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Abstract

The IKKb is known to regulate transcription factor NF-kB activation leading to inflammatory responses. Recent gene
knockout studies have shown that IKKb can orchestrate local inflammatory responses and regulate homeostasis of epithelial
tissues. To investigate whether IKKb has an intrinsic role in epithelial cells, we established an in vivo system in the immune
privileged corneal epithelium. We generated triple transgenic Krt12rtTA/rtTAt/tet-O-Cre/IkkbF/F (IkkbDCE/DCE) mice by crossing
the Krt12-rtTA knock-in mice, which express the reverse tetracycline transcription activator in corneal epithelial cells, with
the tet-O-Cre and IkkbF/F mice. Doxcycline-induced IKKb ablation occurred in corneal epithelial cells of triple transgenic
IkkbDCE/DCE mice, but loss of IKKb did not cause ocular abnormalities in fetal development and postnatal maintenance.
Instead, loss of IKKb significantly delayed healing of corneal epithelial debridement without affecting cell proliferation,
apoptosis or macrophage infiltration. In vitro studies with human corneal epithelial cells (HCEpi) also showed that IKKb was
required for cytokine-induced cell migration and wound closure but was dispensable for cell proliferation. In both in vivo
and in vitro settings, IKKb was required for optimal activation of NF-kB and p38 signaling in corneal epithelial cells, and p38
activation is likely mediated through formation of an IKKb-p38 protein complex. Thus, our studies in corneal epithelium
reveal a previously un-recognized role for IKKb in the control of epithelial cell motility and wound healing.
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Introduction

The IkB kinase (IKK) complex, composed of two kinases (IKKa
and IKKb) and a regulatory subunit IKKc, is the critical signaling

mediator for classical NF-kB activation [1,2]. Diverse stimuli,

including injury, infection, inflammation and environmental

stresses, such as UV-irradiation, can activate IKK [3]. Once

activated, the IKK complex, especially the IKKb subunit, is

responsible for catalyzing IkB phosphorylation, leading to a rapid

IkBa ubiquitination and degradation. This results in the release of

the nuclear factor-kB (NF-kB) transcription factor, which in turn

translocate to the nucleus, bind to DNA and activate gene

transcription. Through this well-established paradigm, the IKKb-

NF-kB signaling pathways lead to rapid reprogramming of gene

expression in essentially all mammalian cell types [4].

The IKKb is best known for mediating activation of the classical

NF-kB cascades by pro-inflammatory cytokines and pathogen-

associated molecular patterns (PAMPs) and is instrumental for

regulating innate immunity and inflammatory responses [3].

However, recent findings in gene-targeted mice suggest broader

implications of IKKb in the maintenance of homeostasis, stress

responses and regulation of survival and apoptosis. While systematic

Ikkb gene deletion in mice leads to embryonic lethality [5,6],

conditional Ikkb ablation in specific cell types has largely avoided

developmental defects. Studies of these mice so far reveal diverse cell

type-specific roles of IKKb. In keratinocytes, IKKb acts to maintain

the immune homeostasis of the skin [7,8]; in neurons, it inhibits

sensory neuron excitability [9]; in hepatocytes, it suppresses cell

proliferation [10,11]; and in mammary epithelial cells, IKKb
potentiates apoptosis that leads to mammary gland involution [12].

Studies on knockout mice also strongly suggest that IKKb has

dual protective and destructive roles in response to injury and

environmental insults. While IKKb is pro-apoptotic in germ cells

responding to ionizing radiation [13], it is anti-apoptotic in

intestinal and gastric epithelial cells responding to bacterial

infection and burn [14,15,16]. Moreover, IKKb has anti-

apoptotic roles in protection of cardiomyocytes from pressure

overload [17] and of osteoclasts from cytokine-induced apoptosis

[18]. The in vivo roles of IKKb depend not only on the IKKb-

mediated specific cell response, but also on its ability to modulate

inflammatory crosstalk in the surrounding environment. For

example, protection of host intestinal tract from bacterial infection

by the intestinal epithelial IKKb is the consequence of both

reduced neutrophil infiltration that suppresses local inflammation

and increased epithelial cell survival [16]. The hepatocyte IKKb
prevents chemical carcinogenicity by alleviating the activation of

liver macrophage, which produces mitogens that drive the

compensatory hepatocyte proliferation, and reducing hepatocyte

ROS accumulation and apoptosis [19]. Hence, the diverse roles

displayed by IKKb in vivo are attributed to the combined effects

on specific cell activities and local inflammatory responses.

The cornea of the eye consists of five distinct layers: a stratified

non-keratinized epithelial cell layer, the Bowman’s membrance, a

highly organized collagenous stroma layer interspersed with

PLoS ONE | www.plosone.org 1 January 2011 | Volume 6 | Issue 1 | e16132



keratocytes, the Descemet’s membrane and a single endothelial

cell layer [20]. Among these, the corneal epithelium is the

outermost layer and therefore it is readily exposed to various

external insults and is particularly susceptible to injuries caused by

trauma, infections and thermal or chemical exposure [21,22]. A

simple corneal epithelium debridement injury causes minor

disruption of the underlying stroma and elicits only slight

inflammation, and the healing depends primarily on corneal

epithelial cell activities, including migration, proliferation and re-

stratification [23,24]. For these reasons, the corneal epithelial

debridement is widely used as a tool to assess the epithelial cell

responses to injury in experimental settings.

Though corneal epithelial injury usually does not elicit severe

inflammatory cell infiltration in the wounding areas, it induces

mild inflammatory cytokine responses [22,24,25]. A number of in

vitro studies suggest that the cytokine response can promote re-

epithelialization and assist healing, but the molecular and signaling

basis has remained largely uncharacterized [26,27,28]. In the

present studies, we generated triple transgenic mice Krt12rtTA/rtTA/

tet-O-Cre/IkkbF/F, in which the Ikkb gene is ablated specifically in

corneal epithelial cells when fed with doxycycline. We used these

mice to investigate the roles of IKKb, a key transducer of cytokine

signaling, in corneal epithelial wound healing in vivo. In addition,

we used human telomerase-immortalized corneal epithelial

(hTCEpi) cells and human keratinocytes (HaCaT) to identify the

cellular and signaling properties of IKKb in vitro. Our studies

have identified a previously unrecognized role of IKKb in

potentiating epithelial cell migration and wound healing through

the activation of NF-kB and p38 cascades.

Results

IKKb is dispensable for development and homeostasis of
the corneal epithelium

Previously, our laboratories used a targeted knock-in strategy to

generate the Krt12rtTA mouse line. This transgenic mouse produced

a bicistronic mRNA coding for both cytokeratin 12 (KRT12) and

reverse tetracycline transcription activator (rtTA) under the

control of the corneal epithelium-specific Krt12 promoter, which

is activated as early as embryonic day 14.5. The Krt12rtTA/tet-O-Cre

system has been previously used to generate mouse lines for

inducible gene ablation in a corneal epithelium-specific manner

[29]. Using these resources, we made the Krt12rtTA/rtTA/tet-O-Cre/

IkkbF/F triple transgenic mice, which could be induced for corneal

epithelium-specific Ikkb gene ablation (Fig. 1A).

To evaluate whether IKKb is required for corneal epithelium

morphogenesis during development, we fed the females with

doxycycline chow (DOX-chow), starting from the date of

conception until weaning of the offspring. The Krt12rtTA/rtTA/

IkkbF/F and Krt12rtTA/rtTA/tetO-Cre/IkkbF/F offspring were kept in

Dox-chow and their eyes were examined at 0, 30 and 90 days after

birth (Fig. 1B). Regardless of the genotypes, all of the offspring had

normal appearance of the eyes, with no abnormalities in the size of the

eye, and the thickness and transparence of cornea. They also had

identical normal histological features, with the same expression pattern

of KRT12 and cytokeratin 14 (KRT14), epithelial differentiation

markers. While KRT12 expression was absent in many basal cells in

young mice, it was detected in suprabasal and superficial epithelial cells

at 30 and 90 days after birth. On the other hand, KRT14 was mainly

expressed in the basal epithelial cells at all stages observed. These

results suggest that IKKb is dispensable for normal development,

morphogenesis and differentiation of the corneal epithelium.

To evaluate the roles of IKKb in maintenance of corneal

homeostasis, we fed the adult double (Krt12rtTA/rtTA/IkkbF/F) and

triple (Krt12rtTA/rtTA/tetO-Cre/IkkbF/F) transgenic mice Dox-chow

for 30 days. To confirm the induction of Ikkb gene deletion, we

examined the genomic DNA isolated from corneal epithelial cells.

By PCR, we detected only the IkkbF allele in cells isolated from

double transgenic mice, whereas, we found only the IkkbD allele in

cells isolated from triple transgenic mice (Fig. 2A). The triple

transgenic mice with induced corneal epithelium-specific Ikkb
ablation are hereafter referred to as IkkbDCE/DCE, whereas the

control double transgenic mice are referred to as IkkbF/F.

Examination using a stereo-microscope showed that the eyes of

both IkkbF/F and IkkbDCE/DCE mice had normal appearance, with

no abrasion, ulceration or haze of the cornea (Fig. 2B).

Histological examination also revealed normal thickness and

morphology of the cornea in both mice (Fig. 2C). The corneal

epithelial homeostasis requires dynamic self-renew, involving the

basal cell proliferation, migration upward and differentiation to

suprabasal and superficial layer, which eventually sheds off [30].

We found that the corneal epithelium in both genotypes had low

proliferation, no apoptosis and adequate expression patterns of

differentiation markers, KRT12 and KRT14. We also observed

that the NF-kB subunit p65 was located solely in the cytoplasmic

compartment of corneal epithelial cells in the IkkbF/F mice, similar

to that in the IkkbDCE/DCE mice, suggesting that the IKKb-NF-kB

pathway was mostly inactive in the corneal epithelial cells under

normal physiological conditions devoid of stress and injury. Thus,

loss of IKKb does not seem to perturb homeostatic maintenance

of the corneal epithelium in adult mice.

The IKKb is required for optimal corneal
re-epithelialization

To determine whether IKKb was required for stress response of

the corneal epithelial cells, we introduced corneal epithelial

debridement injuries to the IkkbF/F and IkkbDCE/DCE mice and

examined the healing processes. We found that the IkkbDCE/DCE

mice had clearly a larger wound remained than the IkkbF/F mice at

18 hours after injury (Fig. 3A), suggesting that IKKb was required

for optimal re-epithelialization. To confirm the findings made in

the IkkbDCE/DCE mice, we examined the corneal epithelial injury in

C57BL/6 mice treated with TPCA-1, a chemical inhibitor of

IKKb. Corneal epithelial debridement was generated on C57BL/

6 mice, followed by topical application of either vehicle PBS or

TPCA-1 at the wounded corneas. By 18 hours after injury, the

epithelial wounds were reduced by 90% in the control PBS-treated

corneas, similar to that of the IkkbF/F corneas (Figs. 3A and 3B);

however, a larger wound was seen in the TPCA-1 treated mice,

mimicking that in the IkkbDCE/DCE mice.

After injury, the damaged corneal epithelium usually regenerates

quickly by a migration phase to cover the denuded area followed by

a proliferative phase to obtain the normal epithelial thickness [24].

We showed that the IkkbF/F and IkkbDCE/DCE mice were almost

identical at both the migration edge and peripheral corneas (Fig.

S1). Both corneas had relatively quiescent basal epithelial cell

proliferation around the wounding edge at the migration stage

(6 hours and 18 hours), agreeing with the concept that the

compensatory proliferation of corneal epithelial cells starts when

re-epthelialization was almost ceased [24,25]. Both corneas had

readily detectable apoptosis induction and few macrophage (F4/80)

accumulation in the stroma underneath the damaged epithelium, all

shown previously as typical wound healing responses [22,31]. Some

TUNEL positive cells were seen in the stroma and endothelium

distal to the injury sites (Fig. S1), supporting the idea that corneal

epithelial injury can transactivate stromal cell apoptosis [22,31].

Taken together, our results indicate that loss of IKKb in corneal
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epithelial cells delays re-epithelialization by mechanisms indepen-

dent of proliferation, apoptosis and macrophage activation.

Induction of epithelial cell migration by inflammatory
cytokines is mediated by IKKb

Corneal re-epithelialization is controlled by a number of growth

factors/cytokines produced upon epithelial injury [21,22,24,

27,30,31]. We examined the effects of exogenous growth factors/

cytokines on re-epithelialization of the human corneal epithelial

hTCEpi cells using an in vitro scratch wound healing assay. When

added to the scratch wounds created on hTCEpi cells, all the factors

tested, including TNF-a, IL-1b, TGF-a, TGF-b1 and EGF, were

able to potentiate wound closure, with TNF-a and EGF being the

most efficient (Fig. 4A). Pre-treatment of the hTCEpi cells with

TPCA-1 markedly blocked TNF-a-induced IkBa degradation

thereby NF-kB activation (Figs. 4B). Interestingly, TPCA-1

significantly prevented wound closure induced by TNF-a and IL-

1b, but had little, if any, effect on wound closure induced by EGF

and TGF-b1 (Figs. 4C and S2A). The in vitro wound healing is a

coordinated process involving epithelial cell proliferation and

migration. We found that neither TNF-a nor TPCA-1 was able

to alter the hTCEpi cell proliferation; however, TNF-a significantly

potentiated the cell motility, which was abolished by TPCA-1

(Figs. 4D and 4E). Our results strongly suggest that IKKb is

required for inflammatory cytokines to stimulate corneal epithelial

cell migration and wound closure.

To determine whether the cytokine-IKKb axis was effective in

promoting wound closure of other cell types, we examined human

epidermal epithelial HaCaT cells. Similar to that of hTCEpi, the

wound closure of HaCaT cells was significantly induced by TNF-a,

IL-1b, EGF, and TGF-b1, and the induction by TNF-a, but not

TGF-b1, was inhibited by TPCA-1 (Figs. S2B and S2C). In

contrast, the wound closure of HTKs, a telomerase-immortalized

human corneal fibroblasts [32], and murine embryonic fibroblasts

(MEFs) was unaffected by TNF-a (data not shown), suggesting that

the cytokine-IKKb axis is involved in wound closure of epithelial

cells, but not fibroblasts.

IKKb is responsible for cytokine-induced activation of the
p65 and p38/ATF2 cascades in hTCEpi cells

Corneal epithelial wound healing is orchestrated by cytokines,

which activate various signaling pathways, such as p38, JNK,

Figure 1. Genetic deletion of Ikkb gene has no effect on the developmental morphogenesis of mouse corneal epithelium. (A) An
illustration of the triple transgenic mice (Krt12rtTA/rtTA/tet-O-Cre/IkkbF/F), consisting of (1) corneal epithelial-specific keratin 12 promoter driven rtTA, (2)
a tet-pCMV-O-cre allele and (3) the IkkbF/F alleles. The doxycycline can activate rtTA to induce the Cre expression in corneal epithelial cells, and Cre in
turn mediates the Ikkb gene ablation. (B) The eyes of double (Krt12rtTA/rtTA/IkkbF/F, IkkbF/F) and triple (Krt12rtTA/rtTA/tetO-Cre/IkkbF/F, IkkbDCE/DCE)
transgenic littermates exposed to doxycycline in embryonic stages were photographed at 0, 30 and 90 days after birth. The eye sections were
examined histologically by H&E staining and immunohistochemically for the expression of KRT12 and KRT14 (red). Nuclei were stained with DAPI
(blue). Pictures represent at least 3 slides of each mouse and 2 mice of each genotype were examined. el: eyelid, str: corneal stroma, epi: corneal
epithelium, le: lens, and dotted lines mark the boundary between corneal epithelium and stroma.
doi:10.1371/journal.pone.0016132.g001
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ERK and TGF-b/SMAD [22,33,34,35,36]. To identify the

signaling events downstream of IKKb, we characterized the

phosphorylation/activation of transcription factors and signaling

kinases in the hTCEpi cells treated with TNF-a and TPCA-1.

TNF-a caused an immediate but transient phosphorylation

of p65, ATF2, JNK and p38; it induced an immediate and

persistent phosphorylation of c-JUN and SMAD2, and an

immediate and delayed activation of ERK (Figs. 5A and 5B).

The delayed ERK activation is likely due to transcriptional

activation of early response genes that in turn reactivate the

same pathway at later stage, as reported before [37]. Interes-

tingly, TPCA-1 pre-treatment inhibited only the phosphorylation

of p65 and p38/ATF2, but had little effect on other signaling

events.

The molecular connection of IKKb to NF-kB, based on direct

interaction and phosphorylation of IkBa, is well established, but

the link to p38 remains obscure. To look into the molecular basis

of the latter, we examined the physical interactions between IKKb
and p38. The hTCEpi cells were either un-treated or treated with

TNF-a for 20 min to induce an apparent IkBa degradation and

p65 phosphorylation, indicative of the NF-kB pathway activation

(Figs. 6A and 6B). From both un-treated and TNF-a-treated

hTCEpi cells, the GST-p38 and anti-p38 antibodies were able to

pull down IKKb (Figs. 6A and 6B). The p38 is a mitogen-activated

protein kinase, known to interact with and be phosphorylated by

its upstream kinases, MKK3, MKK4 and MKK6, in response to

mitogenic and stress stimuli [38]. Antibodies to MKK6, however,

were unable to co-precipitate IKKb, indicating that the IKKb-p38

complexes were independent of MKK6. We suggest that the

IKKb-p38 complexes are distinct from the MKK6-p38 and are

used primarily for effective and specific transduction of cytokine

signals in hTCEpi cells (Fig. 5).

It is possible that the IKKb-p38 interaction allows p38 to act

upstream of IKKb, responsible for activation of NF-kB [39]. To

test this possibility, we used a p38 inhibitor SB202190 to pre-treat

the hTCEpi cells prior to TNF-a exposure. While the inhibitor

caused a significant 75% decrease of ATF2 phosphorylation, it did

not affect the induction of IkBa degradation and p65 phosphor-

ylation by TNF-a (Fig. 6C). In contrast, the IKKb inhibitor

significantly prevented p38 activation (Fig. 5), supporting the idea

that IKKb acts upstream to activate the p38-ATF2, in addition to

activate the NF-kB pathways, in hTCEpi cells.

Figure 2. IKKb is dispensable for the maintenance of mouse corneal epithelium. The adult double (IkkbF/F) and triple (IkkbDCE/DCE)
transgenic mice were fed with Dox-chow for 30 days. (A) Genomic DNA was isolated from the corneal epithelial cells and subjected to PCR
genotyping using primers specific for the IkkbD (deleted allele), IkkbF (floxed allele) and Gapdh. The triple transgenic mice lost IkkbF and acquired
IkkbD alleles. (B) The eyes were photographed and (C) their tissue sections were subjected to histological analyses by H&E staining and molecular
characterization by immunostaining (red) and nuclei were identified by DAPI staining (blue). The TUNEL assay was used to detect apoptosis, BrdU
incorporation was used for proliferation, and the expression of KRT12 and KRT14 was used to evaluate corneal (KRT12) and basal (KRT14) epithelial
differentiation. The activation of the IKK pathway was evaluated by p65 nuclear translocation and pictures were taken at low and high (rectangle
inserts) magnifications. The boundaries of corneal epithelium (epi) and stroma (str) were marked with dotted lines. The picture represents at least 3
slides of each mouse and 2 mice of each genotype used for the studies.
doi:10.1371/journal.pone.0016132.g002
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To evaluate the contributions of the downstream signaling

events to wound closure, we pre-treated the hTCEpi cells with

specific inhibitors of individual pathways before making scratch

wounds. We found that the induction of wound closure by TNF-a
was significantly blocked not only by inhibitors of p38 and NF-kB,

but also by inhibitors of JNK and ERK (Fig. 6D). Hence, TNF-a
induced corneal epithelial wound healing requires both IKKb-

dependent and -independent pathways.

IKKb is required for activation of the p65 and p38/ATF2
cascades in injured corneal epithelium

The in vitro studies in hTCEpi cells have identified several

IKKb-dependent and -independent signaling events in response to

inflammatory cytokine TNF-a (Fig. 5). To determine the signaling

properties of IKKb in vivo, we examined the healing eyes of IkkbF/

F and IkkbDCE/DCE mice. We found that IKKb was required for the

induction of p65 nuclear translocation and phosphorylation of the

p38 MAPK and its downstream transcription factor ATF2

(Figs. 7A and 7B), but was dispensable for the activation of

JNK, c-JUN, ERK and SMAD pathways (Fig. S3). While

approximately 30–40% corneal epithelial cells adjacent to the

wounding area were stained positive for nuclear p65 and phospho-

p38 and -ATF2 in the IkkbF/F mice, significantly fewer cells were

stained positive in the IkkbDCE/DCE mice. These observations

suggest that unlike its relatively quiescent state in the normal

cornea, IKKb appears to be activated in the corneal epithelial cells

after injury.

We reached the same conclusion by comparison of the control

and TPCA-1 treated corneas after epithelial debridement injury.

Although control and TPCA-1 treated corneas had no obvious

morphological differences, they had different patterns of signaling

pathway activation. In the areas adjacent to the injury, the TPCA-

1-treated corneas had significantly fewer epithelial cells that were

stained positive for nuclear p65, phosphor-p38 and phosphor-

ATF2, whereas, the phosphorylation of c-JUN, JNK, ERK and

SMAD2/3 were detected at the similar levels in control and

TPCA-1 treated corneas (Fig. 7C). Thus, inhibition of IKKb by

genetic and pharmacological means both prevented or reduced

activation of the NF-kB and p38-ATF2 cascades in the injured

corneal epithelium.

Discussion

Using the corneal epithelial debridement model and mice with

inducible and cell type-specific Ikkb gene ablation, we have shown

that the corneal epithelial IKKb is required for optimal re-

epithelialization and wound healing. While loss of IKKb does not

seem to perturb the injury-induced proliferation, apoptosis and

macrophage activation, it significantly reduces the activation of

NF-kbB and p38/ATF2 pathways in the corneal epithelial cells

adjacent to the injury sites. Correspondingly, in cultured hTCEpi

human corneal epithelial cells IKKb is required for activation of

NF-kB and p38/ATF2, and induction of cell migration and

wound closure by inflammatory cytokines. Because the IKKb-

mediated signaling events in injured corneal epithelium are

strikingly similar to those in TNF-a treated hTCEpi cells, we

suggest that injury may induce inflammatory cytokine to activate

the IKKb signaling cascades, which in turn play a predominant

role in promoting corneal re-epithelialization in vivo.

Similar to its roles in hTCEpi cells, IKKb promotes wound

healing of epidermal keratinocytes HaCaT, but not corneal

stromal fibroblasts HTK and embryonic fibroblasts. These

observations suggest that IKKb has a unique role in promoting

the migration of epithelial cells, a conclusion supported only by the

in vivo corneal wound healing model, but not by other models

where IKKb ablation results in complications in the local

environment. For example, IKKb ablation in the skin epidermis

leads to auto-immune diseases of the skin, precluding the use of the

knockout mice to study wound healing [7], whereas, IKKb
ablation in intestinal epithelium results in aberrant epithelial cell

survival and proliferation in a number of injury models [15,40].

The corneal epithelial IKKb is unique in that it is inactive in the

naive, uninjured cornea and is dispensable for the developmental

morphogenesis and homeostatic maintenance of mouse corneas.

Yet, it is activated by corneal epithelial debridement injury, which

affects predominantly the surface epithelial cells, but has little

influences on the underneath stroma and does not elicit severe

inflammation due to the immune privileged nature of the cornea

[41]. Thus, the unique features of the experimental system allow

the identification of a novel role of IKKb in controlling epithelial

cell migration during wound healing.

Previous in vitro studies have showed that IKKb acts through

NF-kB-dependent and -independent mechanisms to mediate

cytokine induced migration of normal and cancer cells

[42,43,44,45]. Specifically, active IKKb can directly stimulate the

phosphorylation of docking protein 1 (Dok1), the ras-GTPase-

activating protein-associated tyrosine kinase substrate, to promote

cell motility [42]; it can stabilize the transcriptional repressor Snail

that leads to cell migration and invasion [44]; and it also can up-

regulate the expression of matrix metalloproteinase-9, which in turn

promotes extracellular matrix remodeling and migration [43]. Our

data point at the specific roles of corneal epithelial IKKb in the

optimal activation of NF-kB and p38, but is dispensable for the

activation of JNK, ERK and SMAD cascades, which are also

induced by cytokines and corneal epithelial injuries. The activation

of p38 by pro-inflammatory stimuli, such as LPS, has been shown

previously mediated through the upstream TAK1-MKK3/6

cascades in lymphocytes and lung epithelial cells [46,47,48]. We

find that IKKb forms complexes with p38, but not MKK6,

Figure 3. IKKb is required for optimal re-epithelialization of
corneal wounds in vivo. (A) The IkkbF/F and IkkbDCE/DCE mice and (B)
the C57BL/6 adult mice were subjected to corneal epithelial debride-
ment injury, and some mice were treated with TPCA-1 (5 mM) after
injury as indicated. The wounded eyes were stained with green
fluorescein for photography at 0 and 18 hours and the wound closure
rates were calculated by comparing the wound areas at 18 versus
0 hours. The results are mean 6 SD from 18 eyes (9 mice) of each
genotype in (A), and from 6 eyes with or without TPCA-1 treatment in
(B). Statistical analyses were performed and ***: p,0.001 is considered
significant.
doi:10.1371/journal.pone.0016132.g003
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suggesting the existence of a distinct IKKb-p38 signaling module in

corneal epithelial cells. In this module, activation of p38 by IKKb
can be direct, or it can be mediated through TAK1 acting upon the

MKK3/MKK4. Given that IKKb inhibition significantly reduces

but does not completely abolish p38 activation, we suggest both

IKKb-dependent and -independent mechanisms exist in corneal

epithelial cells for p38 activation [38]. Activation of p38-ATF2

cascades in turn may regulate gene expression to contribute to

migration of corneal epithelial cells, as well as of epidermal and

mammary epithelial cells [33,49,50,51].

It is interesting to note that corneal epithelial injury triggers the

local release of a number of growth factors and cytokines, but only

the pro-inflammatory cytokines need IKKb to promote epithelial

cell migration and re-epithelialization of corneal wounds

[22,24,52]. Other cellular activities, such as survival and

proliferation also essential for successful wound healing, seem to

be regulated by IKKb-independent signaling events [22,24,52]. A

prompt healing of corneal surface wound is vital to maintain

corneal transparency and preserve normal vision. In this regard,

identification of the roles IKKb play in epithelial cell migration

and wound healing is of great clinical significance. This is because

a number of corticosteroid and nonsteroidal anti-inflammatory

drugs (NSAID) commonly used to alleviate pain after surgery may

act by inhibition of the IKKb signaling to cause delayed wound

Figure 4. Cytokine stimulated hTCEpi cell wound closure is mediated through IKKb. The hTCEpi cells were treated with various growth
factors and cytokines (10 ng/ml) in the presence or absence of pre-treated with TPAC-1 at 0.5 mM for 0.5 hour or as indicated. (A and C) The cells
were subjected to in vitro would healing assays. Pictures were taken at 0 and 48 hours and the wound closure rates were calculated by comparing
the width of wounds at the beginning and end of the experiment. Results were shown as mean 6 SD of 4 repeats. (B) Cell lysates were subjected to
Western blotting for IkBa and b-actin. (D) The number of hTCEpi cells was counted at different time points of treatment and the cell growth curves
under each condition were generated. The results represent two independent experiments. (E) Twenty-four hours after TNF-a treatment, the cells
were subjected to trasnwell migration assay for 3 hours. The migrated cells were stained by crystal violet and photographed. Relative cell migration
was quantified by measuring the absorbance of crystal violet dye. Results represent means 6 SD of 4 independent experiments. Statistical analyses
were performed and *: p,0.05; **: p,0.01; ***: p,0.001 were considered significant.
doi:10.1371/journal.pone.0016132.g004

Role of IKKb in Epithelial Cell Migration

PLoS ONE | www.plosone.org 6 January 2011 | Volume 6 | Issue 1 | e16132



healing and persistent epithelial defects [53,54,55,56,57]. Thus,

alternative therapeutics avoiding IKKb inhibition may be more

favorable for treating diseases that require prompt corneal

epithelial wound healing.

Materials and Methods

Reagents, antibodies and cell culture
Cytokines and growth factors, including TNF-a, IL-1b, EGF,

TGF-a, TGF-b1, were purchased from PeproTech Inc. (Rocky

Hill, NJ). The chemical inhibitors for JNK (SP600125), p38

(SB202190), ERK (PD98059) were obtained from Calbiochem

(Gibbstown, NJ); and the inhibitor for IKKb (TPCA-1) was from

Tocris Bioscience (Ellisville, Missouri). Antibodies for IKKb,

phospho-p38 (Thr-180, Tyr-182) and total p38, phospho-ERK

(Thr-202, Thr-204) and total ERK, as well as antibodies for

phospho-c-Jun (Ser-63, 73), phospho-ATF2 (Thr-69, 71), phos-

pho-p65 (Ser-536), phospho-SMAD2 (Ser-465, 467) and phospho-

SMAD3 (Ser-423, 425), were purchased from Cell Signaling

Technology (Danvers, MA); Antibodies for total JNK, total

MKK6 and total p65 were purchased from Santa Cruz

Biotechnology (Santa Cruz, CA); Antibodies for phospho-JNK

(Thr-183, Tyr-185) (Promega, Madison, WI), F4/80 (ABcam Inc,

Cambridge, MA), IkBa (BD Biosciences, San Jose, CA), b-actin

(Sigma-Aldrich, St. Louis, MO), BrdU (Termo Fisher Scientific

Inc, Waltham, MA), KRT14 (Covance, Alice, TX) and KRT12

[58] were used as well.

The hTCEpi and HaCaT cells were maintained in Keratino-

cyte Serum Free Medium (Invitrogen Corp., Carlsbad, CA),

supplemented with 25 mg/ml Bovine Pituitary Extract, 0.2 ng/ml

Figure 5. Inhibition of IKKb prevents TNF-a induced activation
of NF-kB, p38 andATF2. The hTCEpi cells were treated with TNF-a
(10 ng/ml) for indicated times in the presence or absence of TPCA-1
(0.5 mM). Cell lysates were analyzed by Western blotting to detect (A)
the expression level of IKKb and b-actin, and the phosphorylation of
p65, c-JUN, ATF2 and SMAD2, and (B) the phosphorylation and
expression of JNK, ERK and p38. Induction of p65, p-ATF2 and p-p38
by TNF-a is significantly blocked by TPCA-1. Pictures were representa-
tive of at least 2 repeated experiments.
doi:10.1371/journal.pone.0016132.g005

Figure 6. The IKKb and p38 form complexes in vitro and in vivo.
The hTCEpi cells were either untreated or treated with TNF-a (10 ng/ml)
for 0.5 hour or as indicated. In some experiments, chemical inhibitors
for p38, SB202190 (1 mM), JNK, SP600125 (1 mM), ERK, PD98059 (5 mM),
and IKK, JSH23 (1 mM), were used 0.5 hour prior to TNF-a. Cell lysates
were subjected to (A) pull-down assays using GST-p38 and glutathione-
agarose beads, and (B) immunoprecipitation using anti-p38, anti-IKKb
and anti-MKK6 antibodies. The pull-down/precipitated proteins and
total cell lysates were analyzed by Western blotting using antibodies as
indicated. (C) The cell lysates were analyzed by Western blotting for
phospho-ATF2 and -p65, and total IkBa and b-Actin. The relative fold
induction was calculated based on the intensity of the bands in control
(set as 1) and TNF-a treated samples. (D) The hTCEpi cells were either
untreated or pre-treated with various chemical inhibitors as indicated
for 0.5 hour. The cells were subjected to in vitro scratch wound healing
assay in the presence or absence of TNF-a (10 ng/ml) for 48 hours. The
wound closure rates were calculated based on the mean 6 SD of 4
repeats and statistical analyses were done by comparing to the rates in
control cells. *: p,0.05; **: p,0.01; ***: p,0.001.
doi:10.1371/journal.pone.0016132.g006

Role of IKKb in Epithelial Cell Migration

PLoS ONE | www.plosone.org 7 January 2011 | Volume 6 | Issue 1 | e16132



Role of IKKb in Epithelial Cell Migration

PLoS ONE | www.plosone.org 8 January 2011 | Volume 6 | Issue 1 | e16132



EGF, 50 U/mL penicillin, 50 mg/mL streptomycin. Medium was

changed every 2 days.

Generation of transgenic mice
Experimental animals were housed at the Experimental Animal

Laboratory at the University of Cincinnati and all animal

protocols were approved by the Institutional Animal Care and

Use Committee (IACUC) of the University of Cincinnati (protocol

no. 06-04-19-01). C57BL/6 mice were purchased from the

Jackson Laboratory (Bar Harbor, ME). Compound transgenic

mice lines, Krt12rtTA/rtTA/tetO-Cre/IkkbF/F and Krt12rtTA/rtTA/IkkbF/F,

were generated by crossing the Krt12rtTA/rtTA/tetO-Cre [29,59]

with IkkbF/F mouse lines [60]. Krt12rtTA/rtTA/tetO-Cre/IkkbF/F

female and Krt12rtTA/rtTA/IkkbF/F male mice were further crossed

and fed Dox-chow (1 g/kg chow, Bioserv Corp., San Diego,

CA) differently according to different experimental purposes.

Genotyping was performed by polymerase chain reaction (PCR)

using oligonucleotide primers specific for each transgene and the

genomic DNA extracted from tail clip or corneal epithelial cells

scraped from mice.

In vivo corneal epithelial debridement injury in mice and
evaluation of healing rate

Before debridement injury, 3-month old mice were anaesthe-

tized by intraperitoneal administration of Avertin at 0.45 mg/g

body weight (2, 2, 2-tribromoethanol, Sigma-Aldrich). The central

corneas of both mouse eyes were demarcated by the Miltex

Disposable Biopsy Punche (2 mm in diameter, Integra, Plainsboro,

NJ) and a round epithelial debridement (2 mm in diameter) was

produced using the Algerbrush II Corneal Rust Ring Remover

(Ambler Surgical Corp., Exton, PA). A drop of fluorescein dye

(Fluorescein Sodium Ophthalmic Strips, Akorn Inc, Lake Forest,

Illinois) was applied to the injured cornea and the eyes were

examined by florescent microscopy at different time points

following the debridement injury. The rate of wound healing

was calculated by comparing the wound areas at 0 and 18 hours

after injury. At 4 and 16 hours after injury, the mice were injected

intraperitoneally with BrdU at 0.1 mg/g body weight (Sigma-

Aldrich) and sacrificed 2 hours later by CO2 asphyxia and cervical

dislocation. The eye balls were collected and fixed by 4%

paraformaldehyde (Sigma-Aldrich) in PBS buffer (Invitrogen)

overnight, followed by dehydration through a graded sucrose

series and embedding in OCT compound (Sakura Finetek,

Torrance, CA).

Histological and immunohistochemical analysis
Cryosections (8 mm in thickness) of the eye tissues were stained with

hematoxylin and eosin (H&E) according to standard procedures.

Sections were also subjected to immunohistochemical analysis as

described previously [61], using anti-phospho-JNK (1:100),

-phospho-p38 (1:100), -phospho-ERK (1:100), -phospho-c-JUN

(1:100), -phospho-ATF2 (1:100), -phospho-Smad2 (1:100), -phospho-

Smad3 (1:100), -p65 (1:100), -F4/80 (1:100), -KRT12 (1:100),

-KRT14 (1:100) antibodies. Stained sections were mounted (Vecta-

shield Mounting Medium, Vector Laboratories Inc., Burlingame, CA)

and photographed using an Axio Observer Inverted Microscope (Carl

Zeiss Microimaging Inc., Thornwood, NY).

In vivo cell proliferation and apoptosis analysis
Sections were stained immunohistochemically using anti-BrdU

antibody (1:100, Sigma-Aldrich) and were subjected to TUNEL

(Terminal deoxynucleotidyl transferase dUTP nick end labeling),

using the ApopTag Plus In Situ Apoptosis Fluorescein Detection

Kit in accordance to the manufacture’s instruction (Millipore,

Billerica, MA).

In vitro wound healing assay and cell growth curve
For in vitro scratch wound healing assay, the cells were seeded

at 1.56105 cells/well in 24-well plates and were allowed to reach

100% confluence. A scratch wound was created on the cell surface

using a micropipette tip. The wound area was photographed by

bright-field microscopy at different time points after wounding.

The width of the wound was measured and the wound closure rate

was calculated. For transwell migration assay, 56104 cells were

seeded in each cell culture insert (BD Falcon Franklin Lakes, NJ),

which contains a polyethylene terephthalate membrane (6.5 mm

in diameter, 8 mm pore size) and was pre-coated with 10 mg/ml

collagen I. Cells were incubated at 37uC for 3 hours. Non-

migrated cells were scraped off the upper surface of the membrane

with a cotton swab. Migrated cells were fixed by 4% paraformal-

dehyde and stained with 0.3% crystal violet for photography. The

dye in the cells was then dissolved in 10% acetic acid and the

absorbance of the dissolved dye was measured at 600 nm. To

establish the cell growth curve, the hTCEpi cells were seeded at

26104 cells/well in 24-well plates and cell numbers were counted

thereafter at different time points.

Western bloting, GST-p38 pull-down and co-
immunoprecipitation

The hTCEpi cells were lysed in ‘‘egg lysis buffer’’, which

contains 50 mM Tris pH 7.5, 0.1% NP40, 120 mM NaCl, 1 mM

EDTA, 6 mM EGTA, 20 mM NaF, 1 mM Na Pyrophosphate,

30 mM 4-Nitrophenyl phosphate, 1 mM Benzamidine and 1X

Protease Inhibitor cocktail (Sigma-Aldrich), and centrifuged at

12000 rpm for 15 min. For Western blotting, the cell lysates were

boiled in loading buffer and were applied to electrophoresis on

10% SDS-PAGE. The resolved proteins were transferred to

nitrocellulose membranes and detected by Western blotting

analyses using antibodies as indicated.

For pull-down assays, the cell lysates were incubated at 4uC for

1 h with GST-p38 fusion protein, followed by incubation with

Glutathione-agarose (Sigma-Aldrich) at 4uC overnight. For co-

Figure 7. Injury-induced p65 and p38/ATF2 activation in corneal epithelium depends on IKKb. The IkkbF/F and IkkbDCE/DCE mice were
subjected to corneal epithelial debridement injury and the wounded eyes were examined by immunohistochemistry for p65, p-ATF2 and p-p38 (red)
and nuclei were labeled by DAPI (blue). (A) Pictures were taken and the photographs represented at least 3 slides of 2 eye samples. The nuclear p65,
p-ATF2 and p-p38 positive cells can be identified in the injured corneal epithelium (arrows) and the nuclear location of p65 (*) is clearly visible in
pictures under higher magnification (dotted squares). (B) The percentages of corneal epithelial cells that were staining positive in each field were
calculated. At least 3 sections of each eye and 2 eyes of each genotype at a given time point were used for calculation and statistical analysis.
*: p,0.05; **: p,0.01; ***: p,0.001 were considered significant different between IkkbF/F and IkkbDCE/DCE mice. (C) C57BL/6 adult mice were
subjected to corneal epithelial debridement injury, followed by application of PBS to one eye and TPCA-1 (5 mM) to the other eye for 2 hours. At
6 hours after wounding, the eyes were collected and analyzed by H&E staining and by immunohistochemistry using antibodies as indicated. Cells
positive for nuclear translocation of p65 and phospho-ATF2, -p38, -c-JUN, -JNK, -ERK and -SMAD2/3 were pointed with arrows. Pictures were chosen
from at least 3 slides of each eye and 2 eyes of each genotype used. str: corneal stroma, epi: corneal epithelium. Dotted lines mark the boundary
between corneal epithelium and stroma, and # marks the edge of the corneal wound.
doi:10.1371/journal.pone.0016132.g007
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immunoprecipitation assays, the cell lysates were incubated with

primary antibodies, followed by incubation with protein A agarose

(Invitrogen) at 4uC overnight. After extensive washing, the

proteins were eluted from the beads by boiling and subjected to

SDS-PAGE and Western blot analyses.

Statistical analysis
We conducted statistical comparisons using student two-tailed

paired t-test and ANOVA analyses of variance. We considered

values of p,0.05 statistically significant.

Supporting Information

Figure S1 IKKb promoted corneal epithelial wound
healing is independent of proliferation, apoptosis and
macrophage infiltration. The injured eyes of IkkbF/F and

IkkbDCE/DCE mice were examined by H&E staining for histology

and by TUNEL assay to assess apoptosis. The eyes were also

examined by immunohistochemistry using anti-BrdU for prolifer-

ation and anti-F4/80 for macrophage infiltration (red). Nuclei

were identified by DAPI staining (blue). The boundaries of corneal

epithelium (epi) and stroma (str) were marked with dotted lines and

the staining positive cells were labeled by arrowheads. The picture

represents at least 3 slides of each mouse and 2 mice of each

genotype used. #: the edge of the wound area.

(TIF)

Figure S2 IKKb is required for cytokine promoted
wound healing of hTCEpi and HaCaT cells. (A) hTCEpi

and (B, C) HaCaT cells were pre-treated with TPCA-1 (0.5 mM)

for 30 min for some experiments, followed by scratch wound

healing assay in the presence of various cytokines and growth

factors (10 ng/ml). Pictures were taken at 0 and 48 hours after

wounding and the wound closure rates were calculated based on

mean 6 SD of 4 independent experiments. *: p,0.05;

**: p,0.01; ***: p,0.001.

(TIF)

Figure S3 IKKb was dispensible for the phosphorylation
of c-JUN, JNK, ERK, SMAD2/3 in the injured corneal
epithelium. The IkkbF/F and IkkbDCE/DCE mice were subjected

to corneal epithelial debridement injury and the wounded eyes

were analyzed by immunohistochemistry for the phosphorylation

of c-JUN, JNK, ERK and SMDAD2/3 (red). Nuclei were stained

with DAPI (blue). (A) Pictures were taken under fluorescent

microscope, and (B) The percentages of phosphor-c-JUN, -JNK,

-ERK and SMDAD2/3 positive cell over total corneal epithelial

cell in each field were calculated. At least 3 sections of each eye

and as least 2 eyes of each genotype and time point were used for

calculation and statistical analysis.

(TIF)
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