nanosheets, MX-
enes, graphene, and molybdenum disulfide with their remarkable structures and features
as well as diverse applications and synthesis processes have attracted the attention of
many researchers, in particular for developing high-efficiency and specific hybrids or as-
semblies [4,5]. For instance, nanosheets of black phosphorus exhibited the advantages of
intrinsic photoacoustic properties and suitable biocompatibility/biodegradability, which
make these materials promising candidates for a variety of biomedical explorations in the
field of cancer theranostics, photothermal/photodynamic therapy, drug/gene delivery, and
tissue engineering [6–9]. Despite all these valuable properties, their intrinsic instability and
the associated degradation is one of the important challenges for large scale production,
thus restricting their applicability [6,7,10]. However, the fascinating optical characteris-
tics of MXene quantum dots (QDs) such as light absorption, photoluminescence, and
electrochemiluminescence make them alluring candidates for appliances in biomedicine,
optoelectronic catalysis, and optoelectronic devices. Additionally, the significant electronic
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features of MXene QDs should be further evaluated. In particular, their magnetic properties
have rarely been illustrated by experimental studies, and bare and terminated MXenes
with magnetism were introduced by density-functional theory calculations [11]. In com-
parison to the other reported QDs based on graphene, carbon, graphitic carbon nitride
(g-C3N4), and black phosphorus, MXene QDs can be considered as promising catalysts
and co-catalysts, as they display some attractive benefits namely the ease of surface func-
tionalization deploying –O, –OH, and –F groups, high electro-conductibility, controllable
band structure, low toxicity/biocompatibility, exclusive photochemical robustness, tunable
optical features, and strong catalytic potentials [12,13]. Several reviews have focused on
graphene, g-C3N4, and other QDs focusing on their potential biomedical appliances [14,15].
Herein, we comprehensively discussed about MXene QD-based nanosystems as smart
platforms with biomedical potentials. The present manuscript may be of interest to a
broad readership and nanoscientists in the fields of nanomedicine, nanotechnology, MXene
QDs, cancer theranostics, advanced nanomaterials, biomaterials, as well as in emerging
nanotechnology processes and technologies. However, still more elaborative studies should
be focused on clinical translation; systematic studies are anticipated for long-term toxicity,
histopathology, biodistribution, biodegradability, and photoluminescence properties. The
MXene QDs with unique chemical and physical properties will hopefully find their distinc-
tive position in near future on the research platform focusing in the bio- and nanomedicine
arena. As an example, Ti3C2Tx MXene-derived QDs with abundant active sites were
introduced as N2 reduction reaction electrocatalysts with high efficiency [16]. Density func-
tional theory calculations demonstrated that surface functional groups (especially, hydroxyl
groups) played a crucial role in their electrocatalytic activity. Hydroxyl-rich MXene QDs
introduced as N2 reduction reaction catalysts via alkalization and intercalation process
could provide an NH3 yield and Faradaic efficiency of 62.94 µg h−1 mg−1

cat and 13.30% at
−0.50 V, respectively, after the optimization process [16].

Currently, several innovative synthetic strategies are being pursued for various
types of smart nanosystems and nanostructures encompassing MXenes, including Ti2CTx,
Ti3C2Tx, Ta4C3Tx, Nb2CTx, among others [17–20]. MXenes have been prepared by chemical
vapor deposition [21], electrochemical synthesis [22], hydrothermal/solvothermal synthe-
sis [23], urea glass technique [24], ultrasonication [25], microwave-assisted synthesis [26],
and various etching techniques such as electrochemical-, alkali-, molten salt- and in situ
hydrofluoric acid-forming etching routes (Table 1) [27–29]. For instance, MXene (Ti3C2)
QDs were synthesized using a facile hydrothermal technique which exhibited excitation-
dependent photoluminescence spectra with quantum yields of up to ≈10% due to strong
quantum confinement [30]. Additionally, biocompatible MXene QDs were fabricated us-
ing an effective fluorine-free technique as nano-agent for photothermal therapy purposes
with high efficiency and no noticeable toxicity. This synthesis technique demonstrated
higher safety, simplicity, and environmentally benign advantages when compared with
the traditional methods, which utilized hazardous and time-consuming procedure of
hydrofluoric pretreatment [31]. Bai et al. [32] synthesized the green fluorescence nitro-
gen, phosphorus-doped Ti3C2 MXene QDs through a facile microwave-assisted technique,
with an advantage of reduction in reaction time; ensued QDs endowed with suitable dis-
persibility illustrated excitation-dependent photoluminescence and anti-photobleaching
features [32]. Gogotsi and co-workers have critically discussed the guiding principles
and the essential precautions for reducing the risk of hazardousness and environmen-
tal toxicity during the synthesis of MXenes; methods with high safety, reproducibility,
and reliability should therefore be the main objective [33]. MXenes have been widely
explored as attractive inorganic two-dimensional candidates for assorted applications in
gene/drug delivery, imaging or sensing, tissue engineering, regenerative medicine, and
cancer theranostics [5,34–36]. Remarkably, their surfaces can be suitably functionalized
or modified to enhance biocompatibility, functionality, selectivity/sensitivity, and smart
targeting features thus rendering them attractive candidates for biomedical and pharma-
ceutical applications [37–39]. However, it appears that further explorations are needed
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regarding the biocompatibility, genotoxicity, and cytotoxicity of MXene-based materials or
MXenes themselves, in vitro and in vivo [40]. The association of cytotoxicity of MXenes
with the size/morphology, exposure time, functional groups, oxidative state, synthesis
techniques, and type/dose administration have been reported, the size of MXenes being a
vital parameter for their internalization by the targeted cells via endocytosis [40].

Table 1. Some notable examples of MXene QDs with biomedical applicability.

MXene QDs Synthesis Methods Applications Ref.

Ti3C2 Hydrothermal synthesis Immunomodulation [41]

Ti3C2 Hydrothermal synthesis
Glutathione detection and

photoelectrochemical
biosensing

[42]

Ti3C2 Intercalation-ultrasound sysnthesis Prostate-specific antigen
detection [43]

Mo2C Ultrasound-assisted synthesis (Bio)imaging and
photothermal therapy [44]

Mo2C Molten salt (molybdenum
acetylacetonate, NaCl, 800 ◦C for 2 h) Nitrogen reduction reaction [12]

V2C Hydrothermal synthesis
(Bio)imaging, photothermal

therapy, and tumor
destruction

[45]

Ti3C2 Hydrothermal synthesis Multicolor cellular imaging
and Zn2+ detection [30]

Ti3C2
Ultrasound-assisted synthesis;

fluorine-free preparation
(Bio)imaging and

photothermal therapy [31]

Ti3C2 Hydrothermal synthesis (Bio)imaging and pH sensor [13]

Ti3C2 Hydrothermal synthesis Enzyme assay and cell
identification [46]

Ti2C Hydrothermal synthesis Antioxidant effects [47]

Ti3C2 Hydrothermal synthesis Cytochrome c and trypsin
detection [48]

Ti3C2 Reflux technique Glutathione detection [49]

Ti3C2 Hydrothermal synthesis Bioimaging, macrophage
labeling, and Cu2+ detection [50]

MoS2 Hydrothermal synthesis
Methanol oxidation reaction

and oxygen reduction
reaction

[51]

Ti3C2 Microwave-assisted technique Detection of curcumin and
hypochlorite (ClO−) [26]

The dimensional reduction of MXenes from two-dimension to zero-dimension QDs
can provide exceptionally unique characteristics and functionalities [52]. However, this
field of science is still in its infancy as more elaborative studies are essential for analyz-
ing and adjusting their biocompatibility, biodegradability, long-term toxicity/cytotoxicity,
histopathology, fluorescence emission, pH- and photo-stability, and other important crite-
ria [53,54]. Although several reviews have been appeared on the synthesis, applications,
and properties of MXenes and their nanocomposites [53,55–59], but the necessity of a
perspective article around the biomedical potentials of MXene QDs remains a void. Even
though extensive and comprehensive research is still awaited on MXene QDs, these ma-
terials with their advantages of good biocompatibility, high photoluminescence features,
remarkable selectivity/sensitivity to targets, abundant active catalytic sites, significant
electrical conductivity, easily tunable structures, fascinating optical properties, suitable
dispersibility, biodegradability, and low toxicity, will soon find their distinctive position
on the research platform focusing on the biomedicine and nanomedicine arena. These
nanomaterials can be applied for developing next-generation of smart nanosystems with
clinical and biomedical applicability [5,60–62]. Herein, recent advances relating to the
appliance of MXene QDs in biological sensing/imaging, cancer therapy/diagnosis, tissue
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engineering, regenerative medicine, and antioxidants have been deliberated, with emphasis
on imperative challenges and imminent outlooks.

2. Biomedical Advancements
2.1. Biological Sensing and Imaging

Conventional fluorescent probes may have handicap of non-biodegradability, long-
term biological toxicity, and unstable and inadequate fluorescence signal output. Thus,
creatively-designed fluorescent agents with significant biodegradability and photostability
should be further explored. In one study, Ti3C2 MXene QDs with high photoluminescence
properties were prepared via a simple hydrothermal technique and were deployed as zinc
ion sensors and biocompatible multicolored cellular imaging probes [30]. Furthermore, the
prepared Nb2C QDs (with quantum yield of up to 19%) demonstrated green fluorescence
and high pH- and photo-stability; the S, and N doping on Nb2C improved the quantum
yield of the Nb2C dots. This fluorescent probe is a highly efficient candidate for three-
dimensional (3D) brain organoid labeling, which can be applied in biological sensing and
labeling [63]. Li et al. [64] reported the elevated photoluminescence quantum yield up
to 18.7% for N-doped Ti3C2, providing a suitable platform for the sensitive detection of
Fe3+ with the detection perimeter of up to 100 µM. The smart QDs with high sensitivity
are suitable candidates for sizeable biosensing applications [64], the crucial parameter in
labeling being the toxicity of the ensued MXene QDs. In one study, Ti3C2 and Nb2C MXene
QDs were evaluated for their possible toxicity to the human umbilical vein endothelial cells
(in vitro). Consequently, Ti3C2 QDs (up to 100 µg mL−1) could induce significant cytotoxic-
ity after 24 h by promoting the autophagic dysfunction; both the QDs had internalization
and could promote the release of IL-8 and interleukin 6 (IL-6). Further, Ti3C2 QDs could
enhance the ratio of LC3B-II/I, biomarkers of autophagy, autophagic substance p62, and
beclin-1 proteins; pro-caspase 3 was efficiently stimulated by Ti3C2 QDs. Notably, Nb2C
QDs exhibited better biocompatibility with the examined cells than Ti3C2 QDs, revealing
the important functions of the composition and structure of MXenes in ensued toxicity [65].

As has been specified in the documented literature, one of the crucial challenging
issues is the biodegradability aspects of the synthesized nanomaterials, affecting their
long-term toxicity, adverse reactions, and their excretion from the body after fulfilling the
purposed functions [58,66,67]. Nb2C MXene QDs with high photo- and chemical-stable
fluorescence emission was fabricated via physicochemical exfoliation in tetrapropylammo-
nium hydroxide deploying ultrasonic irradiation. These QDs with good biocompatibility
and biodegradability illustrated their great potentials in fluorescence imaging and sensing
of heavy metal ions (e.g., Fe3+) [25]. Besides, fluorescent MXene (Ti3C2) QDs functionalized
with protein bovine serum albumin were synthesized by hydrothermal technique. These
quasi-spherical QDs (~2 nm) exhibited unique photo-physical attributes with higher sta-
bility at different physiological conditions. In the presence of Fe3+ ions, the fluorescence
intensity of these QDs was selectively quenched; ensued probes from these QDs illustrated
good selectivity and sensitivity towards Fe3+ ions, providing practical potentials to generate
sensitive sensors endowed with biocompatibility features [68].

Ti3C2 MXene QDs were fabricated with strong two-photon white fluorescence and
high stability of white emission. Hybrid nanocomposites were prepared via the polymer-
ization of these QDs in polydimethylsiloxane solution, which can be applied in different
fields of optics and imaging [69]. Notably, the environmentally-benign synthesis of smart
MXene QDs has been initiated by researchers to prevent the deployment of complicated
instruments and hazardous materials as well as high-cost tactics requiring high energy and
pressure. Dhingra et al. [70] fabricated biocompatible zero-dimensional Ti3C2Tx MXene
QDs with the cellular uptake ability for biomedical purposes; the engineered nanostruc-
tures have enough transferring potentials from vascular endothelial cells as the obstruction
between organs and blood. It was indicated that these QDs could be extemporaneously up-
taken into human endothelial cells within 24 h of cell culture. They were localized with high
stability, no noticeable modifications in cell morphology, and robust auto-fluorescence fea-
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tures at different emission-excitation wavelengths allowing the post-transport examination
and tracking [70].

MXene QDs have been explored as attractive fluorescent probes for various photo-
electric conversion, optical sensing, and biological imaging appliances [50]. Xu et al. [50]
reported the hydrothermally synthesized nitrogen (N)- and phosphorus (P)-functionalized
photoluminescent Ti3C2 MXene QDs with high photo- and pH- constancy, which were
further studied for macrophage labeling as fluorescent probes. Furthermore, these QDs
could function as inexpensive, eco-friendly, and label-free fluorescence system with high
sensitivity for the detection of Cu2+ [50]. Additionally, N-doped Ti3C2 MXene QDs with
~1 nm depth and ~6.2 nm size was synthesized via amine-assisted solvothermal tailoring
technique. These QDs displayed various fluorescence-quenching reactions to different
metallic cations, providing sensitive revelation opportunities for Cu2+ [71]. Besides, a com-
posite film endowed with the potential of photo-electrochemical biosensing applicability
was designed from titanium dioxide (TiO2) inverse opal photonic crystals and Ti3C2 MXene
QDs [42]. As a result, the electrode prepared from this composite illustrated significant
stability and sensitivity/selectivity for detecting glutathione in buffered solution and cell
extracts, offering promising potentials for early precaution and diagnosis of diseases [42].

MXene-based QDs illustrated great potentials for enhancing the specificity and sen-
sitivity of sensors deployed for detecting proteins, genes, and viral particles [11]. For
instance, to identify the histidine in human serum, amino-functionalized Ti3C2 MXene
QDs with bright blue fluorescence and high bio-affinity were prepared [72]. Furthermore,
biocompatible aerogels with good stability have been constructed from MXene QDs and
watermelon peel by immersing freeze-dried fresh watermelon peel into the QD disper-
sion; these nanosystems demonstrated suitable functionality in biosensing appliances [73].
Chen et al. [74] functionalized Nb2C MXene QDs with octadecanethiol for the particular
recognition of N-gene of SARS-CoV-2 using a tag-free surface plasmon resonance (SPR)
aptasensor; these QDs could improve the bio-affinity toward aptamer and enhance the
SPR response. The conformation of immobilized aptamer strands was altered for specific
binding with N-gene, after the existence of SARS-CoV-2 N-gene. Also, the distance was
enlarged among the aptamer and the SPR gold chip altered with Nb2C-SH QDs through
covalent attachment of the Au-S bond, providing an alteration in the laser irradiated surface
plasmon resonance signal (the wavelength = 633 nm). The low limit of detection (LOD)
for the constructed QD-based aptasensor was ~4.9 pg mL−1 for the N-gene (dilution was
between 0.05 to 100 ng mL−1), enabling immense practical applications for qualitatively
analyzing N-gene from various samples [74].

N, boron (B)-Ti3C2 MXene QDs were prepared for designing a ratiometric fluorescence
sensing system for point-of-care detection of tetracycline antibiotic (LOD = 20 nM). These
QDs exhibited suitable stability, optical features, and water solubility. In the presence of
tetracycline, blue fluorescence emission of the prepared MXene QDs was reduced while the
emission of red fluorescence of Eu3+ was slowly increased [75]. Liu et al. [26] innovatively
designed smart system from Ti3C2 QDs for detecting hypochlorite (ClO−) and curcumin.
ClO− could oxidize the methoxy and phenolic groups of curcumin to quinones, and the
re-establishment of the fluorescence of MXene QDs was reported. For curcumin, the
linear uncovering range was ~0.05–10 µM with LOD being ~20 nM. Furthermore, the
linear detection limits for ClO− were ~25–150 µM and 150–275 µM, with LOD of ~5 µM
(Figure 1) [26].
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2.2. Tissue Engineering and Regenerative Medicine

Ti3C2 MXene QDs have been explored for their potential immunomodulatory effects
with the express purpose of increasing material-based tissue restoration following in-
jury [41]. As a result, these QDs had innate immunomodulatory attributes and specifically
lessened the activation of human CD4+IFN-γ+ T-lymphocytes at the same time invigorating
the growth of immunosuppressive CD4+CD25+FoxP3+ regulatory T-cells in an aroused
lymphocyte populace. Additionally, they had good biocompatibility with -derived mes-
enchymal stem cells derived from bone marrow and fibroblasts derived from stimulated
pluripotent stem cells. Notably, Ti3C2 QDs were integrated into a chitosan-centered hydro-
gel to produce a three-dimensional system with improved physicochemical features for the
delivery of stem cells and healing of tissues. The prepared hydrogel composites illustrated
improved conductivity and at the same time maintained thermo-sensitivity and injectability.
These kinds of smart biomaterials can assist in bridging the translational gap for materials,
repairing the tissue on the basis of stem cell-based therapeutic strategies, and treating
the inflammatory/degenerative disorders [41]. In another study, the immuno-engineered
Ta4C3Tx MXene QDs were developed for treating transplant vasculopathy, in vivo. These
smart QDs with interesting antiapoptotic and anti-inflammatory features can be considered
for biomedical engineering. Remarkably, Ta4C3Tx QDs were impulsively uptaken into
antigen-presenting endothelial cells and could modify the expression of surface receptor to
diminish their activation of allogeneic T-lymphocytes; the cellular/structural alterations of
early allograft vasculopathy were ameliorated [76].

2.3. Cancer Theranostics

Various fluorescent nanoparticles and QDs have been widely explored for cancer
theranostics. However, several challenges regarding the surface functionalization, bio-
compatibility, simplicity of synthesis process, and possible environmental hazards have
impeded their future clinical and biomedical appliances [77]. Therefore, the investigational
priority should be focused on one-step greener synthesis techniques with cost-effectiveness,
high yields/safety, simplicity, and optimized conditions to generate multifunctional nanos-
tructures with high biocompatibility and efficiency. The hybridization and surface modifi-
cation using bioactive functional agents are good examples for enhancing the properties
of the prepared QDs that prevent degradation and improve their stability, reusability, tar-
geting/specificity, and functionality [78–80]. Additionally, nano-scale catalysts based on
Fenton or Fenton-like reactions have been developed to amplify the intracellular oxidative
stress for specific tumor/cancer therapy. The crucial challenges are the low efficacy of cata-
lysts, possible toxicity, and poor biocompatibility [81]. In one study, non-oxidized Ti3C2Tx
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MXene QDs with inhibitory effects on cancerous cells (the suppression rate was ~91.9%)
and high biocompatibility were fabricated via a self-planned micro-outburst approach.
Mechanistically, the Ti3+ from these QDs upon reaction with hydrogen peroxide (H2O2) in
the tumor microenvironment could efficiently generate extremely toxic hydroxyl radicals
to increase the tumor microvascular penetrability for synergistically killing the cancerous
cells [81]. Additionally, Ti2N QDs (~5 nm) fabricated by a top-down strategy exhibited
suitable biodegradability and biocompatibility features, providing photothermal therapy
of cancers with more efficacy than the routine inorganic photothermal materials with poor
biodegradability disadvantage. These QDs retained good stability in their structures in the
early stage of circulation in the body for imaging/therapeutic purposes while aggregating
in the targeted cancerous sites after 4 h of injection, and could be easily cleared from the
body after the usage. Such MXene QD-based nanosystems enabled photoacoustic imaging-
guided photothermal therapy of cancers in both NIR-I/II bio-windows with high biosafety
(Figure 2) [82].
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To design biocompatible nano-agents for simultaneous photoacoustic imaging and
photothermal therapy of cancers and tumors, the innovative synthesis methods are sought
in which the hazardous and time-consuming procedures are avoided. Liu et al. [31]
introduced a fluorine-free technique with safety and simplicity in which the abundant
Al oxoanions were altered on the surfaces of MXene QDs via this methodology. These
QDs exhibited robust and wide-ranging absorption in the NIR region, with a photother-
mal conversion efficiency of ~52.2% and an extinction coefficient of 52.8 Lg−1 cm−1 at
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808 nm [31]. Additionally, N-Ti3C2 MXene QDs with high chemical stability, metal con-
ductivity, electrochemiluminescence efficiency and non-toxicity have been fabricated via
a simple hydrothermal technique using ethylenediamine as the N source and Ti3C2 as
the precursor (Figure 3). The electrochemiluminescent QDs were studied for designing a
sensitive immunosensor to determine mucin 1 (MUC1) that is related to the malignancy
development (LOD = 0.31 fg mL−1) [83].
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2.4. Antioxidant Effects

MXene QDs exhibited suitable antioxidant properties, but they are typically oxidized
during hydrothermal fabrication and some defects can occur on their constructions that
reduce antioxidant capabilities [47]. In one study, Ti2C MXene QDs were protected from
damages during production by applying ethylenediamine as a precursor to introduce N
element. The prepared N-doped Ti2C MXene QDs had strong antioxidant activity as superb
scavenger of radicals (•OH), protector of dyes, and reducer of KMnO4 (Figure 4) [47].
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Qu et al. [84] have investigated the reactive oxygen species (ROS) scavenging and antiox-
idant capabilities of N-doped Ti3C2 QDs and their attendant mechanism. Consequently,
the electrochemical interaction between the prepared QDs and free radicals was promoted
by doping with the N element, which enhanced the antioxidant activities. In addition, the
hydroxyl radical quenching procedure was revealed by density functional theory simula-
tions, confirming the stimulatory effects of doped N element on the ability of free-radical
absorption, especially for functional groups encompassing –F and –O in the QDs. The
ensued N-doped Ti3C2 QDs were highly sensitive to rapidly detect H2O2 (between the 5 nM
and 5.5 µM ranges), and the related LOD was ~1.2 nM within 15 s, which demonstrated
sensitive and real-time H2O2 sensing capacity of this QD-based system [84].
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Chlorine (Cl) and N co-doped Ti3C2 MXene QDs have been prepared with large
surface-to-volume ratio and high radical scavenging action (~93.3%). The QDs (~3.45 nm)
were directly stripped from bulk Ti3AlC2 via an energy-saving and green electrochemical
etching process, while N and Cl were presented to carbon frame and titanium peripheries
in the engraving procedure by electrochemical reactions between selected electrolytes and
Ti3C2 skeleton, respectively (Figure 5) [85]. Qi et al. [86] reported the high scavenging activ-
ity of Ti3C2Tx MXene against 2,2-diphenyl-1-picrylhydrazyl (95% in 10 min) at a low dose
(0.06 mg mL−1). Furthermore, non-enzymatic antioxidant tactics based on MXene-based
materials was illustrated for the treatment of diseases [87]. It was indicated that nanosheets
of Ti3C2-polyvinylpyrrolidone demonstrated high biocompatibility and biodegradability
as well as superb chemical reactivity toward multiple ROS for treating acute kidney in-
jury [87]. Several studies have been undertaken on antioxidant and scavenging properties
of MXenes and MXene-based nanocomposites. However, comprehensive investigations on
underlying mechanisms of these properties are still necessary, especially in the treatment of
ROS-related diseases.
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3. Challenges and Future Perspectives

MXenes and their derivatives have offered promising properties for diverse thera-
nostics and photo-medicine purposes due to their fascinating electrical conductivity, high
stability, robust nonlinear optical response, and tunable terminated surface [60]. Although
MXene QDs have garnered diverse attention in bio- and nanomedicine, several challenges
pertaining to their possible applications for cancer theranostics are still awaiting resolution,
especially in terms of their biocompatibility, toxicity, and specificity. Clinical trials and
systematic in vivo/in vitro studies are also anticipated for examination of their long-term
toxicity, histopathology, biodistribution/biodegradability, and photoluminescence proper-
ties. On the other hand, it appears that their biological sensing and imaging applications
have been restricted by their non-specific adsorption (although, in some cases, the improve-
ment in properties such as biodegradability and photostability of MXene QDs has been
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achieved). As discussed earlier, Nb2C QDs prepared by optimized ultrasound-assisted
technique had significant on photo-chemical stability, higher biocompatibility, and better
biodegradability properties, providing fluorescence imaging and sensing [25]. Although
MXene QDs have displayed excellent photothermal conversion, fluorescence behavior, and
photonic/photo-electronic features, important challenging issues involving the clarifica-
tion of the electron structure-related mechanisms for improving the properties of MXene
QDs and extending these properties to newer fields of explorations should be considered.
Although several functionalization strategies such as surface modification, heteroatom
doping, and fabricating composites have been reported, but more elaborative studies are
still required, especially for improving the optical, mechanical, electronic, and magnetic
properties of MXene QD-based nanosystems [12,16,46,48,51].

To employ MXene QDs in tissue engineering and regenerative medicine, there is
still a need for more extensive and comprehensive research so that these materials can
find their place as a suitable adjutant or platform. It has been emphasized that when
MXene QDs were incorporated in the form of (nano)composites (e.g., chitosan-based
hydrogels), innovative platforms could be obtained with improved thermo-sensitivity,
conductivity, and injectability, helping to bridge the translational gaps in materials and stem
cell-based therapeutic tactics for repairing tissues and treating degenerative/inflammatory
ailments [41]. Besides, MXenes nanomaterials may generate the intracellular oxidative
stress for cancer theranostics, and biocompatibility around their radical activity is another
lingering question [88,89]. Given that these materials produce the intracellular oxidative
stress, it is difficult for these materials to be deployed as antioxidants. Consequently, precise
analyses of their antioxidant mechanisms and means to improve the performance of these
compounds should be considered. In terms of subcellular nanomedicine appliances, it was
reported that MXene QDs could be efficiently and impulsively internalized into human
vascular endothelial cells, with no need of any uptake enhancing tactics [70].

The routine methods for synthesizing MXenes and their derivatives may contain the
environmentally unsafe/toxic etchants (e.g., hydrofluoric acid or zinc chloride) and organic
solvents (for the delamination/intercalation) that need to be replaced by environmentally-
benign processes and eco-friendly materials. There is a vital need for fluorine-free and
greener synthesis methods with sufficient flexibility for up-scalable production in higher
yield. Theoretically designed MXenes should eventually be sent to the laboratory for
extensive analysis. The deployment of the hydrofluoric acid etching method may generate
MXenes surface terminal groups (such as –OH, –F, and –O) that appear randomly or non-
uniformly on their surfaces [53,55–59,90]. Thus, further evaluations are required for their
surface modification or functionalization. Recent advances in optimal changes and surface
functionalization of MXene-based nanostructures have also been discussed in detail [66].
It appears that due to the existing defects and difficulty in surface functionalization and
control of size/morphology of MXenes in top-down synthesis strategies, investigations
should be broadly geared towards a more coherent bottom-up methods with optimized
and mild conditions. Additionally, the quantum yields and photoluminescence of the
obtained MXenes are typically low in the UV region of the spectrum, thus restricting their
bio-imaging, biomedical diagnosis, and fluorescence applications. This indicates a need to
produce MXene QDs with optimal properties and high quantum yield which can pave the
way for a broad range of applications in theranostics, imaging technology, immunoassays,
among others [42,50,69]. As the most examined MXenes is Ti3C2TX, additional kinds
of MXenes should be fabricated and evaluated for their possible biomedical potentials,
focusing on their biocompatibility, long-term stability, and toxicity assessments. Finding
the suitable means (e.g., the hybridization) and modification methods for reducing the
toxicity and controlling the morphology of MXene nanomaterials should be given higher
priority in research for developing the practical value of these materials for manufacturing
smart nanosystems [30,91–95].
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4. Conclusions and Future Outlooks

Smart and multifunctional MXene QD-based nanosystems have shown superb photo-
electric properties and compatibility, making them promising nanostructures for cancer
theranostics, tissue engineering, drug delivery, biological sensing/imaging, antioxidants,
regenerative medicine, and wound healing purposes. Despite extensive research on MX-
enes, they have not been comprehensively evaluated for their untapped biomedical po-
tentials. In this context, MXene QDs with high quantum yield and photoluminescence
properties should be further explored in immunoassays, fluorescence imaging technology,
and biosensing purposes. It appears that due to the unique physicochemical properties
of MXene QDs, special triumphs can be realized in the fabrication and design of smart
nanosystems with clinical and biomedical potentials; the selective and sensitive detection
of diverse molecules can be achieved by the MXene QD-based nanosystems. However, to
move towards clinical applications, critical issues pertaining to their photo-chemical stabil-
ity, long-term cytotoxicity/biosafety, biocompatibility, biodegradability, and controllable
fluorescence sensing/imaging properties should be analytically assessed.

The biosafety and bio-functionality as well as selectivity/sensitivity and stability of
MXene QD-based nanosystems can be improved by appropriate surface functionalization
or modification of existing functional groups. However, the functionalization of MXene
QDs is in its infant stage and further studies are recommended. Also, their possible ad-
verse effects, cytotoxicity, and immune reactions are crucial parameters which should be
considered analytically and clinically. Furthermore, the association of these factors in terms
of their size, morphology, structure, and composition of MXenes needs more extensive and
methodological investigations. The synthesis of MXene QDs via bottom-up or top-down
methods with enough simplicity, low toxic or hazardous agents/chemicals, low temper-
ature/pressure, mild reaction conditions, good dispersity/crystallinity, and large scale
potentials still need to be given higher precedence. Routinely deployed techniques for
the synthesis of MXenes involve the utilization of hazardous and environmentally unsafe
agents such as hydrofluoric acid. In addition, some organic solvents have been utilized for
intercalation and delamination processes, which can be toxic and damaging for the environ-
ment. Additionally, the conventional fabrication techniques do not have enough flexibility
for large scale production, thus restricting their commercialization aspects. The application
of etchants (e.g., zinc chloride or HCl/LiF) have not delivered high yield of production,
except after optimization of reaction conditions; the synthesis process often suffers from
complex and laborious steps. Future explorations should be focused on environmentally
friendly, fluorine-free, simple, and cost-effective production of MXenes with higher yields.
Advanced optimization and functionalization processes can also help in improving the
functionality, stability, and biosafety criteria of MXene QDs. Many of the introduced MXene
structures are designed theoretically and only a handful of them have been obtained on the
laboratory scales. Thus, it is anticipated that with extensive efforts to optimize the synthesis
and specific properties of these high-value compounds, a move towards industrialization,
large scale production, and clinical usage can be realized, especially for rapid and intelligent
diagnosis and treatment of diseases and tissue engineering and restoration.
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