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E C O L O G Y

Anthropogenic activity and climate change exacerbate 
the spread of pathogenic bacteria in the environment
Yu Geng1, Ya Liu2,3*, Peng Li1, Jingyu Sun1, Yiru Jiang1, Zhuo Pan1, Yue-Zhong Li1, Zheng Zhang1*

Climate change is profoundly affecting human health. Human pathogenic bacteria (HPB) infections mediated by 
the environment are considered a substantial cause of global health losses. However, the biogeography of HPB 
and their response to climate change remain largely unknown. Here, we constructed and analyzed a global atlas 
of potential HPB using 1,066,584 samples worldwide. HPB are widely present in the global environment, and their 
distribution follows a latitudinal diversity gradient. Climate and anthropogenic factors are identified as major 
drivers of the global distribution of HPB. Our predictions indicated that by the end of this century, the richness, 
abundance, and invasion risk of HPB will increase globally, with this upward trend becoming more pronounced as 
development sustainability declines. Therefore, the threat of environmentally mediated HPB infections to human 
health may be more severe in a world where anthropogenic activities are intensifying and the global climate is 
warming.

INTRODUCTION
Climate change may be the greatest health threat of the 21st century, 
affecting lives both directly and indirectly through the disruption of 
environmental and social determinants of health (1–4). Meta-analyses 
have indicated that human infectious diseases caused by pathogenic 
microorganisms are exacerbated by climate change (5–7). One of the 
most critical issues we need to consider is how climate change alters 
and intensifies the spread of pathogenic bacteria, parasites, fungi, and 
viruses (8).

Changes in climate and land use will cause species to aggregate in 
new combinations, facilitating cross-species transmission of viruses 
(9). Increased heat tolerance in fungi with pathogenic potential 
due to global warming could lead to new fungal diseases (10). Com-
pared with nonbacterial etiologies, such as fungal infections, malaria, 
and HIV, infections caused by human pathogenic bacteria (HPB) 
are the second leading cause of death globally. Annually, bacterial 
infections contribute to an estimated 7.7 million deaths world-
wide (11, 12). Specifically, environmentally mediated transmission 
is common among human pathogens, and contact with pathogens 
through water, food, waste, animals, or insect vectors contributes to 
a major burden of human disease (13). The concept of “One Health” 
emphasizes that the health of humans, domestic and wild animals, 
plants, and the wider environment (including ecosystems) are close-
ly linked (14). Despite recent individual studies highlighting pathogen 
contamination and health risks in environments such as soil (15, 16), 
wastewater (17), groundwater (18), and ocean (19), there remains 
a lack of systematic analysis on the distribution characteristics and 
drivers of HPB in global ecosystems, and the potential impact of 
climate change on HPB has not been quantified.

Environmental DNA technology allows for the direct extrac-
tion of DNA from the environment without relying on pathogen 
isolation and microscopy, substantially facilitating research on 
environmental HPB (20, 21). The genetic information of bacteria 

obtained by 16S ribosomal RNA (rRNA) amplicon sequencing could 
be compared with human pathogen databases to reveal the com-
position, abundance, and distribution of potential HPB in the 
environment (22). The rapid accumulation of global catalogues 
of HPB and the extensive sequencing of microbial communities 
have made it possible to interpret the global distribution and poten-
tial health risks of HPB through big data analysis (23). Here, 
we conducted detection for HPB in more than one million mi-
crobial communities across global ecosystems. Through a series 
of theoretical and modeling methods, we (i) determined the taxo-
nomic composition and distribution of potential HPB in the envi-
ronment, (ii) mapped their global distribution and revealed the 
drivers of the richness and abundance of HPB, and (iii) predicted 
changes in HPB richness and invasion risk under future climate 
change scenarios.

RESULTS
The natural environment has emerged as a reservoir for HPB
We conducted detection for HPB in 1,066,584 sequenced microbial 
communities, sourced from habitats including animal, plant, soil, 
and aquatic globally, excluding human-associated habitats (fig. S1). 
HPB were identified in up to 88% of these natural communities. The 
detected HPB belonged to 9 phyla, 16 classes, 36 orders, 69 families, 
113 genera, and 330 species (table S1). Nearly 90% of these species 
were predominantly found in the phyla Pseudomonadota, Bacillota, 
Actinomycetota, and Bacteroidota (Fig. 1A). HPB in natural com-
munities exhibited a latitudinal diversity gradient, with both their 
richness (Pearson’s r = −0.15, P < 0.0001) and relative abundance 
(Pearson’s r = −0.14, P < 0.0001) showing weak yet significant nega-
tive correlations with absolute latitude (Fig. 1, B and C). On a conti-
nental scale, the detection rate (96%), richness (determined on the 
basis of the operational taxonomic unit (OTU) number of HPB 
in the microbial communities, median: 9), and relative abundance 
[parts per million (ppm), median: 3046.0] of HPB in natural com-
munities were highest in Africa, followed by Asia (detection rate: 
92%; richness: 9; relative abundance: 1273.0), whereas Antarctica 
exhibited the lowest values (detection rate: 69%; richness: 2; relative 
abundance: 53.7) (Fig. 1, D to F).
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Fig. 1. Composition and distribution of HPB. (A) Taxonomy of HPB. The outer and inner circles represent the phyla and genera of HPB, respectively. The circle size is 
proportional to the number of species. (B and C) Latitudinal distributions of the richness (B) and relative abundance (C) of HPB. In all the depicted scatterplots, the lines 
indicate the best linear fit, and the shaded areas represent the 95% confidence intervals of the fitted curves. Pearson’s correlation tests were used to examine the correla-
tion between the richness and abundance of HPB and absolute latitude, with P values indicating statistical significance. The color represents the mean annual tempera-
ture at the sampling location. (D and E) Richness (D) and abundance (E) of HPB across continents and habitats. Continents are depicted in gray, animal-associated habitats 
in purple, plant-associated habitats in green, soil habitats in brown, and aquatic habitats in blue. Anthropogenic habitats are underlined. Each continent contains more 
than 2500 samples, and each habitat surpasses 3500 samples. In all the depicted boxplots, the middle line indicates the median, the box represents the 25th to 75th 
percentiles, and the error bar indicates the 10th to 90th percentiles of the observations. The richness and abundance values are log-transformed (base 10). (F) Detection 
rates of HPB across continents and habitats. The detection rate represents the proportion of samples in which HPB was detected to the total number of samples in each 
continent or habitat. (G and H) Pathogenicity (G) and biosafety levels (H) of HPB across continents and habitats. There are 10 related diseases and three biosafety levels for 
HPB. The circle size represents the detection rate of HPB for each pathogenicity or biosafety level in each continent or habitat, and the color indicates the richness of HPB.
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In terms of various habitats, the detection rates, richness, and 
relative abundance of HPB were significantly greater in animal-
associated (excluding human-associated) habitats than in plant-
associated, soil, and aquatic habitats (Fig. 1, D to F, and fig. S2). 
Specifically, the detection rates of HPB in six animal-associated hab-
itats were not less than 93%, with higher richness and relative abun-
dance observed in pet and primate habitats and lower values in fish 
and insecta habitats. Among the four plant-associated habitats, seed 
exhibited the highest detection rate, richness, and relative abun-
dance of HPB, whereas wood demonstrated the lowest values. Across 
the eight soil habitats, these three metrics ranked the highest in farm 
and the lowest in tundra. In eight aquatic habitats, the three values of 
waste water were the highest, and those of marine were the lowest. In 
particular, the detection rates, richness, and relative abundance of 
HPB in anthropogenic habitats, such as pet, livestock, primate, farm, 
agricultural, and waste water, were significantly higher than those in 
natural habitats (fig. S2).

On the basis of the potential pathogenicity of HPB, detection 
rates across different continents ranged from 28% (Antarctica, skin/
soft tissue) to 91% (Africa, digestive system), while detection rates 
in various habitats varied between 23% (tundra, skin/soft tissue) 
and 97% (bird, digestive system) (Fig. 1G). The richness of HPB, 
which targets the digestive system, was highest in almost all habitat 
types, whereas the lowest richness was observed for HPB which tar-
gets skin/soft tissue. From the perspective of HPB biosafety, the de-
tection rates for biosafety level 1 (BSL-1) ranged from 16% (tundra) 
to 88% (primate), those for biosafety level 2 (BSL-2) varied between 
46% (tundra) and 98% (primate), and those for biosafety level 3 
(BSL-3) ranged from 17% (primate) to 52% (farm) (Fig. 1H). Brief-
ly, HPB are widely present in domestic and wild animals, plants, as 
well as broader soil and aquatic environments, supporting the con-
cept of One Health, which closely links human health with the nat-
ural environment.

Anthropogenic activities facilitate the transmission of HPB 
among environments
Pathogenic bacteria are closely associated with humans, and we eval-
uated the relationships between anthropogenic activities and HPB in 
the environment using collected indicators (table S2). The richness of 
HPB in natural communities was significantly negatively correlated 
with life expectancy at birth in each country (Pearson’s r = −0.25, 
P = 0.008) (Fig. 2A). Furthermore, the richness (Wilcoxon rank-sum 
test, P = 0.003) and relative abundance (Wilcoxon rank-sum test, 
P = 0.030) of HPB in the natural communities of low- and middle-
income countries (LMICs) were significantly greater than those in 
high-income countries (HICs) (Fig. 2B and fig. S3). Similarly, the 
richness (Wilcoxon rank-sum test, P < 0.001) and relative abun-
dance (Wilcoxon rank-sum test, P = 0.002) of HPB in countries with 
high human development levels were significantly greater than those 
in countries with medium and low human development levels (Fig. 
2C and fig. S3). From a national perspective, the richness of HPB was 
significantly negatively correlated with Human Development Index 
(HDI, Pearson’s r = −0.26, P = 0.007) and urban population (Pearson’s 
r = −0.22, P = 0.015) whereas significantly positively correlated with 
Global Multidimensional Population Index (MPI, Pearson’s r = 0.38, 
P = 0.003) and mortality rate per 100,000 by pathogen (Pearson’s r = 
0.28, P = 0.002) (Fig. 2, D to G). Consequently, socioeconomic fac-
tors such as poverty and low urban population might exacerbate the 
spread of HPB in the natural environment.

HPB exhibited an uneven distribution within natural environ-
ments, comprising a low number of high-abundance abundant taxa 
(species with a relative sequence abundance ≥ 0.1% across all sam-
ples of a habitat) and a high number of low-abundance rare taxa 
(species with a relative sequence abundance < 0.001% across all 
samples of a habitat) (fig. S4A). Across various habitats, the propor-
tion of rare taxa in HPB ranged from 70.1% (bird) to 94.2% (tun-
dra), whereas the highest proportion of abundant taxa was only 
3.2% (livestock). In 11 of these habitats, there were no HPB classi-
fied as abundant taxa. Furthermore, there were significant negative 
correlations between the richness (Pearson’s r = −0.86, P < 0.0001) 
and relative abundance (Pearson’s r = −0.86, P < 0.0001) of HPB 
and the proportion of rare taxa (fig. S4, B and C). Given that HPB in 
the environment are predominantly rare taxa, enhancing the se-
quencing depth could boost the detection rate of HPB (fig. S4D).

In sharp contrast to the rarity of relative abundance, HPB were 
mostly widely distributed globally (fig. S5). A total of 94.2% of the 
HPB species were shared among habitats, and 31.6% of the HPB 
species were present in all 26 studied habitats (Fig. 2H). The num-
ber of resistant drugs in HPB species was significantly positively 
correlated with both the average detection rate (Pearson’s r = 0.27, 
P < 0.0001) and average niche breadth (Pearson’s r = 0.13, P = 
0.018) in various habitats (Fig. 2, I and J). Overall, HPB primarily 
constitute rare taxa, yet they are distributed across different habitats 
in natural environments.

Global distribution of HPB
To determine the global patterns of HPB richness and abundance, 
we selected microbial communities with location and environ-
mental information from global samples, excluding data related to 
oceans and humans for machine learning. Using sample datasets 
and global covariates (table S3), we constructed random forest models 
to predict the global patterns of HPB richness and abundance. 
To avoid multicollinearity during model construction, we estimated 
the variance inflation factor (VIF) for the covariates and retained those 
with a VIF lower than 10. On the basis of 10-fold cross-validation, 
following feature selection and hyperparameter tuning, we identi-
fied the optimal feature set consisting of 37 covariates for model 
construction (fig. S6 and table S4).

Using random forest models, we predicted the richness of HPB at 
the global scale and mapped its distribution at a resolution of 0.167° 
(Fig. 3A). The prediction results indicated that HPB richness varied 
between 1.85 and 27.75 (mean: 9.10; median: 8.80). From a regional 
perspective, areas with frequent human activities (parts of East Asia), 
higher temperatures and radiation (parts of Africa and the Middle 
East), or greater precipitation (Southeast Asia and Central America) 
exhibited high HPB richness. HPB richness was particularly high in 
the Indian subcontinent, where human activities and temperatures 
are high. Conversely, regions with lower temperatures and precipita-
tion and less anthropogenic activity, such as Siberia, Canada, and 
the Qinghai-Tibetan Plateau, exhibited lower HPB richness. The 
hotspots of HPB relative abundance differed from those of richness 
but exhibited similar latitudinal trends, both showing a decreasing 
trend from low latitudes to high latitudes (Fig. 3B and fig. S7). 
In addition, after removing common commensal and opportunistic 
pathogenic bacteria, such as Escherichia coli, Salmonella enterica, and 
Faecalibacterium prausnitzii, we found that the global distribution 
and latitudinal trends of HPB richness and abundance were consis-
tent with those without their removal (fig. S8).
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The global distribution map of HPB suggested that climate fac-
tors and anthropogenic activities might have a profound impact on 
the richness of HPB. We categorized the variables used for model 
construction into several groups, such as climate factors and anthro-
pogenic factors, and assessed their relative importance in predict-
ing HPB richness (Fig. 3, C and D). The findings emphasized the 

significance of climate and anthropogenic activities as primary driv-
ers of HPB richness: climate factors contain the greatest amount of 
model importance (44.2%), where temperature and precipitation 
variables each account for nearly 12%, and radiation and moisture 
variables each contribute more than 5%. Moreover, anthropogenic 
factors account for more than 30% of model importance. This finding 

Fig. 2. Relationships between the richness of HPB and anthropogenic activities. (A) Relationships between the richness of HPB and life expectancy at birth. Each dot 
represents a country, and the color indicates the continent where the country is located. Each country contains more than 30 samples. In all the depicted scatterplots, the 
lines indicate the best linear fit, and the shaded areas represent the 95% confidence intervals of the fitted curves. Pearson’s correlation tests were used to examine the 
correlations, with P values indicating statistical significance. Richness values are log-transformed (base 10). (B) Differences in the richness of HPB among countries with 
different income levels. HICs include high income; LMICs include upper middle income, lower middle income, and low income. (C) Differences in the richness of HPB 
among countries with different levels of human development. High human development countries (HHDCs) include “very high human development” and “high human 
development”; low and middle human development countries (LMHDCs) include “medium human development” and “low human development.” Comparisons between 
bins were conducted using the Wilcoxon rank-sum test, **P < 0.01 and ***P < 0.001. In all the depicted boxplots, the middle line indicates the median, the box represents 
the 25th to 75th percentiles, and the error bar indicates the 10th to 90th percentiles of the observations. (D to G) Relationships between the richness of HPB and socio-
economic factors. The socioeconomic factors include HDI (D), urban population (E), Global MPI (F), and mortality rate per 100,000 by pathogen (G). (H) Cross-habitat dis-
tribution of HPB. The species was considered to be distributed in the habitat only if it appeared in at least 0.1% of the samples. (I and J) Relationships between the number 
of resistant drugs and the average detection rate across different habitats (I) or average niche breadth (J).
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indicated that climate and anthropogenic factors, as the two major 
categories of variables, were responsible for nearly 80% to shaping 
HPB richness at the spatial scale. Moreover, some spatial variables, 
such as longitude, latitude, and elevation, also had an impact on the 
global distribution of HPB richness. Climate has been proven to 
be a critical factor determining the global distribution of fungi and 
plant-beneficial bacteria (24–28), and our findings highlighted the 
importance of climate factors in determining the richness of HPB. In 
addition, the findings indicated that anthropogenic factors were also 
the primary factors affecting the global pattern of HPB richness, 
which could be attributed to human activities promoting the dis-
semination of HPB across different regions, consequently enhanc-
ing their richness.

Global richness of HPB under future climate 
change scenarios
The impact of climate change on the distribution of HPB remains 
largely uncertain. Therefore, we simulated and predicted the rich-
ness of HPB by the end of this century (2081–2100) under four fu-
ture climate scenarios [shared socioeconomic pathway (SSP) 126, 
sustainability; SSP245, middle of the road; SSP370, regional rivalry; 
and SSP585, fossil-fuelled development].

First, we applied multivariate environmental similarity surface 
(MESS) analysis across the locations of the samples, and the results 
showed that, except for specific regions such as parts of Antarctica 

and the Sahara Desert, the samples used for prediction exhibited 
high extrapolation reliability for other regions (fig. S9). Through 
random forest modeling, we projected the global pattern of HPB 
richness by the end of this century under four scenarios: SSP126, 
SSP245, SSP370, and SSP585 (Fig. 4A). The findings revealed that 
HPB richness would increase across all the scenarios, with a greater 
increase observed as more climate change. Specifically, under the 
SSP126, SSP245, SSP370, and SSP585 scenarios, HPB richness in-
creased by 11.7, 16.8, 21.5, and 26.6%, respectively (Fig. 4, B and C). 
This indicated that in scenarios of unsustainable development, the 
richness of HPB might be promoted. Similarly, a comparable trend 
was observed in the relative abundance of HPB (fig. S10). Except for 
certain regions of India, Africa, the Qinghai-Tibetan Plateau, and 
South America, where HPB richness declined, more than 60% of 
the areas exhibited upward trends across all the climate scenarios. In 
terms of latitudinal distribution, with the exception of the Southern 
Hemisphere mid-latitude region, which experienced more fluctua-
tions, HPB richness was expected to increase in almost all other re-
gions, particularly in the Northern Hemisphere mid-latitude region. 
After removing common commensal and opportunistic pathogenic 
bacteria, we evaluated the distribution patterns of remaining HPB 
richness and abundance under future climate scenarios (fig. S11). 
The results showed a similar trend of change.

Considering the various continents, HPB richness tended to in-
crease across all continents, with the exception of Antarctica. The 

Fig. 3. Global pattern of HPB richness. (A) Global map of the richness of HPB. Using covariates, we predicted the richness of HPB globally based on the random forest 
model. (B) Latitudinal distribution of the global richness of HPB. The dashed line represents the average richness of HPB worldwide. (C) Relative importance of each major 
category variable in predicting the richness of HPB. ANT, anthropogenic; TEM, temperature; PRE, precipitation; SPA, spatial; RAD, radiation; OCV, other climatic variables; 
MOI, moisture; SP, soil properties. (D) Relative importance of specific variables of anthropogenic, climate, and spatial factors. From left to right, they represent ANT, TEM, 
PRE, RAD, and SPA, respectively. TT, travel time; DEV, development; POP, population; PES, pesticide.
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increase in HPB richness was more pronounced in continents such as 
Oceania and North America, compared to Africa (fig. S12A). Fur-
thermore, variations in HPB richness were observed across regions 
with different income levels. The results revealed that the magnitude 
of the increase in HPB richness was significantly greater in “high 
income” and “upper middle income” regions than in “lower middle 
income” and “low income” regions (Fig. 4D). Similarly, the findings 
related to HDI revealed that the magnitude of the increase in HPB 
richness in areas with high human development levels was signifi-
cantly greater than that in areas with medium or low human devel-
opment levels (fig. S12B). These findings indicated that, compared to 
those in regions with lower development levels, the magnitude of the 
increase in HPB richness in regions with higher development levels 
was more strongly influenced by climate change.

The maximum entropy model has been extensively applied to 
forecast the species distribution probability of diverse organisms at 
the global scale (24,  29,  30). Using this model, we evaluated the 
global invasion risk of HPB under current and different future cli-
mate scenarios (Fig. 4E). Under all the climate scenarios, East Asia, 
Europe, eastern North America, southern South America, and east-
ern Australia faced high invasion risks, although certain regions 
within these areas may experience a reduction in invasion risk in the 
future. Under various climate scenarios, the elevated invasion risks 
for SSP370 (4.0%) and SSP585 (4.5%) were greater, whereas more 
sustainable scenarios (SSP126 and SSP245) exhibited increases of 

2.6 and 3.2%, respectively (fig. S13). The areas of increased invasion 
risk were primarily concentrated in the Northern Hemisphere mid-
latitude regions. Our findings highlighted the need for sustainable 
development to limit future HPB invasions, particularly in the 
Northern Hemisphere mid- and high-latitude regions.

DISCUSSION
Current infections remain the leading cause of death globally, and 
the prevalence of pathogenic bacteria in the environment has led to 
severe human diseases (11, 22). According to the latest list released 
by the World Health Organization (WHO), the number of patho-
gens that might trigger the next pandemic has increased to more 
than 30, including five bacteria (31, 32). To more effectively address 
public health challenges, the concept of One Health has been pro-
posed, which emphasizes the interdependence of human, animal, 
plant, and environmental health, aiming to sustainably balance and 
optimize health (14). Although numerous studies have revealed the 
intimate connection between specific environments and HPB (15–
19), there remains a lack of surveillance of pathogenic bacteria in 
the environment on a global scale. In this study, we conducted de-
tection for potential HPB in more than one million microbial com-
munities from various habitats including animal, plant, soil, and 
aquatic globally and ultimately detected HPB in nearly 90% of the 
communities. The identified HPB were from nine phyla, with 59% of 

Fig. 4. Richness and invasion risk of potential HPB under future climate change scenarios. (A) Relative changes in HPB richness under future climate change sce-
narios. On the basis of the historical data of 19 bioclimatic variables, a model was constructed using the random forest algorithm to predict the richness of HPB under 
current climate conditions. Using the constructed model, based on future (2080–2100) data of 19 bioclimatic variables, we predicted future HPB richness under four future 
climate change scenarios. (B) Latitudinal changes in the richness of HPB under future climate change scenarios. The dashed line represents the overall change (OC) in HPB 
richness under future climate scenarios compared to the current. SSP126, sustainability; SSP245, middle of the road; SSP370, regional rivalry; SSP585, fossil-fuelled devel-
opment. (C) Relative changes in the global richness of HPB under future climate change scenarios. (D) Relative changes in the richness of HPB in countries with different 
income levels under future climate change scenarios. Comparisons between bins were conducted using the Wilcoxon signed-rank test, **P < 0.01 and ***P < 0.001. ns, 
not significant. In all the depicted boxplots, the middle line indicates the median, the box represents the 25th to 75th percentiles, and the error bar indicates the 10th to 
90th percentiles of the observations. Dots represent the changes in richness predicted by different global climate models (GCMs) compared to the current richness. 
(E) Relative changes in the invasion risk of HPB under future climate change scenarios. “Up” represents the number of scenarios in which HPB richness or invasion risk in-
creases, whereas “down” represents the number of scenarios in which HPB richness or invasion risk decreases under future climate change scenarios.
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the species belonging to Pseudomonadota and Bacillota, which con-
tain E. coli, Staphylococcus aureus, Streptococcus pneumoniae, Klebsi-
ella pneumoniae, and Pseudomonas aeruginosa that are responsible 
for mass deaths caused by bacteria (11). Focusing on HPB with pan-
demic potential can help prevent public health emergencies of inter-
national concern. Studies have shown that HPB can exploit various 
habitats and exist in multiple environments, among which environ-
ments influenced by human activities are more likely to harbor HPB 
(33, 34). This observation is consistent with our results, which em-
phasize that the natural environment can serve as a reservoir for 
HPB and that environments with closer relationships with humans 
typically harbor more HPB. We also found that the number of resis-
tant drugs in HPB species was correlated with the detection rate and 
niche breadth, suggesting that the transmission of HPB between 
environments may be promoted by antibiotic resistance. These 
findings support the hypothesis that anthropogenic activities facili-
tate the transmission of pathogens, reinforcing the concept of One 
Health (35, 36).

Considerable variation exists in the burden of bacterial infec-
tions across different regions, with LMICs bearing the greatest bur-
den of infectious diseases (11, 37, 38). Our results also reflected a 
correlation between the distribution of HPB and development level. 
In regions with higher development levels, HPB have lower detec-
tion rates, richness, and relative abundance, whereas in regions with 
lower development levels, these indicators are higher. Regions with 
higher development levels are associated with more wealth, which 
can achieve more urban population and improve access to sanita-
tion, clean water, and health care, thereby increasing life expectancy 
and reducing the mortality rate (13). Socioeconomic drivers play an 
underappreciated role in the spread of HPB, and poverty and other 
factors might exacerbate this process. These results support the 
disease-driven poverty trap hypothesis (39–41), positing that poor 
people may be ensnared in a reinforced cycle of poverty and disease, 
in which they are more susceptible to infections mediated by the 
environment. Our findings highlight the pressing need for better 
HPB surveillance and control efforts in underdeveloped regions. Al-
though medical advances in the 21st century have promoted prog-
ress in human health, inequalities between different countries still 
exist (42). Therefore, there is an urgent need to increase access to 
medical services in areas with lower development levels.

In addition to dominant retrospective analysis, more forward-
looking research is needed to address potential future changes. Cli-
mate change profoundly affects and alters microorganisms on Earth 
(43–45). Climate extremes disrupt fungal-bacterial interactions, 
thereby destabilizing soil microbial communities (46). Studies have 
shown that by the end of this century, fossil fuel–dependent sce-
narios could lead to a significant decrease of global plant-beneficial 
bacteria abundance in soils, whereas the diversity and invasive po-
tential of phytopathogenic fungi will increase globally (24,  28). 
Simultaneously, climate change is having a profound impact on hu-
man health, with more than half of human pathogenic diseases be-
ing aggravated (5). The profound impact of climate change on HPB 
has been established: On the one hand, climate change can directly 
affect specific aspects of pathogens, promoting climate suitability 
for reproduction, accelerating the life cycle, and increasing viru-
lence (5); on the other hand, climate change indirectly influences 
pathogens by affecting the reproduction, survival, and geographic 
distribution of vectors (47). Changes in climate have facilitated cross-
species transmission of viruses (9). The adaptation of microorganisms to 

higher temperatures may lead to the possibility of previously unrec-
ognized infectious diseases. The increase in heat tolerance of fungi 
with pathogenic potential, driven by global warming, may lead to 
the emergence of new fungal diseases (10). Our findings indi-
cated that under future climate scenarios, the richness, relative abun-
dance, and invasion risk of HPB would show upward, with greater 
increases observed as the sustainability of development decreases. 
Compared to those in the lower middle income and low income 
regions, the magnitude of the increase in HPB richness was signifi-
cantly greater in the high income and upper middle income re-
gions. Although regions with lower levels of development now have 
higher levels of HPB richness, relative abundance, and bacterial 
infection burden, climate change also has impact on regions with 
higher levels of development. To limit the role of climate change 
in increasing pathogen spillover risk, we must reduce greenhouse 
gas emissions and pursue sustainable development. In addition, the 
risk of HPB is shared globally, thus humanity should unite to assist 
underdeveloped areas in accessing health care and improving med-
ical conditions.

This study provides an omnidirectional understanding on the 
global biogeography of HPB and the impact of climate change 
on their distribution. It is important to acknowledge that there 
remain limitations of our research. This study is based on mapping 
HPB genome to OTUs, which may mask the complexity in HPB. By 
attempting to remove common commensal and opportunistic 
pathogenic bacteria such as E. coli, we found that our conclusions 
remain unchanged. In addition, the R2 of our machine learning 
models is less than 0.5, indicating a certain lack of interpretability. 
However, considering that we used data from more than 10,000 
nonredundant locations for machine learning, our models per-
form robustly. Moreover, the current sample distribution is uneven 
due to sampling constraints, with sampling points mainly concen-
trated in the Northern Hemisphere and insufficient sampling in the 
Southern Hemisphere. Moreover, available data for LMICs remain 
scarce, despite these countries bearing a greater burden of bacte-
rial infections. Therefore, future efforts should prioritize sampling 
and research in LMICs. Furthermore, projections for future HPB 
richness depend on the predominant role of climate covariates in 
current condition. If there are changes in the key drivers for HPB 
richness under future climate scenarios, the predictions need to 
be revised.

In conclusion, we conducted large-scale HPB identification of 
microbial communities from global ecosystems, identified the 
taxonomic composition and distribution of potential HPB, and de-
termined their widespread presence in the natural environment. 
Furthermore, we observed that HPB varied among different habitats 
and regions with varying development levels, with human activities 
promoting the dispersal of HPB between environments. Using mod-
eling methods, we created global maps detailing the distribution of 
HPB richness and relative abundance, assessed the impact of climate 
change on the distribution of pathogenic bacteria, and found that 
unsustainable development could exacerbate the dispersal of HPB. The 
findings indicated the intimate connection between human health 
and the ecological environment, supporting the concept of One Health. 
In addition, we found that human activities and climate change could 
profoundly affect the distribution, richness, and dispersal of HPB in 
the environment, highlighting the necessity and urgency of reduc-
ing greenhouse gas emissions and assisting LMICs in improving 
medical conditions.
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MATERIALS AND METHODS
Data collection of HPB
The Global Catalogue of Pathogens (gcPathogen) (23) is a compre-
hensive genomic resource containing known human pathogens iso-
lated from infected patients, animal hosts, and the environment, aimed 
at supporting scientific research on pathogens and public health 
surveillance. Guided by institutions such as the WHO, gcPathogen 
has compiled a list of human pathogens, including bacteria, fungi, vi-
ruses, and parasites. All sequences for the pathogens were obtained 
from the genomic database of the National Center for Biotechnology 
Information (NCBI), and the relevant metadata were retrieved from 
BioSamples and manually curated. This study collected genomic data 
of HPB from 499 species and extracted information on biosafety 
levels, number of resistant drugs, and disease for each pathogenic bac-
terium from the gcPathogen (as of 10 April 2024).

Data collection of microbial communities
The Microbe Atlas Project (MAP) (48) summarized and organized 
a large number of sequenced microbial communities, aiming to pro-
vide additional perspectives for microbial ecology. The MAP retrieved 
metadata summary files from the NCBI Sequence Read Archive 
database and searched for keywords such as “metagenomic,” “microb*,” 
“bacteria,” or “archaea.” The raw data were downloaded and quality 
filtered for all selected sequencing runs. Then, the MAPseq tool 
was used to assign taxonomic and OTU labels to the filtered reads 
based on different 16S rRNA gene identity cutoffs (90, 96, 97, 98, 
and 99%). This study extracted data with OTUs defined at 99% se-
quence identity, filtered out samples with total rRNA reads less than 
10,000 and number of OTUs in the sample less than 20, and removed 
samples related to humans.

On the basis of the metadata obtained from MAP, we categorized 
the samples into four major categories of habitats: animal, plant, 
soil, and aquatic, which were further classified into 26 distinct mi-
crobial habitats. Animal-associated habitats were categorized into 
six types: livestock (including pig, cattle, sheep, and goat), bird (such 
as sparrow), insecta (such as fruitfly), pet (including cat and dog), 
fish (such as zebrafish), and primate (such as chimpanzee). Plant-
associated habitats were divided into four types: rhizosphere, leaf, 
wood, and seed. The soil habitats were classified into eight types: 
field, forest, agricultural, farm, shrub, peatland, desert, and tundra. 
The aquatic habitats were categorized into eight types: marine 
(marine, ocean, and sea were all assigned this type), sediment, river, 
waste water, lake, estuary, reservoir, and groundwater. Anthropogenic 
habitats represent habitats closely associated with humans, including 
pet, livestock, primate, farm, agricultural, and waste water.

Mapping the genomes of HPB to OTUs
We predicted the 16S rRNA gene sequences in HPB genomes col-
lected from the gcPathogen using Barrnap v.0.9 (49) with default 
parameters. Using the MAPseq v.2.1.1 tool, we mapped the predicted 
16S rRNA gene sequences to MAPref v.3.0 (48), which contains 
1,360,792 OTU sequences. The outputs provided confidence levels 
on the mapping between 16S rRNA gene sequences and OTU se-
quences, and the mapping results that met the following two condi-
tions were chosen: (i) confidence level ≥ 0.5, matching length of 16S 
rRNA gene sequences and OTU sequences ≥ 800, providing the best 
match for genomes mapped to multiple OTUs based on the majority 
principle (proportion ≥ 50%); (ii) confidence level ≥ 0.98, matching 
length between 16S rRNA gene sequences and OTU sequences 

≥ 800, providing the best match for genomes mapped to multiple 
OTUs based on the optimal principle (proportion < 50%, but maxi-
mum). Moreover, the outputs provided taxonomic labels for each 
OTU, which we compared with the taxonomic information obtained 
based on the assembly accession number to remove abnormal re-
sults. Ultimately, we identified 733 HPB OTUs within 1,066,584 se-
quenced microbial communities.

On the basis of the OTU tables retrieved from MAP, we cal-
culated the richness and abundance of pathogenic bacteria in 
each microbial community, respectively. The richness of HPB 
was determined on the basis of the OTU number of HPB in the 
microbial communities, while the abundance of HPB was calcu-
lated as follows

where PA is the abundance of HPB, OR represents reads of HPB 
OTUs, and TR is the total reads of microbial communities.

Acquisition of socioeconomic factors
We obtained data on HDI and Global MPI from the United Nations 
(https://hdr.undp.org/), with HDI from 2024 and MPI from 2023. 
Life expectancy at birth, urban population, and income level data 
were collected from the World Bank (https://worldbank.org/), 
with life expectancy at birth and urban population from 2022 and 
income level data from the 2024 fiscal year. The mortality rate per 
100,000 by pathogen in 2019 was derived from a study conducted in 
2022 (11).

Niche breadth of HPB
Niche breadth is a notable characteristic that affects the relative im-
portance of determinism and stochasticity in community assembly 
(50), reflecting differences in the adaptability of different species to 
various environmental conditions. Levins proposed evaluating the 
niche breadth of species by calculating the evenness of species dis-
tribution under various resource states. Levins’ niche breadth index 
(B) was calculated as follows

where Bj represents the niche breadth of species j, Pij represents the 
proportion of species j in resource state i, and N is the total number 
of resource states. The range of Bj is from 1 to N. Because of different 
sampling times, the number of resource states also varies, resulting 
in different ranges of Bj. For convenience of comparison, it is neces-
sary to standardize Bj to a range from 0 to 1. Levins’ standardized 
niche breadth (BA) was calculated as follows

Last, we calculated the average BA of each species (Bavg) as an indi-
cator of niche breadth.

Acquisition of gridded covariates
We downloaded historical data for 19 bioclimatic variables from 
WorldClim, representing the average for the years 1970–2000. Mean-
while, we also extracted future (2080–2100) climate data on these 
bioclimatic variables. There are four SSPs in future climate data: 
SSP126: sustainability; SSP245: middle of the road; SSP370: regional 
rivalry; and SSP585: fossil-fuelled development. Then, we obtained 

PA = sum(OR)∕TR × 10
6

Bj = 1∕

N
∑

i=1

P2

ij

BA = (B−1)∕(N−1)

https://hdr.undp.org/
https://worldbank.org/
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additional 21 bioclimatic variables from CliMond. Furthermore, 
we retrieved global maps related to climate variables from other 
databases. Anthropogenic variables were collected from CGIAR-
CSI, DRYAD, and SEDAC, whereas soil properties were derived 
from SoilGrids. In addition, elevation data were collected from 
GMTED2010, biomass data were obtained from CDIAC, and plant 
functional type data were acquired from GCAM. The covariates 
were categorized into nine types: anthropogenic, temperature, ra-
diation, precipitation, moisture, other climatic variables, soil prop-
erties, spatial, and others. Detailed information on the covariates 
was presented in table S3. To obtain maps of the same resolution, we 
resampled all the datasets to match the same resolution by using the 
nearest neighbor method.

Random forest modeling
First, we processed the data from MAP, selected samples with loca-
tion information, and excluded data related to oceans and humans. 
The covariates corresponding to each sampling location were ex-
tracted through ArcGIS Pro. Duplicates were removed from sam-
ples with the same coordinates, and the richness and abundance of 
HPB at each location were calculated by averaging. To mitigate spa-
tial autocorrelation, we retained only one sample within 10 m of 
each other. In addition, we used the blockCV (51) package, which 
allows for separation of data spatially, ensuring the creation of train-
ing and testing sets that are spatially separate.

Then, the global patterns of HPB richness and abundance were 
estimated using random forest models. First, to avoid multicol-
linearity, we evaluated the VIF of the variables and removed 
covariates with a VIF greater than 10. Then, the recursive feature 
elimination algorithm was used to determine the best combination 
of features. Afterward, we conducted hyperparameter tuning with 
the optimal features using grid search to identify the optimal combi-
nation of hyperparameters. Both of these procedures were per-
formed on the basis of 10-fold cross-validation, which minimizes 
the problem of model overfitting. The 10-fold cross-validation R2 
was used to assess the performance of the model. Last, we validated 
our model on the testing set to evaluate its predictive ability on 
untrained data (fig. S14).

Last, we set 10 different random seeds to train 10 independent 
random forest models, calculated the average of 10 predictions as 
the final results, and calculated the coefficients of variation of the 10 
predicted results to evaluate the uncertainty of the model (fig. S14).

The importance of each variable was also determined through 
machine learning to evaluate the key factors affecting the global 
distribution of HPB. We estimated the importance of the chosen 
variables by the function for variable importance measures in the 
randomForest (52) package of R. For the convenience of compari-
son, we standardized the importance of these variables on a scale of 
0 to 100% to obtain their relative importance (tables S4 and S5).

To verify our results, we used spatial cross-validation with the 
blockCV package, which offers a range of functions for generating 
k-fold cross-validation to ensure spatial separation. On the basis of 
spatial cross-validation, we performed feature selection and hyper-
parameter tuning to construct models that predict the global pat-
terns of HPB richness and abundance (fig. S15).

Future richness and abundance projections
A MESS analysis was conducted on the locations of the samples to 
evaluate the extrapolation reliability of HPB. Using the random forest 

algorithm, 9/10 of the samples was allocated as the training dataset for 
the model, whereas 1/10 served as the testing set. The dataset used for 
future projections has also been removed samples with close distanc-
es and divided into spatially separate‌ training and testing sets. On the 
basis of historical data of 19 bioclimatic variables sourced from 
WorldClim, the global distribution of HPB under the current climate 
was estimated. The 10-fold cross-validation R2 was used to assess the 
performance of the model, and the testing set was used to evaluate its 
predictive ability on untrained data (fig. S16). Using the established 
model and based on future (2080–2100) climate data of 19 bioclimat-
ic variables, we predicted the potential richness and abundance of 
HPB under various future climate scenarios. Each future climate sce-
nario contains multiple different CMIP6 downscaled global climate 
models (GCMs; table S6), and the projections of different GCMs were 
averaged. For future projections of HPB richness and abundance, we 
also used spatial cross-validation to confirm the findings (fig. S17).

Future invasion risk projection
Using Maxent software, the global invasion risks of HPB under cur-
rent and future climate conditions were assessed through the maxi-
mum entropy model (53). This model has been extensively used for 
predicting the probability of species distributions of various organ-
isms across the globe. The outcomes represent the predicted proba-
bility of suitable conditions, with higher values corresponding to a 
high likelihood of suitable conditions for HPB and lower values cor-
responding to a low likelihood. In this study, the prediction proba-
bility was considered as invasion risk of HPB. First, the occurrence 
data of HPB, along with 19 current bioclimatic variables, were 
imported into Maxent software to generate the global distribution 
probability of HPB, which reflects the invasion risk. We subsequent-
ly projected the future invasion risk of HPB by the end of this cen-
tury (2081–2100) under four future climate scenarios and assessed 
the changes in invasion risk relative to the current climate condi-
tions. The following settings were used to run the model: feature 
classes = auto, replicates = 10, replicated run type = Crossvalidate, 
maximum iterations = 500, convergence threshold = 0.00001.

Statistical analyses
The data analysis was mainly conducted using R (version 4.3.3). 
Through the caret (54) and randomForest (52) packages, the recur-
sive feature elimination algorithm, hyperparameter tuning, and cal-
culation of the relative importance of variables were performed. The 
partial results were visualized by the ggplot2 (55) package. ArcGIS 
Pro was used to extract covariates corresponding to location points 
and visualize the global distribution of HPB.

Supplementary Materials
The PDF file includes:
Figs. S1 to S17
Table S6
Legends for tables S1 to S5

Other Supplementary Material for this manuscript includes the following:
Tables S1 to S5
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