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In pH 4.4∼4.6 weakly acidic media, erythrosine (Ery) can react with Ag(I) to
form hydrophobic ion-association complex, which can further aggregate to form
nanoparticles with an average particle size of about 45 nm under the action of water
phase extrusion and van der Waals force. As a result, it could lead to a decrease
of absorbance, a significant enhancement of resonance Rayleigh scattering (RRS)
and the appearance of a new emission spectrum. Based on these Phenomena, two
new methods (spectrophotometry and RRS) were established for the determination
of trace Ag(I). The detection limits for Ag(I) by spectrophotometry and RRS are
9.74 and 0.12 ng/ml, respectively. In this paper, we have investigated the formation
of nanoparticles, the optimum reaction conditions, the influence factors, explored
the reason for enhancement of the scattering intensity and the effect of coexisting
substance. This research shows that RRS method not only has good selectivity and
high sensitivity, but also is simple and rapid. Analyzing of actual samples and standard
samples, the determination result of this method is consistent with that of standard
methods (Flame atomic absorption spectroscopy). Thus the method had potential
feasibility to analysis for Ag(I) in the environmental water samples, pharmaceutical, and
food industries.

Keywords: Ag(I), erythrosin, absorption, resonance Rayleigh scattering (RRS), actual samples

INTRODUCTION

Due to the good antibacterial properties, silver ions and silver nanoparticles are widely used in
medical treatment, food packaging, food storage containers and water treatment etc (1, 2). It is
reported that the global production of silver nanoparticles is up to 600 tons per year (3). The
widespread use of these products increases the chances of their release into the water environment
and human exposure. Silver ions and nanoparticles can enter human body thought the food chain
(4, 5). Huang et al. took a kind of commercial food fresh container (polyethylene plastic bags)
as the research object and research silver nanoparticles in four different types of food simulation
liquids (water, acid, alcohol, and oil), and they found that different degrees of migration occurred
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in all of them (6). Silver ions can enter the blood circulation
and accumulate in other tissues and organs of the whole body.
When reaching a certain value, they will produce toxic reactions
such as hepatotoxicity, nephrotoxicity and neurotoxicity to the
human body (7). It also may inhibit cell proliferation, produce
cytotoxicity during use, and induce different types of cytopathic
changes (8–11). Therefore, the development of a simple, rapid,
efficient, and selective method for the detection of silver ions
is of great significance to the food detection, the protection of
the environment and human health, especially in the area of
rapid food testing.

Erythrosine is a halogenated derivative of fluorescein, which is
obtained by introducing four iodine atoms into the fluorescein.
Due to the planarity and rigidity of molecular geometry and the
large conjugated system, the parent molecules fluorescein have
excellent fluorescence characteristics and high molar absorption
coefficient. The analytical chemical properties of Ery was further
improved by introducing I chromophores. Therefore, Ery have
been widely used in absorption spectrum and fluorescence
spectrum analysis, as well as in photon and electrochemistry.
However, for a long time, Ery only have been applied to
a kind of ionic association reagent, and cannot be directly
used in the determination of metal ions. The metal ions must
first form a larger chelate cation with a ligand, and then
further form an ion-association with the Ery, which can be
used to determine some material by absorption, fluorescence
and resonance Rayleigh scattering spectroscopy (12–15). For
example, Yi et al. reported that Pd(II) with Lincomycin formed
a binary chelate and then bound with Ery to form a ternary ion-
association for detecting Lincomycin (16). Tian et al. studied
the interaction of erythrosine-phen-Cd(II) systems for testing
Cd(II) (17). All of these methods are including a ternary
complicated system and can’t directly be used to determine a
certain substance.

In this study, we found that Ery could react with Ag(I)
to form hydrophobic ion-association complex in pH 4.4∼4.6
weakly acidic media, which could further aggregate to form
nanoparticles with an average particle size of about 45 nm
under the action of water phase extrusion and van der Waals
force. As a result, it could lead to a decrease of absorbance,
a significant enhancement of resonance Rayleigh scattering
(RRS) and the appearance of a new emission spectrum. Based
on these phenomena, two new methods (spectrophotometry
and RRS) were established for the determination of trace
silver ion, by directly using Ery. The detection limits for
silver ion by spectrophotometry and RRS were 9.74 and
0.12 ng/ml, respectively. The formation of nanoparticles, the
optimum reaction conditions, the influence factors, the reason
for enhancement of the scattering intensity and the effect of
coexisting substance are investigated in this paper. This research
showed that RRS method not only had good selectivity and
high sensitivity, but also was simple and rapid. The detecting
result is consistent with this of standard methods (Flame
atomic absorption spectroscopy method), and this method could
be used to the determination of Ag+ in actual samples and
standard samples. Therefore, the method had potential feasibility
to analysis for Ag(I) in the environmental water samples,

pharmaceutical, and food industries. It can provide a new and
rapid method for food safety testing.

EXPERIMENTAL SECTIONS

Instrument and Reagents
The absorption spectra were recorded through a UV-
8500 spectrophotometer (Shanghai Tianmei, China). The
RRS spectra were obtained from the F-2500 fluorescence
spectrophotometer (Hitachi, Tokyo, Japan). The morphologies
and microstructures of the ion-association complex were gained
using the transmission electron microscopy (FEI Company,
Hillsboro, OR, United States).

A stock solution of erythrosin (Ery) (1.0 × 10−3 mol/l, E.
Merck.), Ag (I) (100 µg/ml, Institute of Standard Samples,
Ministry of Environmental Protection, China) were prepared
and kept at 4◦C, respectively. Working solutions were freshly
prepared by diluting the corresponding stock solutions.

Procedure
1.0 ml Britton-Robinson buffer solution (BR), 1.0 ml of
2.5× 10−4 mol/l Ery solution and a certain amount of Ag (I) were
added into a 10 ml marked test tube. Then, it was fixed to the scale
line with distilled water. The RRS intensity (I) and absorbance
(A) were recorded at 324 and 552 nm respectively, and 1I and
1A were calculated.

RESULTS AND DISCUSSION

Absorption Spectrum
The absorption spectra of Ag(I), Ery and their combined products
are shown in Figure 1. As shown in Figure 1A, the maximum
absorption wavelength of Ery is 524 nm, while Ag(I) itself has
almost no light absorption in the range of 300–700 nm. When
Ag(I) reacts with Ery to form the ion-association, the absorption
spectrum changes (see Figure 1B). The absorbance at 522 nm
decreases significantly, and the violet shift is 2 nm compared with
the maximum absorption peak of Ery, while two new absorption
peaks appear at 280 and 560 nm, and the change of absorbance
at 552 nm is in a linear relationship with Ag(I) concentration.
The molar absorption coefficient (ε) is 1.2 × 105 L/mol/cm, and
the detection limit is 9.74 ng/ml. So, a new spectrophotometric
method for the detection of Ag(I) can be established. Although
absorption method has high sensitivity, the signal is to use
subtractive signal, and so it is not ideal methodologically, a better
method need be found.

Resonance Rayleigh Scattering
Spectrum
Resonance Rayleigh scattering spectra of the reaction system
are shown in Figure 2. It can be seen from the figure that the
RRS signal of Ag(I) and Ery themselves are extremely weak.
When they react to generate binding products, the RRS spectra
are significantly enhanced, and a strong scattering spectral band
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FIGURE 1 | Concentration of erythrosine is 1.0 × 10−5 mol/l, pH = 4.4. In panel (A), the absorption spectrum was recorded by using water as a reference solution,
the absorption spectra were measured using the reagent blank as the reference solution in panel (B), and the concentrations of Ag(I) from curve i to v are 0.500,
0.625, 0.750, 0.875, and 1.00 µg/ml.

appears near 286–375 nm, with the maximum scattering peak at
324 nm and a weak scattering peak at 566 nm. IRRS at 324 nm
is strengthened with the increase of Ag(I) concentration and
show a linear relationship in the range of 0.0039–0.75 µg/ml.
The detection limit of RRS method was 0.12 ng/ml. Compared
with spectrophotometry, its sensitivity is higher. Therefore, it is
more beneficial to measure silver ions. This method avoids the
disadvantages of spectrophotometry.

Optimization Reaction Conditions
Effect of pH
Three kinds of buffer solution (BR, HCl-sodium citrate, and
HCl-NaAc) were used as reaction medium to test their effects
on RRS, and the results showed that BR buffer solution was

FIGURE 2 | Resonance Rayleigh scattering (RRS) spectra, concentration of
erythrosine is 2.5 × 10−5 mol/l, pH = 4.4, concentrations of Ag(I) from curve i
to vi are 0, 0.125, 0.250, 0.375, 0.500, and 0.625 µg/ml.

the best. When BR buffer solution was used, 1IRRS reached the
maximum in the range of pH 4.4–4.6. And 1.0 ml BR buffer
solution was the best dosage. When the pH is 4.4–4.6, the hydroxy
of Ery will dissociate, Ag(I) combines with it at this position to
form ion-association, further aggregates in the solution to form
nanoparticles. Beyond this range, the dissociation position of
Ery is different, and the corresponding ion-association cannot be
formed without phenomenon.

Effect of Erythrosine Concentration
The results showed that 1IRRS reached the biggest when the
concentration of Ery was 2.5× 10−5 mol/l, and it would decrease
when the concentration was too low or too high. Because the
concentration of Ery was too low, the reaction was incompleted.
However, if the concentration of Ery was large, the aggregation of
the dye itself resulted in the decrease of 1IRRS.

FIGURE 3 | The reaction coordination and energy surface of Ag(I) and Ery−

system.
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FIGURE 4 | Potential electronic diagram and selected atomic charges of Ery−.

Reaction Speed and Stability
At room temperature, the reaction of the system has become
stable in 5 min and the scattering intensity can be keep for about
12 h. Therefore, the system has good stability.

Reaction Mechanism of Ag(I) and
Erythrosine
Ion-Association Reaction
The hydroxy of Ery dissociates in the pH 4.4 solution, Ag(I)
combines with it at this position to form ion-association with
five-membered ring structure. The composition ratio of Ery to
Ag(I) was determined by equimolar continuous change method
and the molar ratio method, respectively. The results showed that
Ery and Ag(I) formed a 1:1 electroneutral ion-association.

Although, Ery is a binary weak acid (H2L), the calculation
results show that Ery exists mainly in the form of monovalent
anion (HL−) according to pKa 1 = 3.6, in pH 4.4 medium.
Theoretically, HL− can be obtained by the dissociation of
hydroxyl or carboxyl groups on the benzene ring.

If there is no strong electron-withdrawing groups, the
carboxyl will dissociate before hydroxy (18, 19). But the opposite
happens. After two strong electron-absorbing groups (iodine
atom) are introduced into the o-position of the hydroxyl on
the xanthene ring, they have an electron-absorbing effect on the
hydroxyl, reduce its negative charge density and make it easier
to dissociate from the hydroxyl oxygen atoms than the carboxyl
groups on the phenyl. So, the hydroxy of Ery will dissociate.

To further confirming the correctness of hydroxyl
dissociation, we calculated the reaction system by the density
functional method of quantum chemistry (B3LYP). We used
LanL2DZ pseudopotential basis for I atom and Ag atom, and
6–31g (d) basis for other atoms. Considering the effect of the
solvent on the system, we adopted the polarimetric continuum
solvation model (PCM) in aqueous solution to optimize the
whole calculation process. When H+ dissociate from Ery, its
anions (Ery−) is formed, which may have two constructions.
One possibility is that the dissociation of the H atom located
on the carboxyl group on the benzene ring, produce benzoic

acid [Ery− (I)] (see Figure 3). The other one is that when the
H atom located on the carbonyl group next to I atom dissociate
from Ery, the oxygen on the carboxyl group of the benzene ring
combines with the central carbon atom on the parallel ring to
form a five-membered ring structure [Ery− (II)] (see Figure 3).
Through full optimization calculation, it is found that the energy
of the first structure is 26.46 kJ/mol lower than that of the second
structure, indicating that the first structure is more stable than
the second structure and is the main form of Ery− in solution.

At the same time, in order to further understand the
interaction position of Ag+ and Ery−, we also calculated
the electrostatic potential diagram of Ery−. The electrostatic
potential diagram and part of the atomic charge of Ery− are
showed in Figure 4. The results showed that the negative
charge of Ery− was mainly concentrated in the carbonyl position
between iodine atoms, so Ag+ should combine with it at this
position to form ion-association. The energy change of binding
process and the final ion-association were also calculated (see
Figure 3). Since Ery− had two structures, we calculated the
energy changes of the two structures. The energy of type [Ag-
Ery (I)] was 7.92 kJ/mol lower than that of type [Ag-Ery (II)].
Therefore, whether it existed alone or formed an ion-association,
the energy of type [Ag-Ery (I)] was lower than that of type [Ag-
Ery (II)], so the H atom on the carbonyl group next to the iodine
atom should ionize.

When Ag+ directly acted on the oxygen atom in the large
conjugate system, due to the induction effect, the charge of iodide
ions changed greatly from 0.098 and 0.128 to 0.233 and 0.167
(see Figure 5), respectively, which was resulted in the change of
absorption spectrum (see Figure 1A).

The Formation of Nanoparticles
We also calculated the volume and surface area of Ery and the
bond length of the ion-association by using B3LYP. The molar
volume was 342.403 cm3/mol, and the molecular surface area
was 498.047 Å2/molecule. When the molecule was calculated as
a sphere, its diameter should be 1.25 nm according to its area.
The bond length of Ag-Ery was 0.228 nm, and the radius of
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FIGURE 5 | Structure and selected atomic charges of Ag-Ery.

Ag+ was 0.126 nm, so the diameter of ion-association should
be less than 2 nm.

However, transmission electron microscopy (TEM) was used
to observe the surface texture of Ery, Ag+ and ion-association,
respectively, and the results are shown in the Figure 6. There were
not any nanoparticles of Ery (Figure 6a) and Ag+ (Figure 6b),
which corresponded to the calculated results. However, when
the ion-association was formed, some substances with average
particle size of 45 nm were observed (Figure 6c). That is to
say, Ag-Ery ion-association do not exist as a single molecule,
but further aggregated in the solution to form nanoparticles.
So, the end products of the reaction for Ery and Ag+ are
some nanoparticles.

From what has been discussed above, the mechanism of
reaction is that the hydroxy of Ery will dissociate firstly, then
Ag(I) combines with it at this position to form ion-association
with five-membered ring structure, finally further aggregated in
the solution to form nanoparticles.

Reasons for Resonance Rayleigh Scattering
Enhancement
Influence of Absorption Spectrum on Resonance Rayleigh
Scattering
Because RRS is a scattering-absorption-rescattering process
generated by resonance between scattering and light absorption,

FIGURE 7 | Absorption spectra and RRS spectra, concentration of
erythrosine is 2.5 × 10−5 mol/l, pH = 4.4, concentrations of Ag(I) is
0.500 µg/ml.

RRS spectrum should be closely related to absorption spectrum,
which is a necessary condition for the generation of RRS. The
comparison between RRS and absorption spectrum (Figure 7)
shows that RRS is located in its absorption band. The RRS
peaks of the ion association near 324 and 566 nm have a
good correspondence with the absorption peaks near 280 and
526 nm, respectively. Therefore, resonance enhancement effect is
generated and the scattering intensity increases significantly.

Formation of Hydrophobic Interface
Whether Ery or Ag (I), they have the strong hydrophilicity and
can well dissolve in water. When Ery and Ag (I) react to form ion-
association and further aggregate to form nanoparticles, there
is a liquid-solid interface between these products and water
phase, which will lead to a surface-enhanced scattering effect and
significantly enhance the scattering.

The Molecular Volume Increases
It is known that the increase of molecular volume is conducive to
the improvement of scattering intensity. When nanoparticles are
formed, their average particle size is 45 nm, and the molecular
volume increases dramatically, which is also helpful to the
enhancement of scattering.

FIGURE 6 | Transmission electron micrographs for (a) Ag(I), (b) Ery−, and (c) the products of the reaction for Ery and Ag(I).
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TABLE 1 | Related parameters of the calibration graphs and the detection limits.

Method Mesurement
wavelength

Linear
regression equation

(µg/mL)

Correlation
coefficient (r)

Linear range
(µg/mL)

Detection limits
3σ (ng/mL)

RRS λex/λem = 324/324 nm 1I = 1.32 × 104c−458 0.9969 0.0039∼0.75 0.12

SP* λ = 522 nm 1A = −1.54c + 0.67 0.9994 0.032∼1.0 9.74

SP* is spectrophotometry.

TABLE 2 | Comparison of different methods for Ag+ detection.

Methods Detection limits
(ng/mL)

References

Atomic absorption and plasma emission spectrometry 473 1 (20)

Atomic absorption spectrometry 1.1 2 (21)

Flame atomic absorption spectroscopy 4.6 3 (22)

Flame atomic absorption spectroscopy 30 4 (23)

Fluorescence 14 5 (24)

Fluorescence 43 6 (25)

Fluorescence 5 7 (26)

Fluorescence 200 8 (27)

Colorimetry 6.9 9 (28)

Colorimetry 182 10 (29)

Electrochemical methods 3.3 11 (30)

Electrochemical methods 2.1 12 (31)

RRS 6.3 13 (32)

RRS 21.6 14 (33)

Spectrophotometry 9.74 Present work

RRS 0.12 Present work

TABLE 3 | Effects of coexisting substances (c = 0.50 µ g/mL).

Coexisting
substance

Times Ralative
error (%)

Coexisting
substance

Times Ralative
error (%)

Coexisting
substance

Times Ralative
error (%)

NO3
− 500 2.5 Mg(II) 800 2.5 Fe(III) 500 2.4

Cl− 20 2.4 Pb(II) 700 0.6 Al(III) 400 −4.3

SO4
2− 400 3.1 Cd(II) 600 3.8 Au(III) 200 3.2

PO4
3− 500 3.5 Zn(II) 900 −2.6 Sb(III) 300 1.9

NH4
+ 1000 −4.2 Mn(II) 500 2.4 Bi(III) 300 1.2

Na+ 800 2.6 Hg(II) 200 1.8 Ir(III) 200 2.5

K+ 800 −3.4 Ni(II) 400 4.0 Rh(III) 400 3.4

Pd(II) 400 2.1 Co(II) 400 2.9 Pt(IV) 500 2.7

Ca(II) 500 −3.0 Cu(II) 700 1.2 W(VI) 400 1.9

TABLE 4 | Results for the determination of Ag(I) in mineral drinks and environment water samples.

Sample Found amount
(µg/mL)

FAAS#

method (µg/mL)
Added amount

(µg/mL)
Found total

amount
(µg/mL)

RSD (%) Recovery (%)

Mineral drink 1 ND* ND* 0.20 0.21 1.43 105.0

Mineral drink 2 ND* ND* 0.30 0.28 2.67 93.3

Mineral drink 3 ND* ND* 0.40 0.40 3.09 100.0

Mineral drink 4 ND* ND* 0.50 0.53 3.28 106.0

Jialing river Beiwenquan Section ND* ND* 0.20 0.20 2.02 100.0

Jialing river Shuitu Section ND* ND* 0.30 0.31 1.53 103.3

Liangtan river Longfeng Section ND* ND* 0.40 0.38 2.33 95.0

Liangtan river Xixiqiao Section ND* ND* 0.50 0.49 2.51 98.0

ND* is not detected. FAAS# is Flame atomic absorption spectroscopy. n = 5.
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TABLE 5 | Results for the determination of Ag(I) in Certified Reference Material.

Sample number Found amount
(µg/mL)

FAAS#

method (µg/mL)
Standard values

(µg/mL)
Relative error (%)

204206 0.440 0.441 0.449 2.00

GSBZ50038-95 0.190 0.192 0.200 5.00

FAAS# is Flame atomic absorption spectroscopy. n = 5.

Standard Curve
Under the optimum experimental conditions, the 1I RRS and
1A value with concentration of Ag (I) were investigated.
All the parameters of the standard curves and the limits of
detection (DL) are listed in Table 1. The results show that
the detection limit of RRS method is 0.12 ng/ml, that of
spectrophotometry is 9.74 ng/ml. Therefore, RRS method is more
sensitive than spectrophotometry. Compared with the common
colorimetry, fluorescence, atomic absorption spectrometry, flame
atomic absorption spectroscopy and electrochemical methods,
the detection limit of this method is the lowest with the number
range from many times to thousands times (see Table 2). In
addition, the method is simple, rapid and low cost, which is more
beneficial to the determination of silver ions.

Selectivity and Analytical Application
Selectivity of the Method
Under the optimal conditions, the influence of coexisting ions
on the determination of Ag(I) was investigated, and the results
were shown in Table 3. The concentration of common inorganic
acid ions (such as SO4

2−, NO3
−, and PO4

3−) can reach 400–
500 times, that of alkali metal ions (Na+, K+) and NH4

+ can
reach 800–1,000 times, and that of metal ions, including Cu(II),
Pb(II), Cd(II), Hg(II), etc., can reach more than 200 times. In
other words, under the experimental conditions, Ery only reacts
with monovalent silver ion, not other high-valence metal ions,
so the method has good selectivity and could be used for the
determination of trace Ag(I) in actual samples.

Analysis of Actual Samples
Resonance Rayleigh scattering method was used for the detecting
Ag(I) in mineral drinks and environment water samples, and
the results were shown in Table 4. The environmental water
samples were obtained from two drinking water source sections
of Jialing River and two sections of Longfengxi, a tributary
of Jialing River. For the detecting of mineral drinks samples,
the relative standard deviations were 1.43 ∼ 3.46%, and the
average recoveries were 93.3 ∼ 140.0%. For the determination of
environment water samples, the relative standard deviations were
1.53∼ 2.51%, and the average recoveries were 95.0∼ 103.3%. The
results were in accord with those of the standard method (FAAS).
These results revealed that the RRS method could be applied to
the analysis of real samples and environment water samples to
ensure food safety.

Analysis of Standard Samples
The method was validated with the standard samples (Institute
for Environmental Reference Materials of Ministry of
Environmental Protection), and the results were listed in

Table 5. The relative errors were 2.00 ∼ 5.00%, and there
was no significant difference with standard values (α = 0.05).
Therefore, the method has good accuracy and repeatability for
the determination of Ag(I) in the standard samples.

CONCLUSION

Erythrosine can react with Ag(I) to form hydrophobic ion-
association complex, which can further aggregate to form
nanoparticles. The reaction can lead to a decrease of absorbance
and a significant enhancement of resonance Rayleigh scattering
(RRS) Based on these, spectrophotometry and RRS method were
developed for the detection of Ag(I). When we used RRS mothod
to determine silver ions in mineral water samples, environment
water samples and standard samples, the results were consistent
with the standard method. The analysis for actual samples can
be done in several minutes, and RRS has a potent ability to be
used for the rapid detection of trace Ag(I) in other food samples.
In addition, without the need for the other reagents, RRS can be
used to directly detecting Ag(I), and the process of determination
is simple and environmentally friendly.
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