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Abstract
To evaluate the associations between six single-nucleotide polymorphisms (SNPs) in intron

1 of FTO and body mass index (BMI), a case-control association study of 2314 unrelated

Mexican-Mestizo adult subjects was performed. The association between each SNP and

BMI was tested using logistic and linear regression adjusted for age, gender, and ancestry

and assuming additive, recessive, and dominant effects of the minor allele. Association

analysis after BMI stratification showed that all five FTO SNPs (rs1121980, rs17817449,

rs3751812, rs9930506, and rs17817449), were significantly associated with obesity class

II/III under an additive model (P<0.05). Interestingly, we also documented a genetic model-

dependent influence of gender on the effect of FTO variants on increased BMI. Two SNPs

were specifically associated in males under a dominant model, while the remainder were

associated with females under additive and recessive models (P<0.05). The SNP

rs9930506 showed the highest increased in obesity risk in females (odds ratio = 4.4). Linear

regression using BMI as a continuous trait also revealed differential FTO SNP contributions.

Homozygous individuals for the risk alleles of rs17817449, rs3751812, and rs9930506 were

on average 2.18 kg/m2 heavier than homozygous for the wild-type alleles; rs1121980 and

rs8044769 showed significant but less-strong effects on BMI (1.54 kg/m2 and 0.9 kg/m2,

respectively). Remarkably, rs9930506 also exhibited positive interactions with age and BMI

in a gender-dependent manner. Women carrying the minor allele of this variant have a sig-

nificant increase in BMI by year (0.42 kg/m2, P = 1.17 x 10−10). Linear regression haplotype

analysis under an additive model, confirmed that the TGTGC haplotype harboring all five

minor alleles, increased the BMI of carriers by 2.36 kg/m2 (P = 1.15 x 10−5). Our data sug-

gest that FTO SNPs make differential contributions to obesity risk and support the
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hypothesis that gender differences in the mechanisms involving these variants may contrib-

ute to disease development.

Introduction
Obesity is a major risk factor for developing chronic degenerative disorders such as type 2 dia-
betes, hypertension, cardiovascular events, and some types of cancer[1, 2]. It is estimated that
>50% of the global population will be overweight or obese by 2030 [3]. In Mexico, more than
70% of adults have a body mass index (BMI)�25 kg/m2, and 30% are obese (BMI�30 kg/m2)
[4]. The growing prevalence of obesity and its co-morbidities worldwide in recent decades
highlights the need to clarify the factors involved in its development. Genetic factors play a role
in the etiopathogenesis of obesity, and many studies have shown that polymorphisms in candi-
date genes are associated with susceptibility to obesity. However, these observations have not
been replicated in all populations, suggesting that ethnic differences may underlie the variabil-
ity observed in association studies.

Recent genome-wide association studies (GWAS), have facilitated the identification of
potential new genetic risk factors involved in the regulation of energy balance. The most-repli-
cated finding is an association between fat mass and the obesity-associated gene FTO. Single-
nucleotide polymorphisms (SNPs) clustered in the first intron of FTO display the strongest
associations with obesity reported to date and have been investigated more than any other
common variant in human obesity [5]. FTO encodes a demethylation enzyme that removes
methyl groups from DNA and RNA nucleotides, and it is probably involved in physiological
processes such as the control of energy homeostasis, adipogenesis, and DNAmethylation.
However, its role in the pathophysiology of obesity remains under investigation [5–8]. In
murine models, Fto RNA transcript levels correlated with food intake, suggesting that this gene
may participate in the central control of energy homeostasis [9, 10]. In addition, the FTO pro-
tein is expressed extensively in the mouse brain, where it serves as the main regulator of energy
balance, evidencing a close association between FTO function and BMI regulation [11]. Fur-
thermore, association studies indicated that subjects with at least one copy of the FTO risk
allele of the SNP rs9939609, had higher food intake than those with two copies of the wild-type
allele; the former also exhibited an increased preference for fatty food [12–14]. Case-control
studies in individuals with insulin resistance, and other anthropometric measures such as
weight and waist and hip circumference detected significant associations with polymorphisms
on the first intron of FTO gene [15, 16]. The first study involving this FTO SNPs and obesity
was performed in an English diabetic population; where the SNP most strongly associated with
an increased BMI was rs9939609 [17]. Subsequently, other studies in German, French, and Ital-
ian populations reported that rs1121980 and rs9930506, were most strongly associated with
obesity [18–20]. In Mexicans the rs9939609 was also associated with increased BMI [21, 22]
but notably, rs1421085, which was associated with obesity in many populations, was not repli-
cated in a cohort of obese Mexican children [23]. In order to increase our understanding of the
contributions of this region of FTO to the development of obesity in the Mexican population,
we performed a case-control study in a population that included normal-weight, overweight,
and obese patients. We investigated the association of six SNPs distributed along intron 1 of
FTO gene: rs7191566, rs1121980, rs1781449, rs3751812, rs9930506, and rs8044769, with obe-
sity in a cohort of Mexican Mestizos (MMs).
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Materials and Methods

Ethics statement
This study was conducted in accordance with the Declaration of Helsinki and was approved by
the ethics and human research committees of the National Institute of Genomic Medicine in
Mexico City, Mexico. All participants provided written informed consent.

Study population
This study included 2314 unrelated MMs adults whose parents and grandparents were born in
Mexico. Obesity status was determined according to World Health Organization criteria [24].
BMI was calculated as weight in kilograms divided by the square of height in meters. Based on
BMI values, the subjects were categorized as normal weight (18.5–24.9 kg/m2), overweight
(25–29.9 kg/m2), or obese (�30 kg/m2). Blood pressure as well as fasting glucose, triglycerides,
and cholesterol serum levels were measured in all participants. MM individuals were recruited
from three tertiary health institutions in Mexico City: Hospital Regional 1° de Octubre, Hospi-
tal Regional Adolfo López Mateos, and Clínica de Diagnóstico Autorizado, ISSSTE. To deter-
mine the frequencies of the risk alleles in Mexican-Amerindians (MAs), we also included 592
MA adults who identified themselves as indigenous members of four ethnic groups (213
Mayas, 219 Nahuas, 83 Tarahumaras, and 77 Otomies). These participants were born in the
same region as their parents and grandparents and both parents or all their grandparents speak
a native language. Ancestry was confirmed in a random sample of 200 MAs and in the whole
MMs sample, using 96 ancestry-informative markers (AIMs), by the Illumina GoldenGate
microarray SNP genotyping method. These AIMs distinguish mainly between Amerindian and
European ancestry (δ>0.44) and have been validated in other studies in Mexican population
[25].

Genotyping
Genomic DNA was extracted from whole blood cells using a high-salt method (QIAgen Sys-
tems, Inc., Valencia, CA, USA). Based on previous association data from several populations,
we selected variants rs1121980, rs17817449, rs3751812, rs9930506, rs7191566, and rs8044769
[17–20] for analyses; these SNPs are distributed along a 45-kb stretch of intron 1 of FTO. Gen-
otyping was performed with the TaqMan Allelic Discrimination assay using the ABI PRISM
7900 thermocycler (Applied Biosystems, Foster City, CA, USA). The call rate exceeded 96% for
all SNPs tested, with no discordant genotypes in 15% of duplicate samples used as quality con-
trol. In order to validate the TaqMan results, random samples from each genotype were
sequenced on an automated ABI PRISM 310 Genetic Analyzer (Applied Biosystems) with
100% reproducibility.

Statistical analysis
Comparison of clinical data between cases and controls was carried out using the Kruskal-Wal-
lis test. Associations between each FTO SNP and obesity were tested using logistic regression in
PLINK v1.07 (http://pngu.mgh.harvard.edu/purcell/plink). All associations were evaluated
under additive, dominant, and recessive inheritance models adjusted for sex, age, and ancestry.
Odds ratios (ORs) with 95% confidence intervals and the Hardy—Weinberg equilibrium
(HWE) were performed using FINETTI software. To investigate the impact of FTO polymor-
phisms on BMI, we used a linear regression model implemented in PLINK v1.07 with BMI as a
continuous trait and age and sex as covariates [26]. Ancestry correction was performed via
principal component analysis in which eigenvectors were calculated from 96 AIMs with
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EIGENSOFT version 5.0. To assess the reliability of the differences observed among males and
females, a test for heterogeneity was quantified by I2 measure [27]. Linkage disequilibrium
(LD) structures and haplotype frequencies were analyzed using Haploview version 4.2 (http://
www.broad.mit.edu/mpg/). Correction for multiple-hypothesis testing was performed with the
Bonferroni correction and multiple permutation tests (100,000 permutations). Using
QUANTO version 12 (http://hydra.usc.edu/GxE/), the statistical power for the study was esti-
mated as>80% when employing an additive model. The level of statistical significance was
defined as P values of�0.05 after Bonferroni correction.

Results

Study population
A total of 2314 MM unrelated adult subjects were included in this study. Of these, 1510 (65%)
were women and 804 (35%) were men. Based on BMI, 698 (31%) were normal weight (18.5–
24.9 kg/m2), 541 (23%) were overweight (25–29.9 kg/m2), and 1075 (46%) were obese (�30 kg/
m2). As expected, certain anthropometric and clinical values, such as blood pressure and serum
levels of glucose, cholesterol, and triglycerides, were significantly higher (P<0.001) in obese
and overweight subjects than in normal-weight individuals. Baseline characteristics of partici-
pants included in this study are shown in S1 Table.

Association analysis in MMs
The genotype distribution of all evaluated SNPs was in Hardy-Weinberg equilibrium in our
population, except for rs7191566, which was not considered in subsequent analysis. A compar-
ative analysis between obese cases and normal-weight controls showed that the frequencies of
all minor alleles were significantly associated with obesity after adjustments for gender, age,
and ancestry rs1121980 (T): 0.27 vs. 0.24, OR = 1.2, P = 0.009; rs17817449 (G): 0.21 vs. 0.18,
OR = 1.3, P = 0.007; rs3751812 (T): 0.20 vs. 0.16, OR = 1.4, P = 0.001; rs9930506 (G): 0.27 vs.
0.21, OR = 1.5, P = 0.001; and rs8044769 (C): 0.41 vs. 0.37, OR = 1.2, P = 0.01) (Table 1). For
all SNPs, significant associations remained after Bonferroni correction. After BMI stratifica-
tion, we observed that all studied SNPs were significantly associated with BMI>35 kg/m2

(class II/III), an effect that persisted after multiple-hypothesis correction (P�0.05) (Table 1).
The only SNP that was significantly associated with all obesity grades (class I-III) was
rs9930506. Stratification by BMI and gender also revealed an influence of gender on the effect
of these FTO variants on increased BMI in a genetic model-dependent manner (Table 2). After
Bonferroni correction, rs1121980 and rs17817449 were significantly associated with class II/III
obesity in women only when assuming an additive model (OR = 1.4, P� 0.05), while
rs3751812 and rs9930506 were associated with both women and men under different models
(P� 0.05) (Table 2). The strongest effect on obesity occurred with rs9930506 in women using
a recessive model (OR = 4.4, 95% CI 1.40–14.10, P = 0.05). We found absence of heterogeneity
between man and woman groups (I2 = 0), which support the fact that these SNPs have a stron-
ger effect in women.

Linear regression analysis. Linear regression using BMI as a continuous trait (including
overweight subjects) and an additive model adjusted for sex, age, and ancestry, revealed differ-
ential SNP contributions to increased BMI. MMs homozygous for the risk alleles of
rs17817449, rs3751812, and rs9930506 were on average 2.18 kg/m2 heavier than MMs homo-
zygous for the wild-type alleles. In contrast, rs1121980 and rs8044769, located toward the 5’
and 3’ ends of FTO, respectively, had less influence on BMI (1.54 kg/m2 and 0.9 kg/m2, respec-
tively) than variants located between them (Table 3). After stratification for age and gender,
linear regression showed that rs1121980 was significantly associated with obesity in females
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only (beta = 0.89, P = 0.01), while the other SNPs displayed association in both genders. We
also documented a positive interaction between age and BMI in women carrying the minor
allele of rs9930506G (P = 5.4 x 10−9). Linear regression haplotype analysis confirmed that hap-
lotype TGTGC, which harbors all five minor alleles, increased the BMI of carriers by 2.36 kg/
m2 (P = 1.15 x 10−5) (Table 4). Linear regression did not uncover any significant associations
between first-intron FTO variants and blood pressure or serum levels of glucose, cholesterol,
and triglycerides.

Allele frequencies. Comparisons between-population indicated that the frequencies of
minor alleles in normal-weight MMs (rs1121980 (T), 0.24; rs17817449 (G), 0.18; rs3751812
(T), 0.16; and rs9930506 (G), 0.21), were significantly lower than those previously reported for
Caucasians (0.48, 0.46, 0.46, and 0.48, respectively; P< 0.001), but similar to those previously

Table 1. Case-control association analysis of intron 1 FTO SNPs in MMs.

MAF Total
Obesity

Class I
Obesity

Class II/III
Obesity

SNP Genetic
model

Cases Controls OR (95% CI) P Pcorr OR (95% CI) P Pcorr OR (95% CI) P Pcorr

rs1121980 Additive 0.27 0.24 1.2(1.06–
1.46)

0.009 0.045* 1.1(0.96–
1.37)

0.81 NS 1.4(1.15–1.73) 0.001 0.005*

C/T Dominant 1.3(1.06–
1.57)

0.01 0.05* 1.2(0.94–
1.47)

0.14 NS 1.5(1.16–1.93) 0.002 0.01*

Recessive 1.4(0.90–
2.04)

0.14 NS 1.18(0.74–
1.87]

0.49 NS 1.6(0.99–2.70) 0.05 NS

rs17817449 Additive 0.21 0.18 1.3(1.07–
1.50)

0.007 0.037* 1.2(0.96–
1.43)

0.11 NS 1.4(1.16–1.81) 0.001 0.005*

T/G Dominant 1.3(1.06–
1.60)

0.01 0.05* 1.2(0.96–
1.52)

0.10 NS 1.5(1.12–1.92) 0.005 0.025*

Recessive 1.6(0.95–
2.66)

0.07 NS 1.2(0.67–
2.18)

0.52 NS 2.2(1.19–3.93) 0.01 0.05*

rs3751812 Additive 0.20 0.16 1.4(1.14–
1.64)

0.001 0.005* 1.3(1.03–
1.55)

0.03 NS 1.5(1.23–1.94) 0.0002 0.001*

G/T Dominant 1.4(1.12–
1.72)

0.002 0.01* 1.3(1.91–
1.62)

0.04 NS 1.6(1.21–2.08) 0.0008 0.004*

Recessive 1.9(1.05–
3.30)

0.03 NS 1.6(0.82–
2.96)

0.17 NS 2.3(1.17–4.43) 0.02 NS

rs9930506 Additive 0.27 0.21 1.5(1.17–
1.84)

0.001 0.005* 1.4(1.07–
1.79)

0.01 0.05* 1.6(1.23–2.13) 0.001 0.005*

A/G Dominant 1.5 (1.16–
1.99)

0.002 0.01* 1.2(1.04–
1.94)

0.03 NS 1.7(1.21–2.36) 0.002 0.01*

Recessive 2.0(1.07–
3.62)

0.03 NS 1.7(0.89–
3.50)

0.10 NS 2.3(1.13–4.70) 0.02 NS

rs8044769 Additive 0.41 0.37 1.2(1.04–
1.36)

0.01 0.05* 1.1(0.98–
1.33)

0.09 NS 1.3(1.06–1.51) 0.01 0.05*

T/C Dominant 1.3 (1.02–
1.53])

0.03 NS 1.19(0.95–
1.48)

0.13 NS 1.4(1.05–1.8) 0.02 NS

Recessive 1.3 (0.98–
1.66)

0.06 NS 1.2(0.89–
1.60)

0.22 NS 1.4(0.97–1.90) 0.07 NS

* and bold font denotes significant P values (<0.05) after Bonferroni correction (Pcorr).

Italics and bold font denote significant associations with all classes of obesity. By convention, in all models, 1 is the major allele and 2 is the minor allele.

Additive model; 11 versus 22; dominant model; 11+12 versus 22; recessive model; 11 versus 12+22. CI, confidence interval;MMs Mexican Mestizo. NS,

not significant. MAF, minor allele frequency.

doi:10.1371/journal.pone.0145984.t001
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Table 2. Association of intron 1 FTO SNPs with obesity grade, stratified by gender, in MMs.

Class I Obesity Class II/III Obesity

Genetic Female Male Female Male

SNP model OR (95%
CI)

P
value

Pcorr OR (95%
CI)

P
value

Pcorr OR (95%
CI)

P
value

Pcorr OR (95%
CI)

P
value

Pcorr

rs1121980 Additive 1.1(0.89–
1.42)

0.32 NS 1.1(0.86–
1.51)

0.36 NS 1.4(1.10–
1.79)

0.01 0.05* 1.4(0.92–
2.01)

0.12 NS

C/T Dominant 1.1(0.85–
1.49)

0.39 NS 1.2(0.86–
1.73)

0.27 NS 1.4(1.06–
1.92)

0.02 NS 1.6(0.96–
2.64)

0.07 NS

Recessive 2.3(0.68–
2.39)

0.44 NS 1.0(0.52–
2.07)

0.91 NS 1.9(1.05–
3.57)

0.03 NS 1.1(0.46–
2.88)

0.76 NS

rs17817449 Additive 1.1(0.87–
1.46)

0.35 NS 1.2(0.90–
1.69)

0.52 NS 1.4(1.07–
1.79)

0.01 0.05* 1.6(1.05–
2.46)

0.03 NS

T/G Dominant 1.2(0.87–
1.58)

0.29 NS 1.2(0.86–
1.80

0.94 NS 1.4(1.01–
1.88)

0.04 NS 1.7(1.02–
2.88)

0.04 NS

Recessive 1.0(0.40–
2.26)

0.94 NS 1.5(0.61–
3.73)

0.37 NS 2.2(1.08–
4.53)

0.03 NS 2.1(0.72–
6.21)

0.17 NS

rs3751812 Additive 1.2(0.92–
1.56)

0.18 NS 1.4(0.98–
1.88)

0.06 NS 1.4(1.07–
1.85)

0.01 0.05* 1.9(1.24–
2.96)

0.003 0.015*

G/T Dominant 1.2(0.90–
1.65)

0.19 NS 1.4(0.93–
2.00)

0.11 NS 1.4(1.02–
1.92)

0.04 NS 2.2(1.30–
3.67)

0.003 0.015*

Recessive 1.3(0.57–
3.11)

0.49 NS 1.9(0.71–
5.19)

0.19 NS 2.3(1.03–
5.15)

0.04 NS 2.1(0.65–
7.01)

0.21 NS

rs9930506 Additive 1.4(0.94–
2.00)

0.09 NS 1.4(0.96–
1.95)

0.09 NS 1.6(1.09–
2.23)

0.01 0.05* 1.7(1.08–
2.60)

0.02 NS

A/G Dominant 1.3(0.84–
2.02)

0.22 NS 1.5(0.97–
2.38)

0.07 NS 1.5(0.95–
2.20)

0.08 NS 2.2(1,22–
3.82)

0.008 0.04*

Recessive 2.9(0.88–
9.93)

0.08 NS 1.3(0.56–
3.11)

0.52 NS 4.4 (1.4–
14.1)

0.01 0.05* 1.3(0.45–
3.60)

0.64 NS

rs8044769 Additive 1.2(0.95–
1.42)

0.14 NS 1.1(0.85–
1.38)

0.51 NS 1.3(1.03–
1.57)

0.03 NS 1.2(0.85–
1.70)

0.30 NS

T/C Dominant 1.2(0.94–
1.65)

0.13 NS 1.0(0.74–
1.54)

0.71 NS 1.3(0.96–
1.79)

0.08 NS 1.5(0.84–
2.53)

0.17 NS

Recessive 1.1(0.80–
1.75)

0.40 NS 1.1(0.76–
1.84)

0.44 NS 1.5(0.99–
2.23)

0.05 NS 1.0(0.58–
2.02)

0.79 NS

* and bold font denotes significant P values (<0.05) after Bonferroni correction (Pcorr).

By convention, in all models, 1 is the major allele and 2 is the minor allele. Additive model, 11 versus 22; dominant model, 11+12 versus 22; recessive

model, 11 versus 12+22. CI, confidence interval; MMs Mexican Mestizo. NS, not significant.

doi:10.1371/journal.pone.0145984.t002

Table 3. Linear regression analysis of FTO SNPs in MMs, adjusted for gender, age, and ancestry.

SNP ID N Location
Alleles 2314 Chr:16 MAF TEST BETA L95 U95 Pvalue Pcorr

rs1121980 C/T All 52366748 T ADD 0.77 0.342 1.198 0.0004 0.002*

rs17817449 T/G All 52370868 G ADD 1.00 0.527 1.476 3.6 x 10−5 0.0002*

rs3751812 G/T All 52375961 T ADD 1.11 0.621 1.597 9 x 10−6 4.5 x 10−5*

rs9930506 A/G All 52387966 G ADD 1.17 0.426 1.910 0.002 0.01*
rs8044769 T/C All 52396636 C ADD 0.450 0.084 0.825 0.02 0.10

* and Bold font denotes significant P values (<0.05) after Bonferroni correction (Pcorr).

ADD, additive model. MMs Mexican Mestizo. MAF, minor allele frequency.

doi:10.1371/journal.pone.0145984.t003
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reported for Japanese subjects (0.22, 0.18, 0.18, and 0.23, respectively) and Chinese subjects
(0.21, 0.17, 0.18, and 0.23, respectively). The frequency of the rs8044769 risk allele was signifi-
cantly lower (P< 0.001) in MMs (0.37) and in individuals from Los Angeles of Mexican origin
(0.46) than in Caucasian, Japanese, and Chinese individuals, according to HapMap (Table 5).
In order to know the Amerindian influence on the BMI in Mexicans, we analyzed a sample of
MAs to investigate the allele frequencies of the three SNPs that more strongly affected BMI in
MMs. Notably, all risk alleles displayed the lowest frequencies in MAs (rs1781449 (G), 0.07;
rs3751812 (T), 0.06; and rs9930506 (G), 0.11, versus frequencies reported for other popula-
tions, including that observed here for MMs, which was intermediate between those of Cauca-
sians and MAs (Table 5).

Interestingly, MMs and MAs showed different LD blocks. In the MM population included
in this study, all SNPs were in LD (r2 = 0.90–0.66) except for rs8044769 (r2 = 37), which dis-
played a rapid fall-off downstream of the middle region (Fig 1). In contrast, in the MAs studied
here, only two of three variants were in LD (rs17817449 and rs3751812: r2 = 90) (Fig 1).

Table 4. FTO haplotype association with obesity in MMs.

Logistic regression analysisa Lineal regression analysisb

Haplotype Frequencies OR Pvalue Pcorr Frequencies BETA Pvalue Pcorr

TGTGC 0.17 1.4 0.0004 0.002* 0.17 1.18 2.34X106 1.15X105*

TTGGC 0.05 1.01 0.95 NS 0.05 -0.488 0.27 NS

TGGAC 0.01 0.51 0.02 NS 0.01 -1.19 0.16 NS

CTGAC 0.15 1.04 0.71 NS 0.15 -0.167 0.54 NS

CTGAT 0.59 0.84 0.01 0.05* 0.59 -0.51 0.008 0.04*

Bold font denotes haplotypes with significant

*P values <0.05 after Bonferroni correction.
aAnalysis including cases and controls.
bAnalysis including obese, overweight and controls subjects.

MMs Mexican Mestizo. NS, not significant.

doi:10.1371/journal.pone.0145984.t004

Table 5. Comparison of risk allele frequencies of intron 1 FTO SNPs among different ethnicities.

Risk Allele Frequencies

SNP Risk allele YRB CHB JPT CEU MXL MMs MAs aP bP cP dP

rs1121980 T 0.47 0.21 0.22 0.48 0.24 0.24 NA < 0.001 < 0.001 > 0.05

rs17817449 G 0.39 0.17 0.18 0.46 0.18 0.18 0.07 < 0.001 < 0.001 < 0.001 > 0.05

rs3751812 T 0.07 0.18 0.18 0.46 0.17 0.16 0.06 < 0.001 < 0.001 <0.003 > 0.05

rs9930506 G 0.19 0.24 0.23 0.48 0.22 0.21 0.11 < 0.001 < 0.001 0.72 > 0.05

rs8044769 C 0.83 0.57 0.68 0.56 0.46 0.37 NA < 0.001 < 0.001 < 0.001

aMMs versus MAs.
bMMs versus Caucasians.
cMMs versus Yorubas.
dMMs versus Chinese and Japanese populations.

NS, not significant. NA, not analyzed. MMs Mexican Mestizo. MAs, Mexican Amerindian.

doi:10.1371/journal.pone.0145984.t005
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Discussion
The association of FTO with obesity is strongly replicable in most populations. However, the
molecular mechanisms by which FTO variants increase individual susceptibility to overweight
and obesity remain unclear. We performed a study in patients with a BMI�25 in which we
analyzed six SNPs (rs7191566, rs1121980, rs17817449, rs3751812, rs9930506, and rs8044769)
distributed across a 45-kb stretch of intron 1 of FTO. The rs7191566 was excluded from our
analysis because it displayed no-HWE in women controls. In our MM population, we detected
strong associations between all five FTO SNPs and obesity [17–19, 24]. Interestingly, after BMI
stratification, it was notable that SNPs located in a 9-kb region in the middle of intron 1
(rs1121980, rs17817449, and rs3751812) with high LD (r2 = 90) were associated only with class
II/III obesity. In contrast, rs9930506 was significantly associated with all obesity grades (class
I-III) and was the only SNP showing a positive interaction between age and BMI, like the
described in Italian individuals [28]. Otherwise, rs8044769 located near the 3’ end of intron 1
and which is in lower LD than the other SNPs (r2 = 37), showed only a nominal association
with obesity after Bonferroni correction.

Fig 1. LD structure of SNPs in intron 1 of FTO in A) MMs and B) MAs. Black represents very high LD (r2) and white indicates a lack of correlation between
SNPs. r2 was calculated with Haploview 4.2.

doi:10.1371/journal.pone.0145984.g001

FTO Polymorphisms and BMI in Mexicans

PLOS ONE | DOI:10.1371/journal.pone.0145984 January 4, 2016 8 / 12



Notably, linear regression revealed that variants located in the middle of intron 1
(rs17817449, rs3751812, and rs9930506) more strongly influenced BMI than did SNPs toward
the 5’ (rs1121980: beta = 0.77) and 3’ (rs17817449: beta = 0.45) ends.

In accordance with our observations, Bell et al. [29] recently reported that the CGCTTGG
haplotype, which contains the minor alleles rs1421085 (T/C), rs17817449 (T/G), rs8050136
(A/C), rs3751812 (G/T), rs9939609 (A/T), rs7202116 (A/G), and rs9930506 (A/G), harbors a
specific methylation region. Actually, risk allele rs9930506G could has the potential to create or
abrogate a CpG site in FTO, as has been described for the rs7202116G FTO allele [29]. There-
fore, we cannot rule out the possibility that the risk haplotype TGTGC identified in the present
study may influence the FTOmethylation pattern and thus FTO expression.

FTO is expressed mainly in the hypothalamus and may be crucial for energetic homeostasis
and lipolysis. Moreover, Almén et al. [30] recently provided evidence that FTO influences the
methylation of genes that encode transcriptional regulators, such as KARS and TERF2IP, as
well as the methylation of transcriptional coactivators that are induced by estrogen, such as
BCAS3. Thus, it is possible that interactions between genetic and epigenetic factors may deter-
mine genetic susceptibility to obesity through FTO. Furthermore, based on the rapid fall-off of
LD downstream of the region that contains the SNPs that consistently display associations
with obesity, it is highly likely that functional variants are located within this FTO region.
Another interesting finding in the present study was the genetic model-dependent sexual
dimorphism for obesity susceptibility due to FTO. FTO SNPs were associated with obesity in
females under both additive and recessive models and with males under a dominant model.
These sex-based differences in the heritability of an increased BMI are consistent with previous
studies that reported that FTO association with obesity traits occurs independently in males
and females [31–33]. Moreover, a meta-analysis of 32 GWAS of waist-hip ratio adjusted for
BMI identified seven loci that showed marked sexual dimorphism; all loci exerted stronger
effects on waist-hip ratios in women than in men [34]. Taken together, these findings provide
strong evidence that gene-by-sex interactions are involved in the distribution of body fat [34].
Since the majority of women who participated in our study are undergoing hormonal decline
(mean age, 45.4±9.6 years), we cannot rule out the possibility that the association observed in
this study is influenced by estrogen deficiency, as reported previously [35–37]. In fact, several
studies have demonstrated that estrogen deficiency is responsible for the progression of sexu-
ally dimorphic obesity. Nevertheless, a relationship between FTO and the expression of sexual
hormones has also been reported. For example, Zhang et al. [38] reported that estradiol (E2)
induced FTO expression via the PI3K/AKT and MAPK signaling pathways; uncovering also a
positive relationship among estrogen, FTOmRNA levels, and obesity. Hence, it is possible that
genes regulated by sex-specific factors may underlie the sex-based differences in susceptibility
to obesity observed in the present investigation. Further research is needed to confirm this
hypothesis and to define the mechanism(s) involved. Overall, and consistent with most previ-
ous studies, our results strongly indicate that FTO has a very close relationship with obesity
and fat mass, more than with other metabolic traits. The frequencies of the minor alleles of the
five FTO SNPs analyzed in our MM sample were significantly lower than those reported for
Caucasian populations. We included a MA sample to investigate the frequencies of the three
SNPs (rs17817449 (G), rs3751812 (T), and rs9930506 (G) with the highest effect on obesity in
MMs. Interestingly, in our indigenous population, all minor alleles of these three SNPs were
present at the lowest frequencies reported worldwide. A recent investigation documented eth-
nicity-dependent differences in genetic susceptibility to obesity across populations, they
reported evidence of a higher impact of FTO on Caucasians than on Chinese, African, and His-
panic populations [33]. Given these data and the differences in the LD structure of FTO SNPs
between MMs and MAs observed here, it is necessary to investigate whether FTO influences
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obesity risk in the indigenous population of Mexico. Our results suggest that the contribution
of FTO to increased BMI in MMs stems more strongly from their Caucasian heritage than
from their Amerindian heritage.

In conclusion, our results demonstrate that SNPs in FTO exerts differential impacts on
BMI. Also, our data strongly support the hypothesis that sex plays an important role in the
relationship between FTO SNPs and the development of obesity.

Identifying and understanding the mechanisms that underlie the relationship between FTO
and obesity will facilitate the development of rational strategies for personalized management
of this metabolic disease.
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