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A B S T R A C T   

We thoroughly investigated the structural, mechanical, electronic, vibrational, optical, thermo-
dynamic, and a number of thermophysical properties of W2N3 compound through first-principles 
calculations using the DFT based formalism. The calculated structural parameters show very good 
agreement with the available theoretical and experimental results. The mechanical and dynam-
ical stabilities of this compound have been investigated theoretically from the elastic constants 
and phonon dispersion curves. The Pugh’s and Poisson’s ratios of W2N3 are located quite close to 
the brittle/ductile borderline. W2N3 is elastically anisotropic. The calculated electronic band 
structure and density of states reveal that W2N3 is conducting in nature. The Fermi surface to-
pology has also been explored. The analysis of charge density distribution map shows that W 
atoms have comparatively high electron density around compared to the N atoms. Presence of 
covalent bondings between W–N, W–W, and N–N atoms are anticipated. High melting tempera-
ture and high phonon thermal conductivity of W2N3 imply that the compound has potential to be 
used as a heat sink system. The optical characteristics show anisotropy. The compound can be 
used in optoelectronic devices due to its high absorption coefficient and low reflectivity in the 
visible to ultraviolet spectrum. Furthermore, the quasi-harmonic Debye model is used to examine 
temperature and pressure dependent thermal characteristics of W2N3 for the first time.   

1. Introduction 

Study of multifunctional compounds is of immense importance in both fundamental science and technological applications. In this 
respect, investigation of superhard materials has always been an interesting topic [1–3]. Researchers have synthesized two groups of 
superhard materials; one of them is formed by the light elements (e.g., B, C, N, O etc.) such as diamond, cubic boron nitride and carbon 
nitrides [4–7], the other group comprises the borides, carbides, nitrides and oxides of transition metals (TMs) [8–10]. Recently, there 
has been notable interest in transition metal nitrides due to their distinctive mechanical, electronic, catalytic, optical, and magnetic 
characteristics for technological applications as well as their basic significance in condensed matter physics [11–19]. Various tran-
sition metal nitrides and their allotropes have also been reported and have attracted significant attention due to their unique physical 
and mechanical properties including high catalytic activity, chemical inertness, extreme hardness etc. [20–24]. 

Due to the extended and increased wear resistance that higher hardness offers, industries frequently seek superhard materials for 
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tools utilized in heavy duty operations. These materials often need high-pressure, high-temperature (HPHT) conditions to form, thus, 
conventional ultra-hard materials like diamond and cubic boron nitride (c-BN) are expensive and challenging to make. Due to these 
restrictions, research has been concentrated on finding innovative superhard materials that are less expensive to manufacture. 
Compounds containing the light elements C, B, O, and N are shown to be effective candidates. The next generation of superhard 
materials is being paved by the transition metal borides, which among these contenders have great hardness and are easily produced 
under ambient conditions [25]. It has been demonstrated through experiments that the N-to-W ratio in the WN compounds may vary, 
which results in various WxNy crystals. As a result, the synthesized WN compounds have very complex structures. Early measurements 
showed the structures of a number of WN compounds, including hexagonal WN [26], hexagonal and rhombohedral W2N3, cubic W3N4 
[23], NaCl type WN [27]. Recently, Balasubramanian et al. [28] used the first-principles technique to explore the stability of WN 
compounds and discovered that whereas WN is mechanically unstable in cubic structures, it is mechanically stable in the NbO 
structure. It is important to note that because tungsten nitride exists in different phases with a wide range of compositions, it is likely 
that certain stable WN crystal forms were not visible in earlier investigations. The WN6 is a structure that has just been predicted, and it 
is thermodynamically stable at high pressure [20]. Recently, first-principles simulations by Mounet et al. [29] found that 
two-dimensional W2N3 may easily exfoliate from a layered hexagonal bulk W2N3; the latter was first observed experimentally by Wang 
et al. in 2012 [23]. W2N3 is an excellent candidate for mechanical exfoliation because its binding energy is 26.3 meV, which is very 
similar to the values calculated for the most prevalent transition-metal dichalcogenides [23]. David Campi et al. [30] found intrinsic 
superconductivity in monolayer W2N3 with a critical temperature of 21 K, just above that of liquid hydrogen by means of 
first-principles calculations. Jing-Yang You et al. [31] reported a detailed investigation of the superconductivity and non-trivial 
electronic topology in 2D monolayer W2N3. They found that monolayer W2N3 is a superconductor with transition temperature of 
about 22 K and had a superconducting gap of 5 meV, based on the anisotropic Midgal-Eliashberg formalism. 

To the best of our knowledge, only a small number of physical properties of bulk W2N3 have been studied so far, including its 
structural properties, bulk modulus and its pressure derivative, electronic properties (band structure, density of states and Fermi 
surface), phonon spectra and superconducting transition temperature [30,32]. There are still many unexplored physical aspects of 
W2N3. Remarkably, most of the physical characteristics relevant to practical applications, e.g., electronic charge density distribution, 
various mechanical properties, Mulliken bond population analysis, theoretical hardness, optical properties, and thermophysical 
properties of W2N3 have not been explored till date. The main aim of this study is to look at these unexplored physical properties in 
detail. Some of the physical properties have been revisited for validation and completeness. The results presented in this work show 
that W2N3 is a highly promising compound for applications in the engineering, thermal, and optoelectronic device sectors. 

The remaining parts of this manuscript are structured as follows: In Section 2, an in-depth description of the computational 
methodology used in the present study can be found. In Section 3, an extensive discussion of the investigated properties and their 
possible consequences was presented. In Section 4, important features of this work are summarized and discussed. 

2. Computational methodology 

The main DFT tool used in this investigation was the CASTEP code [33]. The potential for electronic exchange correlation was 
assessed using the Perdew–Burke–Ernzerhof scheme for solids (PBEsol) functional within the generalized gradient approximation 
(GGA) [34]. The Vanderbilt-type ultra-soft pseudopotential [35] was used to simulate the interactions between electrons and the ion 
cores. The basis sets for the valence electron states for W and N were 5s25p65d46s2 and 2s22p3, respectively. The first Brillouin zone in 
the reciprocal space of the hexagonal unit cell of W2N3 is integrated over using the Monkhorst-Pack (MP) technique [36] with a k-point 
mesh of 26 × 26 × 5 grid. The eigenfunctions of the valence and nearly valence electrons were expanded using a plane-wave basis at a 
cutoff energy of 550 eV. Using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) technique [37], the internal forces and total energy were 
both relaxed during the geometry optimization. The highest ionic Hellmann-Feynman force was less than 0.03 eV/Å, the maximum 
ionic displacement was less than 1 × 10− 3 Å, the maximum stress was less than 0.05 GPa and the tolerance for total energy was less 
than 10− 5 eV/atom in order to accomplish the self-consistent convergence. 

The DFT-based finite strain method [38] is used to determine the elastic characteristics. This approach relaxes the atomic degrees of 
freedom by applying a series of finite uniform deformations on the typical unit cell. The single crystal elastic constants Cij are then 
determined from the resulting stresses using a series of linear expressions: 

σij =
∑

ij
Cijδij (1)  

where δij stands for the six stress components that are applied to each strain on the conventional unit cell. The bulk and shear elastic 
moduli of polycrystalline materials, which are determined using this method, are calculated using the well-known Voigt-Reuss-Hill 
approximations [39–41]. The maximum force within 0.006 eV/Å and the maximum ionic displacement within 2 × 10− 4 Å are fixed as 
the convergence constraints for estimating the elastic characteristics. 

The calculation of electronic charge density distribution and Fermi surface requires that k-point spacing has to be less than 0.01 
Å− 1. So, we have chosen a k-point mesh of 40 × 40 × 7 grids in this work. Using the density functional perturbation theory (DPFT) 
based finite-displacement method (FDM) [42,43], which is embedded into the CASTEP code, the dynamical stability and lattice dy-
namic properties such as phonon dispersion and phonon density of states were calculated. 

From the complex dielectric function ε(ω) = ε1(ω) + iε2(ω), the frequency dependent optical constants of W2N3 have been derived. 
The momentum matrix elements between the unoccupied and the occupied electronic orbitals can be used to obtain the imaginary part 
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of the dielectric function, ε2(ω) by using the following equation: 

ε2(ω)=
2πe2

Ωε0

∑

k,v,c

⃒
⃒ψc

k

⃒
⃒u ⋅ r

⃒
⃒ψv

k

⃒
⃒2δ
(
Ec

k − Ev
k − E

)
. (2)  

where, ψc
k is the unit cell volume, ψv

k is the angular frequency of the incident phonon, e is the charge of an electron, ψc
k and ψv

k are 
respective wave functions for conduction band and valence band electrons at a specific k, and u is the unit vector defining the po-
larization direction of the incident electric field. Using the Kramers-Kronig transformation equation, the real part of the dielectric 
function, ε1(ω), has been determined from the corresponding imaginary part, ε2(ω). The other optical parameters, namely, the ab-
sorption coefficient α(ω), reflectivity R(ω), refractive index n(ω), energy loss-function L(ω), and optical conductivity σ(ω), can be 
deduced from the estimated values of ε1(ω) and ε2(ω) using the standard expressions found in the literature [44]. 

The quasi-harmonic Debye model, as implemented in the Gibbs program [45], is used to investigate the thermodynamic properties 
at different temperatures and pressures. We have used the E-V data to the third-order Birch-Murnaghan equation of state (EOS) [46,47] 
and the equilibrium values of E0, V0, and B0 obtained using the DFT method at zero temperature and zero pressure, for finite tem-
perature/pressure computations. 

3. Results and discussion 

3.1. Structural optimization and phase stability of W2N3 

The optimized crystal structure of W2N3 is depicted in Fig. 1. W2N3 crystallizes in hexagonal structure with space group P63/mmc 
(No. 194) [23] and has a layered structure. There are two formula units and ten atoms per unit cell. Equilibrium structure for W2N3 is 
obtained by optimizing the geometry including the lattice constants and internal atomic positions. The optimized W atom is located at 
the 4f Wyckoff position, with fractional coordinates (1/3, 2/3, 0.840), and N atom is located at the 4f and 2c Wyckoff positions, with 
fractional coordinates (1/3, 2/3, 0.070) and (1/3, 2/3, 1/4), respectively [23]. Table 1 gives the values of lattice constants a and c, 
equilibrium unit cell volume V, internal atomic coordinate z, and the formation enthalpy ΔH for W2N3 in the ground state. The lattice 
parameter of W2N3 was first reported in 2012 with a = 2.890 Å and c = 15.286 Å [23]. Y. Wang et al. reported the lattice parameters of 
W2N3 for the second time with a = 2.870 Å and c = 15.175 Å [48]. The optimized lattice parameters of our study are found to be 2.888 
Å and 15.807 Å for a and c, respectively. The values obtained herein are highly consistent with those found in previous studies. The 
negative value of enthalpy reveals that, at ambient pressure, tungsten nitride in the hexagonal structure is thermodynamically stable. 

3.2. Mechanical properties 

Elastic constants are very important material characteristics. The elastic constants of crystalline solids provide the link between 
mechanical and dynamical behavior under external stress of different types concerning the nature of the forces operating in solids, 
especially for the stability and stiffness of materials. The elastic constants are correlated with a material’s mechanical characteristics, 
including stability, stiffness, brittleness, ductility, and elastic anisotropy. For engineering purposes, these characteristics are crucial 
when choosing a material for a specific task. According to the Born-Huang conditions, a hexagonal system has to satisfy the following 

Fig. 1. (a) Conventional unit cell of W2N3 and (b) its 2D view in the xy-plane.  
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inequality requirements in order to be mechanically stable [49]: 

C11 − ׀C12׀ > 0,

(C11 +C12)C33 − 2C2
13 > 0,

C44 > 0 

W2N3 has positive values for each of its elastic constants Cij as shown in Table 2 and satisfies the above stability requirements, 
indicating that it is mechanically stable. 

Every elastic constant has a different meaning; for example, the resistance to linear compressions in the [100] and [001] directions 
can be measured by the elastic constants C11 and C33, respectively. The bonding strength in W2N3 is stronger and compressibility is 
lesser along [100] direction than along [001] direction as C11 is much greater than C33. Elastic constant C44 stands for the compound’s 
resistance to shear deformation with respect to a tangential stress applied to the (100) plane in the [010] direction. According to our 
computed values, C44 is substantially lower than C11 and C33. According to this W2N3 deforms more readily under shear than under 
unidirectional stress. The off-diagonal shear components are represented by the elastic constants C12 and C13, which are connected to 
the resistance of a compound as a result of shears in different crystal planes. The resistance of the (100) plane to shear in the [110] 
direction is correlated with the elastic constant C66. C44 has a somewhat lower value for the compound under study than C66. For W2N3, 
(C11+C12) > C33, which predicts that the elastic tensile modulus, is greater in the (001) plane than it is along the c-axis and thus the 
bonding in the (001) plane is elastically stiffer than that along the c-axis. Another measure of crystal’s stiffness, known as the tetragonal 
shear modulus, is determined by the following equation: 

Cʹ=
(C11 − C12)

2
(3) 

This parameter indicates the dynamic stability of a material. If Cʹ is greater than zero, the compound is stable; otherwise, it is 
dynamically unstable. In Table 2, the tetragonal shear modulus for W2N3 is reported to be 165.5 GPa (positive), thus W2N3 is predicted 
to be dynamically stable. A dimensionless internal strain parameter, known as the Kleinman parameter (ξ), is a measure of stability of a 
compound against stretching and bending. To compute this parameter for W2N3, the following equation is used [50]: 

ξ=
(C11 + 8C12)

(7C11 + 2C12)
(4)  

ξ has the value in the range 0 ≤ ξ ≤ 1. The upper and lower limits of ξ are respectively represented by the significant contribution of 
bond bending to resist the external stress and the significant contribution of bond stretching to resist the external stress. The estimated 
values of ξ of W2N3 is 0.522, from which it can be predicted that mechanical strength in W2N3 is almost equally affected by bond 
bending and bond stretching/contracting. Additionally, the Kleinman parameter describes how cation and anion sub-lattices’ relative 
position shifts in the crystal when volume-conserving distortions cause atomic locations to alter in ways not ensured by the ground 
state crystal symmetry. The elastic constants obtained in this study are somewhat lower than those found in Ref. 48. This is mainly due 
to the difference in the computational schemes used in these studies. 

While the elastic moduli produced via the Voigt-Reuss-Hill (VRH) approximation are often based on polycrystalline aggregates of 
compounds, the elastic constants estimated from DFT are based on single crystals. The following relationships [51–53] are used to 
estimate the Hill approximations [41] for the bulk modulus (BH), shear modulus (GH), Young’s modulus (Y), Poisson’s ratio (v), and 
hardness (H) of W2N3: 

BH =
(BV + BR)

2
(5)  

Table 1 
Calculated and previously obtained experimental/theoretical lattice constants (a, b, and c) (all in Å), unit cell volume (V in Å3), internal coordinate 
(z), and enthalpy of formation (ΔH in eV/atom) of W2N3.  

a b c V z ΔH Ref. 

2.888 2.888 15.807 114.14 0.088 − 2.23 This work 
2.890 2.890 15.286 – – – [23]expt. 

2.870 2.870 15.175 108.22 – – [48]theo.  

Table 2 
Calculated elastic constants, (Cij in GPa), tetragonal shear modulus, (Cʹ in GPa) and the internal strain parameter (ξ) of W2N3.  

Compound C11 C12 C13 C33 C44 C66 Cʹ ξ Ref. 

W2N3 535.1 204.0 7.7 38.8 11.8 165.5 165.5 0.522 This work 
570.0 205.0 14.0 85.0 30.0 – – – [48]theo.  
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GH =
(GV + GR)

2
(6)  

Y =
9BG

(3B + G)
(7)  

υ=(3B − 2G)
2(3B + G)

(8)  

H=
(1 − 2υ)
6(1 + υ) (9) 

The elastic moduli (bulk modulus B, shear modulus G, and Young’s modulus Y) characterize how the materials in the poly-
crystalline aggregates behave mechanically under external loading. The resulting values are given in Table 3. The bulk modulus, B, 
shows resistance to fracture, whereas the shear modulus G, represents resistance to plastic deformation. For W2N3, a lower value of G 
relative to B as shown in Table 3 indicates that the mechanical strength will be constrained by plastic deformation. The bulk modulus 
(B) is inversely proportional to the cell volume (V) [54]. As a result, the bulk modulus B, which has a significant association with the 
cohesive energy or binding energy of the atoms in crystals, and might be employed as a measure of the average atomic bond strength of 
materials [55]. On the other side, a high shear modulus value indicates that strong directional bondings are present between atoms 
[56]. Young’s modulus can be used to calculate the resistance of a material to tension or compression along its length. The critical 
thermal shock coefficient is inversely proportional to the Young’s modulus Y [57], which means that the Young’s modulus has an 
impact on a material’s ability to resist thermal shock. Better thermal shock resistance is associated with higher R values. For the 
selection of thermal barrier coating (TBC) materials, the thermal shock resistance is a crucial factor. The high value of Y as shown in 
Table 3 indicates that W2N3 is capable of high resistance to thermal shock. In general, larger values of Young’s modulus suggest higher 
stiffness for a particular class of materials [58]. The calculated Young’s modulus of our studied compound is quite medium; therefore, 
it is a moderately stiff material. Various thermophysical parameters and elastic moduli are interrelated. For example, a material’s 
lattice thermal conductivity (kl) and Young’s modulus (Y) are connected as kl ~ 

̅̅̅̅
Y

√
[59]. 

The factors, such as the Pugh’s ratio (G/B) and the Poisson’s ratio (σ) can characterize materials brittle or ductile nature [60–62]. 
The shear modulus to bulk modulus ratio (G/B) was suggested by Pugh [61] in 1954 as a useful measure for determining the brittleness 
and ductility of materials. 0.57 is the key value that distinguishes brittle from ductile materials. A value higher than 0.57 is associated 
with brittleness, whereas a value lower than 0.57 is correlated with ductility. Frantsevich et al. [62] also distinguished between 
brittleness and ductility in terms of the Poisson’s ratio, and proposed that the value 0.26 act as the boundary between brittle and 
ductile nature. The material will be brittle if the Poisson’s ratio is less than 0.26 otherwise the material will be ductile. The Pugh’s ratio 
(G/B) and Poisson’s ratio of W2N3 is 0.577 and 0.258, respectively. These values indicate that the compound is located quite close to 
the brittle/ductile borderline. 

The lower and upper limits of Poisson’s ratio for a solid for central-forces are 0.25 and 0.50, respectively [63,64]. We can predict 
from the values of Poisson’s ratio as shown in Table 3 that the interatomic force of W2N3 is central in nature. The Poisson’s ratio can be 
used as well to identify if a material has covalent or ionic bonds. The values of σ for ionic and covalent materials are generally 0.25 and 
0.10, respectively [65]. Our computed Poisson’s ratio of W2N3 is 0.258 suggesting that W2N3 contains ionic contribution. 

The parameter machinability determines how easily it may be machined using a cutting tool. In engineering manufacturing and 
production, this parameter is used frequently. The work material, cutting tool, and cutting settings are a few of the variables that affect 
machinability. The choice of cutting tool material, tool shape, cutting force, feed rate, and depth of cut are all determined by the 
machinability of a given material. Furthermore, it determines the solid’s dry lubricating properties and plasticity [66–69]. The formula 
for calculating a material’s machinability index, μM, is [70]: 

μM =
B

C44
(10) 

A compound with a low C44 value provides superior dry lubricity, according to this equation. A compound with a higher B/C44 
value has better lubricating qualities, lower feed forces, lower friction, and greater plastic strain values. W2N3 has a B/C44 value of 
8.62. This implies a very high level of machinability. 

Hardness of a solid illustrates how it is affected by high loads. To understand elastic and plastic properties of a solid, measurement 
of hardness is crucial. The hardness of solid materials can be expressed into two broad categories. These are (i) soft material whose 
hardness is less than 10 GPa and (ii) hard material whose hardness is higher than 10 GPa [71–73]. W2N3 has a hardness of 9.69 GPa, 
which is reported in Table 3. This value indicates that W2N3 is moderately hard. The computed bulk elastic parameters agree 

Table 3 
The calculated bulk modulus (B in GPa), shear modulus (G in GPa), Young’s modulus (Y in GPa), Pugh’s indicator (G/B), machinability index (μM), 
Poisson’s ratio (σ) and Vickers hardness (HV in GPa) of W2N3.  

Compound B G Y G/B σ μM HV Ref. 

W2N3 104.15 60.10 151.21 0.577 0.258 8.62 9.69 This work 
131.00 84.00 – 0.640 – – 13.00 [48]theo.  
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reasonably well with previous theoretical results [48]. 

3.3. Elastic anisotropy 

One important aspect that affects mechanical stability and structural strains of a material under various forms of stress is the elastic 
anisotropy. Anisotropy indices express the direction dependence mechanical characteristics of a system. Elastic anisotropy regulates a 
variety of physical processes, including the growth of plastic deformation in crystals, the propagation of microcracks in solids, the 
alignment/misalignment of quantum dots, phonon conductivity, and defect mobility. It also regulates the mechanical toughness of 
materials. Anisotropy and isotropy in crystals are typically dominated by covalent (directional) and metallic bondings, respectively 
[74,75]. 

The degree of anisotropy in atomic bonding in various crystal planes can be determined from the shear anisotropy factors. The 
different shear anisotropy factors given below can be used to measure the shear anisotropy in a hexagonal crystal [56,76]: 

A1 =
4C44

(C11 + C33 − 2C13)
(11)  

A2 =
4C55

(C22 + C33 − 2C23)
(12)  

A3 =
4C66

(C11 + C22 − 2C12)
(13)  

where A1, A2 and A3 are the respective shear anisotropy factors for {100}, {010}, {001} planes between <011> and <010> di-
rections, <101> and <001> directions, and <110> and <010> directions, respectively. Since C11––C22, C44––C55 and C13––C23 for 
hexagonal crystals, thus A1 = A2. When A1 = A2 = A3, then the crystal is said to be isotropic with respect to shear, otherwise it is 
anisotropic. In Table 4, the estimated values of shear anisotropy factors of W2N3 are listed. 

The following standard equations can be used to determine the universal anisotropy index (AU), equivalent Zener anisotropy 
measure (Aeq), anisotropy in shear (AG), and anisotropy in compressibility (AB) of materials with any crystal symmetry. 

AU =5
GV

GR
+

BV

BR
− 6 ≥ 0 (14)  

Aeq =

(

1+
5
12

AU
)

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

1 +
5
12

AU

)2
√

(15)  

AG =
(GV − GR)

2GH (16)  

AB =
(BV − BR)

(BV + BR)
(17)  

One of the most used indices for measuring anisotropy in elastic characteristics is the universal anisotropy index (AU). Regardless of the 
crystal symmetry, it is a single measure of anisotropy. Contrary to other anisotropy measures, AU one which takes account of both shear 
and bulk contributions. We may infer from Eqn. (14), that GV/GR has a stronger impact on the anisotropy index AU than BV/ BR. A 
value of AU different from zero indicates anisotropy, whereas AU is zero for an isotropic crystal. The estimated AU of W2N3 is 19.82, 
which demonstrates highly anisotropic characteristics. For locally isotropic crystals, Aeq equals 1.0. At ambient pressure the estimated 
values of Aeq for W2N3 is 18.47, which also indicates that the crystal is highly anisotropic. AG and AB have values between 0 and 1. The 
ideal elastic isotropy and the maximum elastic anisotropy are represented, respectively, by AG = AB = 0 and AG = AB = 1. The values of 
AG and AB are listed in Table 4. These values imply that W2N3 has larger anisotropy in compressibility compared to that in shear. 

The universal log-Euclidean anisotropy index is defined as follows [77,78]: 

AL =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[

ln
(

BV

BR

)]2

+ 5

[

ln

(
CV

44

CR
44

)]2
√
√
√
√ (18) 

Table 4 
Shear anisotropy factor (A1, A2 and A3), the universal anisotropy index AU, equivalent Zener anisotropy measure Aeq, anisotropy in shear AG, 
anisotropy in compressibility AB, universal log-Euclidean index AL, linear compressibility (βa and βc) (TPa− 1), and their ratio βc/ βa for W2N3.  

Phase A1 A2 A3 AU Aeq AG AB AL layered βa βc βc/βa 

W2N3 0.085 0.085 1.0 19.83 18.47 0.62 0.65 5.31 Yes 0.0012 0.0281 23.5  
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where CV
44 and CR

44 are, respectively, the estimated values of C44 from the Voigt and the Reuss limits. These values can be obtained as 
[77]: 

CV
44 =

5
3

C44(C11 − C12)

3(C11 − C12) + 4C44
(19)  

and 

CR
44 =CV

44 +
3
5

(C11 − C12 − 2C44)
2

3(C11 − C12) + 4C44
(20) 

The expression for AL is valid for every crystal symmetry, same as the universal anisotropy index. This index is true for all crys-
tallographic point symmetry groups and is scaled appropriately for perfect isotropy. But when investigating extremely anisotropic 
crystallites, AL is shown to be less sparse than AU, making it more relevant for the present study. The absolute amount of anisotropy 
cannot be explained by AU; only the anisotropic nature. Hence, the difference between the averaged stiffness of CV and CR is used in AL 

calculations, and it is thought to be more suitable for anisotropy studies. The range of AL values is 0–10.26. Nearly 90 % of solids have 
AL values greater than 1. AL is 0 in the event of perfect isotropy. The calculated value of AL is 5.31, which is much greater than 1, 
suggesting high level of anisotropy. According to theory, higher (lower) AL value indicates the presence of layered (non-layered) type 
structure [79–81]. In this study, the high value of AL indicates strongly layered structure. Such a feature can make a compound highly 

Fig. 2. Direction-dependence of Young’s modulus (Y), compressibility (β), shear modulus (G), and Poisson’s ratio (ν) of W2N3 single crystal.  
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suitable for exfoliation and chemical intercalation. The layered feature of W2N3 results from the anisotropy in the chemical bonding 
along different crystallographic directions. This is seen from the widely different values C11 and C33 given in Table 2. Weak atomic 
bonding along c-direction makes the c-axis lattice parameter much larger than a(b). 

Along a- and c-axis, the linear compressibility of a hexagonal crystal can be evaluated by using the following equations [82]: 

βa =
(C33 − C13)

D
and βc =

(C11 + C12 − 2C13)

D
(21)  

with D = (c11 + c12)c33 − 2(c13)
2. 

The estimated values of βa, βc, and βc/βa are listed in Table 4. Crystals that are elastically isotropic have a unit value of βc/ βa. The 
degree of elastic anisotropy in compression is quantified by the deviation of these factors from their unit value. Our estimated values 
imply once again that W2N3 is highly anisotropic. 

The ELATE program [83] can generate 3D and 2D plots for the elastic parameters. The directional dependencies of the Young’s 
modulus (Y), linear compressibility (), shear modulus (G), and Poisson’s ratio (υ) of the W2N3 can be examined using these plots. The 
isotropic nature of crystals is manifested in the uniform circular 2D and spherical 3D graphical representations. The degree of 
anisotropy increases with the deviations from these ideal shapes. Fig. 2 show the 3D view of Y, , G, and υ for W2N3 together with the 2D 
projection on the xy-, zx-, and yz-planes. The minimum and maximum values of the parameters are shown by the curves in green and 
blue, respectively. From two dimensional representations, it is clear that all of the four parameters are anisotropic in zx- and yz-planes 
but are isotropic in the xy-plane. From plots, it can be observed that the 3D figures of Y, , G, and ν show a large departure from spherical 
form, indicating the degree of anisotropy. The anisotropy order is displayed graphically in 2D and 3D plots as υ > G >> Y. In addition, 
ELATE describes a quantitative analysis that lists the maximum and minimum values of Y, , G, υ and their ratios, as listed in Table 5. 

3.4. Acoustic velocities and anisotropy 

A material’s sound velocity is a significant characteristic that is linked to its electrical and thermal conductivity. In recent years, 
physics, materials science, the design of musical instruments, seismology, geology, and medical sciences have all taken notable interest 
in investigating the acoustic behavior of compounds and composites. Thermal conductivity is high in a crystal with a higher sound 
velocity (v). The following equations [84–86] show how the bulk and shear moduli are related to the speed of transverse and lon-
gitudinal sound waves traveling through a crystalline material: 

vl =

(
3B + 4G

3ρ

)1/2

And vt =

(
G
ρ

)1/2

(22) 

Using the following equation [84], the average sound velocity in a polycrystalline system is calculated from the transverse and 
longitudinal sound velocities: 

vm =

[
1
3

(
2

vt
3 +

1
vl

3

) ]− 1/3

(23)  

In Table 6, the calculated acoustic velocities are shown. 
Each atom in a solid has three vibrational modes: one longitudinal and two transverse. Pure longitudinal and transverse modes only 

occur along certain axes in an anisotropic crystal. The propagating modes, on the other hand, are either quasi-transverse or quasi- 
longitudinal in all other directions. In W2N3, pure transverse and longitudinal modes can only exist for the symmetry directions 
along [100] and [001] due to the hexagonal symmetry of the compound. The single crystal elastic constants can be used to calculate 
the acoustic velocities of W2N3 in these principal directions [87]: 

[100] direction: 

[100]vl =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(C11 − C12)

2ρ

√

; [010]vt1 =
̅̅̅̅̅̅̅̅̅̅̅
C11/ρ

√
; [001]vt2 =

̅̅̅̅̅̅̅̅̅̅̅
C44/ρ

√
(24) 

[001] direction: 

[001]vl =
̅̅̅̅̅̅̅̅̅̅̅
C33/ρ

√
; [100]vt1 = [010]vt2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

C44/ρ

)√

(25) 

Table 5 
The minimum limit, maximum limit and anisotropy of Young’s modulus (Y, in GPa), compressibility (, in TPa− 1), shear modulus, (G, in GPa), and 
Poisson’s ratio (ν) of W2N3.  

Phase Young’s modulus Linear compressibility Shear modulus Poisson’s ratio 

Ymin Ymax AY βmin βmax Aβ Gmin Gmax AG νmin νmax Aν 

W2N3 32.78 456.78 13.93 1.09 25.33 23.23 11.84 165.57 13.98 0.0104 0.5804 56.03  

I. Ahmed et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e33613

9

where vl is the longitudinal sound velocity, ρ is the crystal density, and vt1 and vt2 are the first and second transverse acoustic modes, 
respectively. Table 7 lists the computed sound velocities for these directions. The longitudinal velocity of W2N3 along [100] is 
significantly higher than that along [001]. 

3.5. Phonon dispersion – phonon DOS and phonon dynamics 

The phonon dispersion spectra (PDS) and phonon density of states (PHDOS) can be employed to determine various characteristics 
of a material. For example, dynamical stability, phase transitions, and vibrational contributions of atoms to thermal expansion, heat 
capacity, and Helmholtz free energy. The dynamical stability of a material is a crucial criterion for applications involving a time- 
varying applied loading. The phonon density of states and the electron-phonon interaction are intimately connected. The total 
phonon density of states in the ground state and the calculated phonon dispersion spectra of W2N3 in the high symmetry directions of 
the Brillouin zone (BZ) are shown in Fig. 3. If the phonon frequencies over the whole BZ are positive, a compound is expected to be 
dynamically stable. Soft phonon modes and dynamic instability are ensured when negative phonon frequencies are present. Since 
W2N3 has 10 atoms per unit cell and the total number of phonon modes is three times the total number of atoms per unit cell, W2N3 
contains 30 phonon modes. It has three acoustic modes colored by pink lines as shown in Fig. 3. There are 27 optical modes since a unit 
cell made up of N atoms has three acoustic modes and (3N-3) optical modes. The coherent oscillations of atoms in a lattice about their 
equilibrium position give rise to acoustic phonons. In contrast, when one atom moves to the left and its neighbor moves to the right, the 
lattice’s atoms oscillate out of phase, giving rise to the optical phonon. At point, W2N3 exhibits the highest optical frequency 20.80 
THz. 

The lattice dynamics of crystalline solids is particularly important for the zone-center phonon modes. Among the 27 optical modes, 
12 are Raman active, 6 are IR active and 9 are silent modes. The irreducible representations of the Brillouin zone-center optical phonon 
modes can be categorized in the factor group theory [88] as follows: 

Γopt. =2A2u + 4E1u + 6E2g + 4E1g + 2A1g (26)  

where, A2u and E1u are IR active and E2g, E1g and A1g are Raman active and B2g, E2u and B1u are silent modes. When two or more modes 
have the same frequency yet cannot be distinguished from one another, they are referred to as degenerate modes. There are six IR 
active modes and twelve Raman active modes included in Table 8. The highest frequencies observed in the IR and Raman active modes 
are 20.08 THz and 20.12 THz, respectively. 

To investigate the contribution of each band to various atomic modes of vibration, we have also calculated the total and atomic 
partial PHDOS for W2N3, which are displayed alongside the PDS. The PHDOS curve indicates that, whereas the higher optical branches 
(with frequencies >15.7 THz) originate mainly from the vibration of lighter N-atoms, the acoustic and lower optical modes arise due to 
the vibration of heavier W atoms. Peaks in PHDOS are produced due to the flatness of the bands and the heights of the peaks in the total 
PHDOS are decreased due to the wide band dispersion. For W and N atoms, the prominent peaks in the PHDOS are seen around 5.27 
THz and 20.10 THz, respectively. 

3.6. Bonding character – charge density distribution 

A useful tool for determining the type of interatomic chemical bonding is the electronic charge distribution map. It demonstrates 
how electrical charges around various atomic species are accumulated or depleted. Covalent bonding between two atoms is 
demonstrated by the accumulation of charges between them. A negative and positive charge balance at the atom locations is used to 
predict the presence of ionic bonds. On the other hand, uniform charge smearing shows metallic bonding. The electronic charge 
density in various crystal planes is shown in Fig. 4 in order to understand the chemical bonding between the atoms of W2N3. The 
overall electron density is shown on the right-hand side of the charge density maps using a color scale in the unit of e/Å3; blue and red 

Table 6 
Density ρ (g/cm3), transverse sound velocity νt (ms− 1), longitudinal sound velocity vl (ms− 1), and average sound wave velocity vm (ms− 1) of W2N3.  

Phase ρ vt vl vm Ref. 

W2N3 14.28 2051.50 3592.35 2279.71 This work  

Table 7 
Anisotropic sound velocities (in ms− 1) in W2N3 along principal crystallographic directions.  

Phase Propagation directions Sound velocity 

W2N3 [100] [100]vl 3404.87 
[010]vt1 6121.44 
[001]vt2 909.03 

[001] [100]vl 1648.36 
[010]vt1 909.03 
[001]vt2 909.03  
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denoting high and low charge (electron) densities, respectively. Fig. 4 clearly shows that W atoms have comparatively high electron 
density than N atoms; covalent bonding exists between W and N atoms. Accumulation of charge also exists between W–W and N–N 
atoms. But, in the latter case the degree of covalency is comparatively weaker than that of W–N bonding. Hence, the compound 
possesses a mixture of covalent and metallic bondings. 

Fig. 3. The phonon dispersion spectra (PDS) and phonon density of states (PHDOS) of W2N3.  

Table 8 
Theoretical wave-numbers ωi and symmetry assignment of the IR-active and Raman-active modes of W2N3.  

Phase Mode Irr. Rep. Wave-numbers, ω (cm− 1) 

W2N3 IR ω1 A2u 540.0 
ω2 A2u 669.3 
ω3 E1u 358.5 
ω4 E1u 476.1 

Raman ω1 E2g 19.4 
ω2 E2g 351.2 
ω3 E2g 476.4 
ω4 E1g 80.3 
ω5 E1g 409.9 
ω6 A1g 180.3 
ω7 A1g 670.6  

Fig. 4. Charge density distribution maps of W2N3 in (a) (111) and (b) (011) plane.  

I. Ahmed et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e33613

11

3.7. Thermophysical parameters 

3.7.1. Debye temperature 
The temperature at which the wavelength of phonons of a material nearly matches the interatomic spacing is generally known as 

the Debye temperature ΘD. The high- and low-temperature behavior of a solid can be separated using this temperature. In order to 
comprehend several thermophysical properties of solids, like the melting temperature, bonding forces, thermal conductivity, energy 
required for the creation of vacancies, specific heat, phonon dynamics, and superconductivity, it is crucial to study the Debye tem-
perature. All vibrational modes have nearly the same energy, kBT, when T > ΘD. However at T < ΘD, the high frequency modes are 
frozen. Debye temperature can be estimated using a variety of methods. When temperatures are low, only acoustic modes are 
responsible for the vibrational excitations. As a result, at low temperatures, the Debye temperature estimated from elastic constants 
agrees with that calculated from the specific heat measurement. In this study, the Debye temperature of W2N3 is calculated by 
Anderson technique, using the following equation [89]: 

ΘD =
h
kB

[
3n

4πV0

]1/3

vm (27)  

where n is the number of atoms within a unit cell, V0 is the volume of a unit cell, kB is Boltzmann’s constant, h is Planck’s constant, and 
vm is mean sound velocity. Hexagonal W2N3 has a Debye temperature of ~380 K in the ground state which is listed in Table 9. The 
Debye temperature of W2N3 is moderate which suggests that the atomic bonding strengths are not very strong and the material under 
study is not very hard in nature. 

3.7.2. Phonon thermal conductivity 
The transfer of heat through the vibrations of lattice ions within a solid is quantified by phonon thermal conductivity. It is one of the 

most crucial thermal factors in determining the energy conversion efficiency of thermoelectric materials. Both phonons and electrons 
can carry thermal energy in solids. At low temperatures, electrons are the primary heat carriers in metals. The study of lattice thermal 
conductivity is essential for materials intended for high temperature applications. With a vast array of technical applications, including 
the development of novel thermoelectric materials, sensors, heat sinks, transducers, and thermal barrier coatings, the phonon thermal 
conductivity is one of the key thermophysical parameters. With a formula developed by Slack [90–92], the lattice thermal conduc-
tivity, kph can be estimated as follows: 

kph =A(γ)
Mavθ3

Dδ
γ2n2/3T

(28)  

where γ is the Grüneisen parameter, T is the absolute temperature, n is the total no. of atoms in the unit cell, Mav is the average atomic 
mass (in kg/mol) in a crystal, δ is the cubic root of the average atomic volume and θD is the Debye temperature A(γ) is the γ dependent 
parameter that can be calculated from the following equation [93]: 

A(γ)=
4.85628 × 107

2
(

1 − 0.514
γ − 0.228

γ2

) (29) 

The room temperature (300 K) value of the calculated lattice thermal conductivity, kph, is given in Table 9. Callaway–Debye theory 
[94] states that the lattice thermal conductivity at low temperatures is directly proportional to the Debye temperature, θD. The lattice 
thermal conductivity of a material increases with increasing θD. Furthermore, a material’s lattice thermal conductivity and Young’s 
modulus are correlated as: Kph∝√Y [95]. The phonon thermal conductivity of W2N3 is high at room temperature (Table 9). 

3.7.3. Grüneisen parameter 
An important thermophysical parameter which estimates the anharmonic effects in a solid is known as the Grüneisen parameter γ. 

It is associated with several significant physical processes, including thermal conductivity, thermal expansion, acoustic wave ab-
sorption, and the temperature dependence of elastic characteristics. The larger the value of γ, the higher the degree of anharmonicity. 
Using Poisson’s ratio, the Grüneisen parameter of W2N3 can be estimated from the following equation [96]: 

γ =
3(1 + υ)
2(2 − 3υ) (30) 

Table 9 
Calculated melting temperature (Tm in K), Debye temperature (ΘD in K), lattice thermal conductivity, kph (W/m-K) at 300 K, and Grüneisen 
parameter, γ for W2N3.  

Compound Tm ΘD kph γ Ref. 

Using elastic constant Using QHD model 

W2N3 2008.5 380.2 399.3 16.5 1.54 This  
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The estimated value of W2N3 is 1.54, which is shown in Table 9. This value is typical for solids. 

3.7.4. Melting temperature 
A parameter of interest that restricts the temperature range in which a solid can be applied is the melting temperature (Tm). A solid 

will exhibit stronger atomic interaction, higher bonding energy, higher cohesive energy and lower coefficient of thermal expansion if it 
has high Tm [85,97–99]. Solids can be continually used below Tm without chemical change or excessive distortion. With the use of 
elastic constants, the following empirical relationship can be used to determine a material’s melting point [98]: 

Tm =345K + (4.5K /GPa)
(

2C11 + C33

3

)

(31) 

The estimated melting temperature of W2N3 is 2008.5 K, as listed in Table 9. Thus, W2N3 can be used as a promising candidate 
material for high temperature applications due to its high melting temperature. High heat of fusion, low fusion entropy, or a com-
bination of both is the main cause of high melting point. 

3.7.5. Heat capacity 
In addition to being necessary for many applications, the specific heat capacity offers crucial information about the material’s 

vibrational characteristics. The constant volume heat capacity, Cv, goes to the Dulong-Petit limit at high temperatures and it is pro-
portional to T3 at very low temperature [99]. The specific heat capacity, at constant-volume, Cv, and at constant-pressure, Cp, for W2N3 
with different temperatures at P = 0 GPa and different pressures at T = 300 K are respectively shown in Fig. 5 (a, b) and (c, d). The heat 
capacities of W2N3 increase as temperature rises due to phonon thermal softening, as seen in Fig. 5 (a, c). The specific heat capacities, 
Cv and Cp, exhibit a significant rise up to around 300 K as a result of the anharmonic approximation of the Debye model. As seen in 
Fig. 5 (c), at high temperatures (T > 300K), the anharmonic impact on Cv is suppressed for W2N3, and Cv approaches the Dulong-Petit 
limit, which is typical for all solids. With the increase of pressure, Cv and Cp decrease as shown in Fig. 5 (b, d). The Debye temperature 
obtained within the quasi-harmonic approximation is ~399 K, close to the value estimated using the sound velocities. 

3.7.6. Entropy 
The entropy, S, is a vital aspect of a thermodynamic system that measures the amount of disorder content in a material. Fig. 6 (a and 

b) demonstrate the change in entropy, S, as a function of temperature and pressure. With the rise of temperature, the entropy increases 
[Fig. 6(a)] as a consequence of increasing thermal disorder. Additionally, for T = 300 K, it is seen from Fig. 6(b) that the entropy falls 
with the increase of pressure. 

Fig. 5. Temperature and pressure dependent variations of specific heat capacities Cp and Cv of W2N3.  
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3.8. Electronic properties 

3.8.1. Band structure 
In order to understand the electronic, optical, and magnetic characteristics of materials at the microscopic level, it is important to 

understand their electronic band structure. The effective masses of charge carriers can be calculated from band structure. It also greatly 
influences the charge transport and bonding properties. The nature of dominating bands close to the Fermi level can be used to better 
understand a material’s charge transport characteristics. The electronic energy band structure of W2N3 is calculated and depicted in 
Fig. 7 along different high symmetry directions (-A-H-K–M-L-H) in the momentum space. The horizontal broken line at zero energy 
indicates the Fermi level (EF). The unit cell of W2N3 has 84 different energy bands in total. It is evident from Fig. 7 that there is no band 
gap at the Fermi level. This demonstrates the metallic character of hexagonal W2N3 in the optimized structure. The bands that cross the 
Fermi level are displayed in various colors along with the band numbers that correlate to each color. Mainly the N-2p and W-5d 
electronic states contribute to the energy bands near the Fermi level. This indicates that N-2p and W-5d states dominate the charge 
transport properties of W2N3. It is noteworthy that the band crossing close to the -point exhibits hole-like characteristic. All the bands 
crossing the Fermi level are found to be fairly dispersive. We can better understand the underlying Fermi surfaces by using the band 
structure calculations. 

3.8.2. Density of states 
The number of electronic states at each energy level per unit energy interval is referred to as the electronic energy density of states, 

or simply DOS. The structure of the DOS in the valence and conduction bands is connected to almost all of the electrical and optical 
characteristics of crystalline solids. The contribution of different atoms and orbitals of a material can be understood by studying its 
total and partial density of states. The DOS of a material is also crucial to understand the contribution of each atom to bonding and 

Fig. 6. Temperature and pressure dependent variations of entropy, S, of W2N3.  

Fig. 7. Electronic band structure of W2N3 along high symmetry directions in the Brillouin zone. The colored bands (numbered 41–44) cross the 
Fermi level. 
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antibonding states. Fig. 8 depicts the calculated total density of states (TDOS) and atom resolved partial density of states (PDOS) of 
W2N3. The Fermi level, EF, is shown by the vertical broken line at 0 eV. W2N3 exhibits metallic electrical conductivity, as indicated by 
the non-zero TDOS at the Fermi level EF. It is found that W2N3 has a TDOS value of ~4.0 states per eV per unit cell or ~2.0 states per eV 
per formula unit at EF. The highly dispersive bands crossing the Fermi level results in this low value of N(EF). In order to explain how W 
and N atoms contribute to TDOS and chemical bonding, the PDOS of these atoms has also been determined. In the vicinity of EF, W-5d 
and N-2p dominantly contribute to the TDOS of W2N3. Their respective values are 1.65 and 2.16 states per eV per unit cell at the Fermi 
level. The TDOS has large peaks at − 3.77 and 2.88 eV close to the EF. These bonding or anti-bonding peaks are the results of the 
hybridizations of W-5d and N-2p electronic orbitals. Such hybridization close to the Fermi energy is frequently taken as an indication of 
the creation of strong covalent bonds. 

3.8.3. Coulomb pseudopotential 
The Coulomb pseudopotential is a measure of itinerant electron-electron interaction in a metal. It explains how coulomb repulsion 

affects superconductivity. The coulomb pseudopotential can be estimated using the following equation [100]: 

μ∗ =
0.26N(EF)

1 + N(EF)
(32) 

The calculated value of the Coulomb pseudopotential is 0.173. This suggests that the electronic correlation in W2N3 is significant. 
This mainly arises due to significant contribution of the W 5d electrons to the TDOS at the Fermi level. The effective electron-phonon 
interaction that causes Cooper pairs to develop in the context of superconductivity is reduced by the Coulomb pseudopotential. The 
superconducting transition temperature, Tc, decreases as a consequence [100–103]. 

3.8.4. Fermi surface 
The Fermi surface (FS) topology controls the electronic properties of metals. The Fermi surface separates the occupied electronic 

states from the unoccupied electronic states at low temperature. The topology of a Fermi surface has a significant impact on a number 
of characteristics, including electronic, optical, thermal, and magnetic ones. The Fermi surface topology of W2N3 is shown in Fig. 9. (a, 
b, c and d). The bands 41, 42, 43 and 44 cross the Fermi level (shown in Fig. 7), and are responsible for the formation of Fermi surface. 
The Fermi surface of W2N3 is made up of four Fermi sheets of different shapes. The FSs for the bands 41 and 42 are quite similar. Both 
the structures have circular-like sheets close to the center of the BZ. These are 2D electron-like sheets. On the other hand, the FSs for 43 
and 44 bands are also similar and comparatively complex in shape. Here prismatic-like hexagonal cross sections are seen around the G- 
A direction. The remaining of these topologies consists of six separate parts parallel to the L-M directions. These are hole-like and 
located at the corner of the BZ. This implies that both electron- and hole-like behaviors exist in W2N3. The Fermi surface topology also 
indicates that electronic transport is anisotropic in W2N3. Close resemblance between the Fermi surfaces for bands 41 and 42, and 
bands 43 and 44 show that the pair of bands are highly degenerate. 

Fig. 8. Total and partial electronic density of states of W2N3. The vertical line shows the Fermi energy.  
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3.9. Optical properties 

The optical properties of a material describe how it reacts to incident electromagnetic radiation. From the perspective of opto-
electronic applications, the response to visible light is crucial. In many areas of modern science and technology, including display 
devices, sensors, lasers, photo-electrodes, photo-detectors, photonics, solar cells, etc., the study of optical properties of solids has 
attracted significant interest. Additionally, optical anisotropy must be taken into account since various common optical technologies, 
such as 3D movie screens, LCD displays, polarizers, and wave plates, are developed using this [104]. Various energy/frequency 
dependent optical properties, notably the dielectric function, loss function, refractive index, optical conductivity, absorption coeffi-
cient, and reflectivity can completely determine the response of a material to incident light. We have estimated the optical properties of 
W2N3 for photon energies up to 30 eV for [100] and [001] polarization directions of the electric field as shown in Fig. 10(a–h) to 
investigate the possible anisotropy. Band structure and energy density of states characteristics govern optical properties. For the 
investigation of optical properties, it is necessary to include Drude damping for a metallic compound [105–108]. Since the band 
structure and density of states of W2N3 show that it is a metal, a Drude damping of 0.05 eV and plasma frequency of 5 eV are used to 
calculate the optical properties. 

The variations of the real and imaginary parts of the dielectric function, ε (ω), with respect to the photon energy are shown in 

Fig. 9. Fermi surfaces of W2N3 for the band number (a) 41, (b) 42, (c) 43, and (d) 44.  

Fig. 10. (a) Real part of dielectric function, (b) imaginary part of dielectric function, (c) real part of refractive index, (d) extinction coefficient, (e) 
absorption coefficient, (f) optical conductivity, (g) reflectivity, and (h) loss function of W2N3 as a function of photon energy for two different 
polarizations of the electric field. 
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Fig. 10 (a) and (b). In Fig. 10 (a), the real part, ε1(ω), of the dielectric function approaches a very low value around 27 eV, which 
corresponds to a peak in the energy loss function as shown in Fig. 10 (h). The metallic conductivity of W2N3 is shown by the fact that 
ε1(ω) goes through zero from below (negative value). It is also clear from Fig. 10 (b) that W2N3 is metallic in nature since the imaginary 
part of the dielectric function in both directions approaches zero from above. Fig. 10 (b) also shows that ε2 drops to zero at 28 eV, 
suggesting that the material will become transparent to incident radiation with energy above 28 eV. 

A dimensionless quantity that characterizes how light travels through a medium is known as the refractive index. It is closely 
related to the local field inside the material and the electronic polarizability of ions. For designing photoelectric devices, the complex 
refractive index is a very significant factor. The phase velocity of the electromagnetic wave inside the sample is determined by the real 
part of the refractive index, whereas the extinction coefficient (imaginary part) spectrum reveals how much the incident electro-
magnetic radiation is attenuated while passing through the material. The frequency dependence of the refractive index of W2N3 for 
[100] and [001] polarization directions is shown in Fig. 10 (c) and (d). For both directions, refractive index of W2N3 is large at low 
energy and decreases with increasing energy. Due to high static refractive index value of W2N3, it can be used in optical display 
devices. 

The absorption coefficient (α) is the measure of the ability of a material to absorb incoming electromagnetic radiation [109]. The 
absorption coefficient plays an important role to know how well a semiconductor converts solar energy and how much light of specific 
energy can enter the material before being absorbed. The energy dependent absorption spectra of W2N3 for the polarization directions 
[100] and [001] are illustrated in Fig. 10 (e). In this figure, the nonzero value at zero photon energy is due to the metallic character of 
W2N3, which is compatible with the dielectric function, DOS, and band structure calculations. For the [100] and [001] polarizations, 
the highest absorption occurs at 9.6 eV and 19.1 eV, respectively. Significant optical anisotropy can be observed in the absorption 
properties in this way. From Fig. 10 (e), it is seen that, α decreases sharply at ~ 26.5 eV for both polarization directions, which agrees 
well with the position of loss peak, as shown in Fig. 10 (h). 

The conduction of free charge carriers over a certain range of photon energy can be characterized from the optical conductivity of a 
material. This is a dynamic response of mobile charge carriers, including the electron-hole pairs produced by photons in semi-
conductors. The real part of the photoconductivity (σ) spectra of W2N3 is shown in Fig. 10 (f). At zero photon energy, the nonzero 
photoconductivity for both polarization directions manifests that W2N3 has no electronic band gap, which agrees with calculated band 
structure and density of states. For W2N3, the maximum photoconductivity is obtained at zero photon energy for both polarizations. 
W2N3 shows isotropic nature at low energy region and anisotropic nature after 1.26 eV. Generally, the low energy (infrared) portion of 
the spectra is dominated by the intraband contribution to the optical characteristics. The interband transition, on the other hand, 
causes peaks in the high energy region of the absorption and conductivity spectra. W2N3 exhibits the highest peaks in the visible and 
ultraviolet regions. 

The reflectivity spectra of W2N3 along [100] and [001] polarizations as a function of photon energy is shown in Fig. 10 (g). The 
reflectivity of W2N3 exhibits significant optical anisotropy. From Fig. 10 (g) it is seen that at ambient pressure the reflectivity of W2N3 
begins from zero frequency with a value of 0.99. The reflectivity remains above 90 % in the infrared region. Fig. 10 (g) shows that 
W2N3 has lower reflectivity in the entire visible light region in addition to the low-energy part of the UV region of the solar spectra. 
Nevertheless, W2N3 has above 44 % reflectivity in the visible region and can be employed as a good solar heat reflector [107]. 

An important optical parameter that describes how much energy a fast moving electron loses when moving through a material is 
known as the loss function. In the dielectric formalism used to explain the optical spectra and excitations created by fast charges in 
solids, the energy loss function of a material is a crucial quantity. A material’s absorption, reflection and loss function properties are 
interconnected. The plasma resonance is connected with the peaks in the loss function spectrum, and the frequency that corresponds to 
those peaks is known as the plasma frequency (ωp) [107]. The energy/frequency dependent electron energy loss function for W2N3 is 
depicted in Fig. 10 (h). It is interesting to note that the maxima of the loss function of W2N3 are found at 26.75 eV and 27.50 eV for 
[100] and [001] polarization directions, respectively. The sudden decrease in absorption coefficient and reflectivity of W2N3 as shown 
in Fig. 10 (e) and (g) can be linked to these sharp loss peaks. These frequencies (energies) are called bulk screened plasma frequency, as 
the peak in loss function is associated with the plasma resonance. When ε2 < 1 and ε1 = 0, then the energy loss peak manifests in the 
high energy region [110,111]. W2N3 will be transparent, and will switch from metallic to dielectric response if the incoming light 
frequency is greater than the plasma frequency. 

3.10. Thermodynamic properties 

The thermodynamic properties of W2N3 are evaluated in the temperature range of 0–1000 K and pressure range of 0–50 GPa using 
quasi-harmonic approximation. The bulk modulus of a material is used to calculate its resistance to uniform compression. It also 
provides details on how well the material bonds together. Fig. 11 (a) and 11 (b) reveal the temperature and pressure dependence of the 
isothermal bulk modulus of W2N3. According to our findings, at temperatures below 150 K, the bulk modulus of W2N3 is almost flat; at 
temperatures over 150 K, it drops gradually as shown in Fig. 11 (a). From Fig. 11 (b) it is seen that the bulk modulus of W2N3 increases 
with increasing pressure, which satisfies the general formula, B = v Δp

Δv. 
Fig. 12 (a) and (b) illustrate the volume thermal expansion coefficient (VTEC) with respect to temperature and pressure, respec-

tively. Up to 300 K, the coefficients of W2N3 under investigation grow quickly; however, the increment is slow above 300 K. 
Conversely, as pressure is increased, the expansion coefficient falls but at different rates at a constant temperature of 300 K. It has been 
demonstrated that there is an inverse relationship between the bulk modulus and volume thermal expansion coefficient of a material. 

The internal energy, denoted as U, is the energy content of a material due to the activated degrees of freedom within. Fig. 13 (a and 

I. Ahmed et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e33613

17

b) illustrate how the internal energy of W2N3 varies with temperature and pressure. The internal energy of W2N3 thus grows almost 
linearly with temperature above 100 K. Fig. 13(b) shows that the internal energy of W2N3 rises also almost linearly as pressure rises. 

4. Conclusions 

Large number of unexplored mechanical, vibrational, elastic, thermophysical, electronic, optical, and thermodynamic character-
istics of W2N3 have been investigated in this work. Our investigation demonstrates the mechanical stability of W2N3. Phonon 
dispersion curves confirm the dynamical stability of the compound. W2N3 has a highly layered crystal structure, and is elastically 
anisotropic. W2N3 has borderline brittle characteristics, and its machinability level is high. W2N3 has medium hardness. Combination 
of these features makes W2N3 an attractive compound for machine-tools device sector like some other engineering materials including 
the MAX and MAB phases [112–116]. The mechanical strength in W2N3 is controlled by both bond bending and bond stretching 
contributions. The charge density distribution of W2N3 shows direction dependence. There are significant covalent and metallic 

Fig. 11. Temperature and pressure dependent bulk modulus of W2N3.  

Fig. 12. Temperature and pressure dependent variations of volume thermal expansion coefficient of W2N3.  

Fig. 13. Temperature and pressure dependent variations of internal energy of W2N3.  
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bonding present in this compound. The substance being studied has high melting point and high phonon thermal conductivity at 
ambient temperature. Thus, it has potential to be used as a heat sink material. The electronic band structure shows metallic character 
with electronic correlations. The Fermi surface contains prominent hole-like segments. The temperature and pressure dependent 
thermodynamic properties of W2N3 are conventional. The optical properties are anisotropic. The compound is an excellent infrared 
light reflector, and has a strong absorptivity for ultraviolet light. The reflectivity remains above 44 % in the entire visible region, and 
the compound has high low-energy refractive index. These features make W2N3 suitable for optical device applications. 

In conclusion, W2N3 has appealing mechanical, thermal, and optoelectronic properties that make it a good system for use in en-
gineering, thermal, and optical device applications. It is our hope that these new findings will encourage future theoretical and 
experimental investigations on W2N3 in the hexagonal structure. 
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