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Abstract

Changes in leaf anatomy and ultrastructure are associated with physiological performance

in the context of plant adaptations to climate change. In this study, we investigated the iso-

lated and combined effects of elevated atmospheric CO2 concentration ([CO2]) up to

600 μmol mol-1 (eC) and elevated temperature (eT) to 2˚C more than the ambient canopy

temperature on the ultrastructure, leaf anatomy, and physiology of Panicum maximum

Jacq. grown under field conditions using combined free-air carbon dioxide enrichment

(FACE) and temperature free-air controlled enhancement (T-FACE) systems. Plants

grown under eC showed reduced stomatal density, stomatal index, stomatal conductance

(gs), and leaf transpiration rate (E), increased soil-water content (SWC) conservation and

adaxial epidermis thickness were also observed. The net photosynthesis rate (A) and

intrinsic water-use efficiency (iWUE) were enhanced by 25% and 71%, respectively, with a

concomitant increase in the size of starch grains in bundle sheath cells. Under air warm-

ing, we observed an increase in the thickness of the adaxial cuticle and a decrease in the

leaf thickness, size of vascular bundles and bulliform cells, and starch content. Under

eCeT, air warming offset the eC effects on SWC and E, and no interactions between [CO2]

and temperature for leaf anatomy were observed. Elevated [CO2] exerted more effects on

external characteristics, such as the epidermis anatomy and leaf gas exchange, while air

warming affected mainly the leaf structure. We conclude that differential anatomical and

physiological adjustments contributed to the acclimation of P. maximum growing under

elevated [CO2] and air warming, improving the leaf biomass production under these

conditions.
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Introduction

In the last five decades, human activities have resulted in the increased emission of greenhouse

gases (GHGs) as atmospheric CO2 concentration ([CO2]) from approximately 320 μmol mol-1

to more than 400 μmol mol-1 [1]. This increase in GHGs is responsible for the rise in the global

surface temperature [1]. The Intergovernmental Panel on Climate Change (IPCC) models

indicated that the global mean temperature anomaly could exceed 2˚C in 2100 [1], potentially

affecting tropical ecosystems, such as perennial pastures [2, 3]. Pastures are the greatest feeding

source for livestock, and future food security will depend on how forage species respond to

global change variables [1]. Therefore, the acclimation mechanisms of tropical grasslands to

increased atmospheric [CO2] and air warming have attracted attention recently.

Plant survival under rapid climate change occurs mainly due to phenotypic plasticity, with

complex adjustments in plant physiology and the structure of leaf tissues [4]. Plant physiology,

productivity, and leaf anatomy are closely linked because mesophyll characteristics affect car-

bon assimilation rates and leaf function [5]. Furthermore, the leaf tissue thickness is important

in many processes, such as leaf thermal regulation, light interception, and CO2 and water

vapor diffusion [6]. For forage species, the proportion of leaf tissues is essential in the digest-

ibility and nutritional value for animals [7]. However, leaf anatomy is often neglected in stud-

ies that evaluate the plant responses to climate change variables [5].

In tropical and subtropical pastures, rainfed C4 grasses represent the main feeding source

for cattle. Although it is important for livestock production, little is known about C4 pasture

strategies for acclimation to elevated atmospheric [CO2] and air warming [8]. C3 and C4 spe-

cies have distinct anatomical and physiological acclimation mechanisms under elevated [CO2]

and temperature [9–11]. For a long time, the responses of C4 species to elevated [CO2] were

considered marginal or inexistent due to the inherent-CO2 concentration mechanism in the

photosynthesis process of C4 plants [12]. However, it is now known that C4 species respond to

the increase in atmospheric [CO2] both directly and indirectly [10]. Different from C3 plants,

C4 leaves growing under elevated [CO2] often show a reduced thickness of tissues, such as the

epidermis and mesophyll, resulting in a decrease in the total leaf thickness [9, 13]. Cuticle

deposition is often intensified, and the stomatal density may change, with a diversity of

responses among species [10, 13, 14]. However, a reduced stomatal aperture is a typical

response found in C4 plants [10]. Enhancements in the photosynthetic performance accom-

pany all these changes in plants [10].

Different from the [CO2] effects, warmed C4 leaves often show an increase in the total leaf

thickness [9]; however, exceptions are found [15]. Under air warming, the leaf surface shows a

thicker cuticle, and an increased stomatal density, size, and conductance is often observed

[15–17]. A photosynthetic response to the elevated temperature significantly depends on the

optimum growth temperature of species, but is frequently enhanced in well-watered C4 plants

[11]. However, the combined effects of elevated [CO2] and air warming on the leaf anatomy

and physiology are scarce in the literature, especially for C4 species.

When different environmental factors are combined, interactive effects may occur, bring-

ing new and unexpected responses [18]. Furthermore, most of our knowledge of plant

responses to global change variables comes from experiments conducted on plots in open-

top chambers, greenhouses, or other artificial conditions. These controlled environments

may exacerbate the plant responses to abiotic stress and may not reflect the acclimation

mechanisms that would be present under field conditions [10]. In this study, we used a com-

bination of temperature free-air controlled enhancement (T-FACE) and free-air CO2 enrich-

ment (FACE) technologies to increase the atmospheric [CO2] and canopy temperature under

field conditions.
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Brazil is the world’s second largest meat exporter and the fourth-most country in the world

in terms of significant land area used in grazing systems [19]. Panicum maximum Jacq. (Syno-

nymMegathyrsus maximus (Jacq.) B. K. Simon & S. W. L. Jacobs) (Poaceae, C4) cv. Mombaça

is an important perennial grass used as pasture in tropical and subtropical regions, covering

more than 7.7 million hectares in the Brazilian territory [20]. P.maximum has a Kranz anat-

omy (subtype PEP-CK), with an undifferentiated mesophyll with few intercellular spaces and

one layer of concentric bundle sheath cells around vascular bundles, in which starch accumu-

lates. The positioning of chloroplasts in the bundle sheath cells is centrifugal. The leaves are

amphistomatic, and epidermis consists of a single layer of juxtaposed cells with bulliform cells

inserted between the vascular bundles in the adaxial leaf surface. A previous study showed that

P.maximum under a warmed, CO2-enriched atmosphere enhances its leaf expansion rates

and aboveground biomass production [3]. However, the underlying anatomical and physio-

logical acclimation mechanisms of P.maximum to future conditions of atmospheric [CO2]

and air warming are not found in the literature.

Here, we aim to test the isolated and combined effects of elevated [CO2] and air warming

on the ultrastructure, leaf anatomy, and physiology of P.maximum from an integrated per-

spective. We hypothesized that elevated [CO2] and air warming will differently change the

structure of the leaf tissues and independently enhance the photosynthetic performance and

biomass production of P.maximum.

Material and methods

Study site and system

The experiment was conducted during the 2015 Brazilian summer at the Trop-T-FACE facil-

ity, that combines free-air carbon dioxide enrichment (FACE) and temperature-free air

enhancement (T-FACE) systems, located in Ribeirão Preto, São Paulo State, Brazil (21˚ 100 800

S, 47˚ 510 48.200 W). This region stands 580 m above sea level, with an annual precipitation of

1508 mm, an average annual temperature of 22˚C, and soil classified as eutroferric red Oxisol

of clayey texture.

Seeds of Panicum maximum cv. Mombaça were sowed in 16 plots of 10 × 10 m in fertilized

soil with NPK 4-14-8 at a dose of 1 t ha-1 [21]. The planting density was 16 plant m-2 which is

the common plant density for P.maximum cv Mombaça used by farmers [22]. Soil liming was

performed 2 months before seeding to increase the soil pH from 4.5 to 5.5. During seedling

growth, plants were under adequate conditions of water availability. After 2 months of growing

and pasture establishment, when plants reached 90 cm height, plants were clipped at 30 cm

above the ground (the usual practice from farmers), and the treatments with different levels of

[CO2] and temperature were initiated. High leaf dry mass production and browsing efficacy of

P.maximum cv Mombaça are achieved with 90 cm pre-grazing and 30 cm post-grazing pas-

ture height targets, respectively [23]. Treatments were applied at the vegetative stage during 30

d of experiment with no irrigation other than rainfall. The 30-d experimental period is the nor-

mal plant regrowth time that is used in rotational grazing practices for this species [24]. It has

been reported that P.maximum cv. Mombaça have rapid stem elongation, resulting in 95%

canopy light interception at 90 cm [23]. We used a randomized four-block design and tested

the effects of two levels of atmospheric [CO2]: ambient (aC) and elevated [CO2] (~600 μmol

mol-1) (eC), and two levels of air temperature: ambient (aT) and elevated (+2˚C more than

canopy ambient temperature) (eT). Each block contained four different combinations: aCaT
(ambient [CO2] and ambient temperature), eCaT (elevated [CO2] and ambient temperature),

aCeT (ambient [CO2] and elevated temperature) and eCeT (elevated [CO2] and elevated
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temperature). Each circular plot consisted of a 2-m-diameter ring inside of 10 × 10 m plots,

located 12 m away from each other to avoid CO2 contamination.

Trop-T-FACE description

FACE system. To increase the atmospheric [CO2] by 600 μmol mol-1, we used a free-air

CO2 enrichment system (FACE) [3, 25]. Briefly, PVC rings of 2 m diameter punctured with

micro holes fumigated the plots with CO2. Through a proportional integration device algo-

rithm (PID), the central unit regulated the amount of [CO2] needed in eC plots using [CO2]

difference of aC and eC plots and wind speed data. A GMT222 CO2 transmitter sensor (Vai-

sala, Helsinki, Finland), installed in the center of each plot at canopy height, was used to moni-

tor [CO2] during the experiment. Wind speed was monitored by an anemometer located in

the center of the Trop-T-FACE facility at 3 m above the ground. Liquid CO2 used for fumiga-

tion was stored in a 12-ton cryogenic tank with a vaporizer unit. The target concentration of

600 μmol mol-1 was held from sunrise to sunset, and ‘dummy’ rings were installed in aC plots.

T-FACE system. We used a temperature free-air controlled enhancement system

(T-FACE) [26] to increase the canopy temperature to +2˚C more than the ambient canopy

temperature (eT). In each eT plot, plants were warmed by six infrared Salamander heaters TFE

750–240 (Mor Electric Heating, Comstock Park, MI, USA) mounted on Salamander reflectors

ALEX-F (Mor Electric Heating, Comstock Park, MI, USA) in a 2-m-diameter hexagonal pat-

tern. The heaters were suspended 0.8 m above the canopy with aluminum bars and had their

angle and height adjusted according to plant growth. T-FACE control temperature was per-

formed by a PID control system installed in a CR1000 datalogger with AM25T multiplexors

(Campbell Scientific, Logan, UT, USA) [27]. The control system integrates the canopy temper-

ature of aT and eT plots and regulates the canopy temperature to 2˚C more than the ambient

canopy temperature in warmed plots. Each eT plot used an aT plot as a reference for tempera-

ture control of the same experimental block. The same aluminum structure and ‘dummy’ heat-

ers were installed in aT plots. T-FACE worked continuously during the treatment period of

the experiment. Trop-T-FACE data was monitored and collected during the treatment period

of the experiment using Loggernet software (Campbell Scientific, Logan, UT, USA). We used

an automatic microclimate station WS-PH1 connected to a data logger DL2e (Delta-T Devices,

Cambridge, UK) to monitor and store the meteorological data: total solar radiation (Rad), air

temperature (Tair), and relative air humidity (Rh) during the whole growing season. Precipita-

tion data was obtained from a weather station located near to the Trop-T-FACE facility. Soil

temperature (Tsoil) was monitored hourly by ST2 sensors located in the center of each plot at

10 cm deep and connected to a data logger DL2e (Delta-T Devices Ltd., Burwell, Cambridge,

UK).

Meteorological conditions

High rainfall intensity occurred during the 30-d experimental period, with an accumulated

precipitation level of 224 mm (S1A Fig). Days were usually cloud-free before midday and

cloudy during the rest of the day. The daily average total solar radiation (Rad) was 0.33 kW

m-2 (S1A Fig), and the maximum total solar radiation was 1.08 kW m-2 during the experiment.

During the growing season, the average relative air humidity (Rh) was 87% (S1B Fig), with

minimum values of 38%. The average air temperature (Tair) during the experimental period

was 25˚C (S1B Fig), and the maximum and minimum Tair values registered during the experi-

ment were 35˚C and 16˚C, respectively. The soil temperature of eT plots was on average 0.7˚C

warmer than that under aT plots (S1C Fig).
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The volumetric soil water content (SWC) was continually monitored during the treatment

period of the experiment using Theta Probe ML2X sensors (Delta-T Devices Ltd., Burwell,

Cambridge, UK) located in the center of each plot, 10 cm deep and connected to a data logger

DL2e (Delta-T Devices Ltd., Burwell, Cambridge, UK). The SWC was conserved under eCaT
(Fig 1). The average SWC was 0.30 m3 m-3 under aCaT and 0.34 m3 m-3 under eCaT. However,

under eCeT, air warming completely canceled the conservation effect of elevated [CO2] on

SWC, leading to average values of 0.31 m3 m-3 under aCeT and 0.30 m3 m-3 under eCeT
(Fig 1).

Anatomical analysis

The anatomical analysis was performed at the end of the experiment on the central region of

fully expanded leaves located in the fourth node from the base to the top. Samples were col-

lected between 08:00–12:00 h. To study the effects of experimental conditions on the ultra-

structural traits, the leaf fragments were fixed in a 2% formaldehyde and 1% glutaraldehyde

solution, in a 0.1 M sodium phosphate buffer (pH 7.2) [28] for 24 h. Then, samples were

washed in a 0.1 M phosphate buffer solution (pH 6.8–7.0), and post-fixed in osmium tetroxide

1% for 2 h. Leaf segments were dehydrated in an acetone series and embedded in Araldite

6005. Ultrathin cross-sections (~60 nm) were obtained using an ultramicrotome (Leica Reich-

ert) with a diamond knife (DIATOME 45) and contrasted with 2% uranyl acetate for 15 min

[29] and lead citrate for 15 min [30]. Samples were observed using a Jeol JEM-100 CX-II elec-

tronic transmission microscope (JEOL, Peabody, MA, USA).

To study the effects of treatments on stomatal distribution, the leaf fragments of three leaves

per plot were fixed in 50% FAA [31] for 24 h, washed in 50% ethanol for 2 h and stored in 70%

ethanol until analysis. The epidermis was detached using a 1:1 solution of glacial acid acetic

and hydrogen peroxide, and maintained overnight at 60˚C [32]. Samples were stained with

methylene blue for 10 min, mounted onto slides with 50% glycerin, and digitally photographed

Fig 1. Daily average soil water content (SWC) registered during the experimental period at the Trop-T-FACE

facility. Stack bars show the standard error. [CO2] levels: aC (ambient [CO2], ~400 μmol mol-1) and eC (elevated

[CO2], ~600 μmol mol-1). Temperature levels: aT (ambient temperature) and eT (+2˚C more than the ambient

temperature).

https://doi.org/10.1371/journal.pone.0212506.g001
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with a Leica DFC500 digital camera (Leica, Heidelberg, Germany) coupled with a Leica

DM4000-B light microscope (Leica, Heidelberg, Germany). We evaluated five different visual

fields from each leaf surface in each sample. The stomatal length (SL) was measured at the

maximum polar length of guard cells of five stomata per visual field. We counted the number

of epidermal cells and stomata and calculated the stomatal density (SD) and stomatal index

(SI) (Eq 1):

SI %ð Þ ¼
SN

SN þ EC
� 100; ð1Þ

where SN is the stomata number, and EC is the number of epidermal cells.

For leaf tissue thickness measurements, we used three samples per plot fixed in 50% FAA,

as described above. The leaf middle sections of each sample were kept in terpineol oil for 2 d

and embedded in 2-hydroxyethyl methacrylate (Leica Instruments, Heidelberg, Germany).

Cross-sections (3 μm) were cut with a Leica RM2245 microtome (Leica, Heidelberg, Ger-

many), stained with 1% toluidine blue for 10 min [33], mounted onto slides with 50% glycerin

and digitally photographed with a Leica DFC500 digital camera coupled with a DM4000-B

light microscope (Leica, Heidelberg, Germany).

The measurements were always performed using ImageJ software [34] between the fourth

secondary vascular bundle starting after the major vein of the leaves until the fourth secondary

vascular bundle starting from the leaf margins. This region was chosen due to the greater uni-

formity of leaf thickness along the cross-section. From each sample, we evaluated five cross-

sections and measured all the variables at three different points in each cross-section. The epi-

dermal cells were measured at the same position in all samples using the bulliform cells as a

reference. The total leaf thickness was obtained by measuring the leaf thickness of the costal

and intercostal regions [35] and an average value was calculated. The mesophyll thickness was

measured at the intercostal zones between the two epidermises. Moreover, we measured the

distance between the vascular bundles and the polar length of the vascular bundles, vascular

bundle sheath cells, bulliform cells, and sclerenchyma tissue below the vascular bundles.

Leaf gas exchange

We performed in situ measurements of leaf gas exchange in four fully expanded leaves per plot

using the LCProSD+ advanced photosynthesis measurement system (ADC BioScientific, UK)

at 8 and 22 d after the treatments started, between 09:00–11:00 h. Leaves were kept in the

chamber until the variables remained stable. The measurements were performed with a con-

stant radiation of 1740 μmol m-2 s-1, temperature of 30˚C (aT plots) or 32˚C (eT plots), and

[CO2] of 400 μmol mol-1 (aC plots) or 600 μmol mol-1 (eC plots). Thus, we determined the net

photosynthesis rate (A), stomatal conductance (gs), and transpiration rate (E), and calculated

the intrinsic water-use efficiency (iWUE, A/gs).

Image chlorophyll fluorescence

At the end of the experiment, we measured the effective PSII quantum yield (Y[II]) using an

imaging-PAM M-series chlorophyll fluorescence system MINI-version (Heinz Walz GmbH,

Germany) [2, 36]. The leaves were detached, maintained in water, and dark-adapted for 20

min under room temperature. First, we determined the dark fluorescence yield (Fo) (measured

under a low frequency of pulse-modulated measuring light) and the maximal fluorescence

yield (Fm) (measured under saturation pulse). Then, the fluorescence yield (F) and maximal

fluorescence yield in the illuminated samples (Fm’) were measured. We produced images of
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the effective PSII quantum yield of the illuminated samples (Y[II]) with the Imaging Win soft-

ware. The Y(II) was calculated as follows: Y(II) = (Fm’ − F)/Fm’.

Malondialdehyde content

The lipid peroxidation of membranes was evaluated using the thiobarbituric acid (TBA)

method of measuring the malondialdehyde (MDA) production [37]. Sampling for MDA con-

tent was performed at the end of the experiment, at the same time as anatomical samplings.

First, 100 mg of fresh leaves was macerated in liquid nitrogen and solubilized in 2.5 mL of

0.1% trichloroacetic acid (TCA) (m/v). An aliquot (500 μL) of the supernatant was transferred

to sealed glass tubes, in which 2 mL of 20% TCA with 0.5% TBA was added. The solution was

mixed and warmed at 95˚C for 30 min and put on ice to stop the reaction. The supernatant

absorbance was determined at 532 and 600 nm. The reaction was performed in duplicate for

each plot. The MDA concentration was calculated using a coefficient of molar extinction of

155 mM-1 cm-1 [37].

Starch content

Starch quantification was performed on leaves collected at the end of experiment between

08:00–12:00 h, at the same time as anatomical samplings. We macerated 0.1 g of lyophilized

leaves in liquid nitrogen. The material was previously extracted with 1 mL of 80% ethanol and

boiled for 15 min at 80˚C. This process was repeated successively three times. After centrifuga-

tion (1000 × g, 20 min) supernatants containing soluble sugars were discarded and residues

were washed with distilled water, centrifuged, lyophilized, and used for starch quantification.

We estimated the starch content using an enzymatic analysis [38] in duplicate for each plot.

We used 10 mg of lyophilized residue after ethanol extraction. Samples were incubated at 75˚C

for 30 min with 0.5 mL (120 U mL-1) of α-amylase from Bacillus licheniformis (EC 3.3.1.1;

Megazyme, Ireland) and 10 mM 3-(N-morpholino) propanesulfonic acid (MOPS) buffer solu-

tion (pH 6.5). This process was repeated to produce a total of 120 U of enzymes. Samples were

cooled to 50˚C and incubated twice consecutively with 30 U mL-1 of amyloglucosidase from

Aspergillus niger (EC 3.2.1.3; Megazyme, Ireland) in 500 μL of 0.1 M sodium acetate buffer

(pH 4.5) for 30 min. The reaction was stopped by the addition of 100 μL of 0.8 M perchloric

acid. After centrifugation (10,000 x g, 2 min), aliquots of the supernatant were incubated with

the reagent Glucose PAP Liquiform (Centerlab) containing glucose oxidase and peroxidase

(GOD-POD), 4-aminoantipyrine 50 mM and phenol pH 7.5. After incubation for 14 min at

37˚C, the glucose content was determined in an ELISA plate at 490 nm.

Dry mass

At the end of the experiment, intact plants of a 50-cm diameter circular sampling area were

harvest at ground level. We separated leaves and stems and dry the material in an oven at 60˚C

until constant weight. We calculated leaf, stem and total aboveground biomass (g m-2).

Data analysis

For quantitative data, we used a 2 × 2 factorial analysis of variance (ANOVA) (two factors with

two levels) to test the main effects of [CO2] and temperature, as well as their interaction when

factors were combined. Means of significant interactive effects were compared using a post-

hoc Student’s t-test. In order to meet the ANOVA assumptions, the data were log-transformed

when necessary. Analyses were performed using R software 3.2.3 [39], with a significance level

of 5% (p< 0.05).
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Results

Ultra-structural analysis

Qualitative ultra-structural analysis showed that only the bundle sheath cells (BSC) were

affected by the experimental conditions. Under aCaT, the chloroplast thylakoid membranes in

the BSC were well developed, with numerous plastoglobuli and starch grains (Fig 2A, 2C, 2E

and 2F). The mitochondria (Fig 2G) and cell wall were regular (Fig 2C and 2F) with many cell-

to-cell communications through the plasmodesmata occurring between the BSC and MC

(Fig 2C). At the mesophyll cells (MC), no starch accumulation was observed, and thylakoid

Fig 2. Transmission electron microscopy (TEM) photomicrographs of leaves of P. maximum under ambient

[CO2] and ambient temperature (aCaT). (A) Overview of a bundle sheath cell (BSC). Cl–chloroplast, V–vacuole. N–

nucleus. (B) Overview of a mesophyll cell (MC). Cl–chloroplast, V–vacuole. (C) A chloroplast of a BSC with

plastoglobuli (indicated by arrowheads) and starch grains. Arrows indicate plasmodesmata between the BSC and MC.

S–starch. (D) A chloroplast of a MC with plastoglobuli (indicated by arrowheads) and thylakoid membranes (indicated

by arrows). (E) A chloroplast of a BSC showing details of thylakoid membranes (indicated by arrow) and plastoglobuli

(indicated by arrowheads). S–starch. (F) The cell wall between the BSC and MC. S–starch, CW–cell wall. (G) Group of

mitochondria of a BSC. M–mitochondria.

https://doi.org/10.1371/journal.pone.0212506.g002
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membranes were well developed, with many plastoglobuli and a multilayer external membrane

of chloroplasts (Fig 2B and 2D).

Under eCaT, the chloroplasts of the BSC were more prominent with large starch grains (Fig

3), filling in most of the chloroplast cross-section area (Fig 3A and 3C). The thylakoid mem-

branes of the BSC were intact under this treatment (Fig 3E, 3F and 3G), and chloroplasts and

mitochondria were frequently observed in association (Fig 3G). The mitochondria (Fig 3G)

and cell wall were regular (Fig 3F), with many cell-to-cell communications occurring between

the two cell types (Fig 3D). We found less dense and numerous plastoglobuli in chloroplasts of

the BSC (Fig 3A, 3C and 3E) compared to those under aCaT (Fig 3A, 3C and 3E). In the MC,

no alterations were observed, and all structures were regular (Fig 3B and 3D).

Under aCeT, we found minor and less bulky starch grains in the chloroplasts of BSC (Fig

4A, 4C and 4E), when compared to aCaT (Fig 2A, 2C and 2E) and eCaT (Fig 3A, 3C and 3E).

Chloroplasts of BSC were smaller (Fig 4A) with conserved thylakoid membranes (Fig 4C and

4E). Chloroplasts and mitochondria were frequently observed in association with BSC (Fig

4G), and space was observed between the chloroplasts and starch grains (Fig 4C and 4E). In

the BSC, we observed cytoplasm retraction and traffic of vacuoles with MC (Fig 4F). The MC

showed conserved thylakoid membrane structures, many plastoglobuli, and a multilayer exter-

nal membrane of chloroplasts (Fig 4B and 4D).

Under eCeT, BSC showed a reduced size and number of chloroplasts, with loss of integrity

in the external membrane of chloroplasts (Fig 5A, 5C and 5E) but with a conserved structure

of thylakoids (Fig 5C and 5E). On these chloroplasts, starch grains are small and less numerous

(Fig 5A, 5C and 5E) when compared to those under aCaT (Fig 2A, 2C and 2E) and eCaT (Fig

3A, 3C and 3E). Associations between mitochondria and chloroplasts were not observed in

this treatment. However, mitochondria cristae were more conspicuous (Fig 5G). In MC, no

alterations were observed, and all structures were regular (Fig 4B and 4D).

Thickness of tissues and cells

Leaf cross-sections were used to study the effects of experimental conditions on the thickness

of the leaf tissues and cells (Table 1). Air warming exerted more pronounced effects on the

thickness of tissues than did elevated [CO2]. Leaves grown under eT independent of [CO2]

level showed an adaxial cuticle (CUAD) that was approximately 13% thicker, while our experi-

mental conditions did not change the abaxial cuticle (CUAB). The adaxial epidermis (EPAD)

thickness was increased by 11% under eC, regardless of the temperature level, with no alter-

ations at the abaxial surface (EPAB) (Table 1). Air warming reduced the total leaf thickness

(LT) by approximately 17%, regardless of [CO2] level. The main effect of air warming was also

observed for the polar length of the bulliform cells (BUL) and polar length of vascular bundles

(VASBU), with decreases of 11% and 15%, respectively. However, the sclerenchyma thickness

(SLC), mesophyll thickness (MES), polar length of vascular bundle sheath cells (BSC), and dis-

tance between the vascular bundles (VASDIS) did not change (Table 1).

Stomatal parameters

We observed that a CO2-enriched atmosphere significantly affected the stomata differentiation

on both leaf surfaces (Fig 6). Thereby, the adaxial stomatal density (SD) and stomatal index

(SI) decreased under eC by approximately 6% for both variables, independent of temperature

level (Fig 6A and 6C). At the abaxial leaf surface, the SD and SI decreased under eC, regardless

of temperature level, by 16% and 11%, respectively (Fig 6B and 6D). Air warming had no

effects on the stomatal distribution (Fig 6A, 6B, 6C and 6C). The stomatal size (SL) was not
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Fig 3. Transmission electron microscopy (TEM) photomicrographs of leaves of P. maximum under elevated [CO2] and ambient

temperature (eCaT). (A) Overview of a bundle sheath cell (BSC). (B) Overview of mesophyll cells (MC). V–vacuole. (C) Chloroplast of a

BSC with large starch grains. S–starch. (D) Chloroplast of a MC with conserved thylakoid membranes (indicated by arrows) and

communication thought plasmodesmata with a BSC (indicated by an arrowhead). CW–cell wall. (E) A chloroplast of a BSC showing details

of thylakoid membranes (indicated by arrow). S–starch. (F) Regular cell wall of a BSC and chloroplasts with starch grains and conserved

thylakoid membranes (indicated by arrows). CW–cell wall, S–starch. (G) Group of mitochondria associated with chloroplasts in BSC with

conserved thylakoid membranes (indicate by arrows). S–starch, M–mitochondria.

https://doi.org/10.1371/journal.pone.0212506.g003
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Fig 4. Transmission electron microscopy (TEM) photomicrographs of leaves of P. maximum under ambient [CO2] and air warming (aCeT). (A) Overviews

of a bundle sheath cell (BSC). V–vacuole. (B) Overview of a mesophyll cell (MC). V–vacuole. (C) Chloroplast of a BSC with spaces between the starch grains and

chloroplasts and conserved thylakoid membranes (indicated by arrowheads). CW–cell wall, S–starch. (D) Overview of a chloroplast of a MC with plastoglobuli

(indicated by arrows) and conserved thylakoid membranes (indicated by arrowheads). (E) Thylakoid membrane detail of the chloroplast of a BSC and spaces

between the starch grains and chloroplasts (indicated by arrows). S–starch. (F) Cytoplasm retraction in a BSC and traffic of vacuoles with an MC through

plasmodesmata (indicated by an arrow). CW–cell wall. (G) Association of mitochondria and chloroplasts of a BSC. S–starch, M–mitochondria.

https://doi.org/10.1371/journal.pone.0212506.g004
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Fig 5. Transmission electron microscopy (TEM) photomicrographs of leaves of P. maximum under elevated [CO2] and air warming (eCeT). (A) Overview of a

bundle sheath cell (BSC). V–vacuole, N–nucleus. (B) Overview of mesophyll cells (MC). V–vacuole. (C) Chloroplast of a BSC with starch grains. S–starch. (D)

Chloroplast of a MC with plastoglobuli (indicated by arrowheads) and conserved thylakoid membranes (indicated by arrows). (E) Details of the thylakoid membrane

and external membrane of chloroplast of a BSC. S–starch. (F) Plasmodesmata (indicated by an arrow) between a BSC and a MC with regular cell wall. CW–cell wall.

(G) Group of mitochondria with conspicuous cristae. M–mitochondria, CW–cell wall.

https://doi.org/10.1371/journal.pone.0212506.g005
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affected by the experimental conditions (Fig 6E and 6F), and no interactions between elevated

[CO2] × air warming were observed for any of the stomatal parameters (Fig 6).

Leaf gas exchange

We measured the leaf gas exchange for 2 d of the 30-d experiment (Fig 7). Increased levels of

atmospheric [CO2] exerted more pronounced effects on the gas exchange parameters than did

air warming. The net photosynthesis rate (A) increased under eC independent of temperature

level by approximately 25% on both sampling days (Fig 7A). Along with stomatal density

reductions under elevated [CO2], the stomatal conductance (gs) was also decreased under eC
regardless of temperature level by approximately 23% and 30% at 7 and 22 d of experiment

(DOE), respectively (Fig 7B). Air warming had a marginal effect on leaf transpiration rate (E).

At 7 DOE, no effects were observed. However, at 22 DOE, we detected an antagonistic effect

between the factors. Under eCaT, E was decreased by 10%, whilst under aCeT, E was increased

by 15%; therefore, the mean E values between aCaT and eCeT did not differ (Fig 7C). The

combination of increased leaf-level carbon assimilation and reduced gs under eC, increased

water use efficiency (iWUE) regardless of the temperature level by 70% and 71% at 7 and 22

DOE, respectively (Fig 7D).

Chlorophyll fluorescence and malondialdehyde content

At the end of the experiment, we measured the effective Y(II) (S2 Fig), which presented

values> 0.72, and the malondialdehyde content (MDA) (S3 Fig). We observed that both

parameters were not affected by the air warming and elevated [CO2] treatments.

Table 1. Quantitative parameters (μm) measured in leaves of P. maximum grown under different levels of [CO2] and temperature at Trop-T-FACE facility.

CUAD = adaxial cuticle thickness. CUAB = abaxial cuticle thickness. EPAD = adaxial epidermis thickness. EPAB = abaxial epidermis thickness. SCL = sclerenchyma thickness.

MES = mesophyll thickness. LT = leaf thickness. BUL = polar length of bulliform cells. VASBU = polar length of vascular bundles. BSC = polar length of bundle sheath cells.

VASDIS = distance between vascular bundles. Param. = parameter. ANOVA = p-values for significant effects: [CO2] (isolated effect of elevated [CO2]), T. (isolated effect of

air warming), and [CO2] × T. (interaction of elevated [CO2] × Temp). [CO2] levels: aC (ambient [CO2], ~400 μmol mol-1) and eC (elevated [CO2], ~600 μmol mol-1). Tem-

perature levels: aT (ambient temperature) and eT (2˚C more than the ambient temperature).

Atmospheric [CO2] level ANOVA

aC eC
Param. Temperature level Temperature level [CO2] T. [CO2]×T

aT eT aT eT
CUAD 2.98 ± 0.14 3.32 ± 0.05 2.87 ± 0.10 3.10 ± 0.08 ns � ns

CUAB 2.80 ± 0.02 2.86 ± 0.11 2.93 ± 0.02 2.86 ± 0.04 ns ns ns

EPAD 16.42 ± 0.62 16.42 ± 0.10 18.59 ± 0.53 17.35 ± 0.11 � ns ns

EPAB 17.36 ± 0.21 17.18 ± 0.46 16.7 ± 0.39 17.76 ± 0.59 ns ns ns

SCL 17.82 ± 0.41 17.20 ± 0.54 18.23 ± 0.42 17.94 ± 0.73 ns ns ns

MES 88.06 ± 1.85 77.28 ± 2.60 79.31 ± 4.69 81.07 ± 3.86 ns ns �

LT 207.75 ± 1.74 162.19 ± 10.06 194.18 ±14.50 184.65 ± 9.53 ns � �

BUL 55.27 ± 0.70 46.80 ± 1.50 51.81 ± 2.95 49.28 ± 2.07 ns ns �

VASBU 48.26 ± 1.39 40.10 ± 0.95 45.47 ± 3.27 42.27 ± 1.60 � � ��

BSC 64.09 ± 1.01 59.89 ± 1.32 62.92 ± 2.68 64.42 ± 3.23 ns ns ns

VASDIS 176.52 ± 4.82 174.65 ± 1.92 179.76 ± 6.06 180.75 ± 3.69 ns ns ns

Data are mean ± SD (n = 4).

ns = not significant.

�, p< 0.05;

��, p< 0.001;

���, p< 0.001.

https://doi.org/10.1371/journal.pone.0212506.t001
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Fig 6. Stomatal parameters measured in leaves of P. maximum. (A) Adaxial and (B) abaxial stomatal density–SD.

(C) Adaxial and (D) abaxial stomatal index–SI. (E) Adaxial and (F) abaxial stomatal length–SL. Measurements are

shown for both leaf surfaces, and statistical analysis was performed between treatments on same leaf surface. Stack bars

show the standard error. [CO2] levels: aC (ambient [CO2], ~400 μmol mol-1) and eC (elevated [CO2], ~600 μmol

mol-1). Temperature levels: aT (ambient temperature) and eT (2˚C more than the ambient temperature). ANOVA p-

values are shown and significant effects (p< 0.05) are detailed in bold. [CO2] (isolated effect of elevated [CO2]), Temp.

(isolated effect of air warming) and [CO2] × Temp. (interaction of elevated [CO2] × Temp.).

https://doi.org/10.1371/journal.pone.0212506.g006
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Fig 7. Leaf gas exchange parameters measured during the growing season of P. maximum at the Trop-T-FACE

facility. (A) Net photosynthesis rate (A). (B) Stomatal conductance (gs). (C) Transpiration rate (E). (D) Intrinsic water-

use efficiency (iWUE). Stack bars show the standard error. [CO2] levels: aC (ambient [CO2], ~400 μmol mol-1) and eC
(elevated [CO2], ~600 μmol mol-1). Temperature levels: aT (ambient temperature) and eT (2˚C more than the ambient

temperature). ANOVA p-values are shown and significant effects (p< 0.05) are detailed in bold. [CO2] (isolated effect

of elevated [CO2]), Temp. (isolated effect of air warming), and [CO2] × Temp. (interaction of elevated [CO2] × Temp.).

https://doi.org/10.1371/journal.pone.0212506.g007
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Starch content

Leaf starch content was estimated in samples collected at the same time as leaf anatomical sam-

plings. Enzymatic assay confirmed our qualitative results of Figs 4A, 4C, 4E, 5A, 5C and 5E.

Thus, under eT and independent of [CO2] level, starch content was reduced in approximately

30% (Fig 8).

Dry mass

Leaf dry mass was enhanced in approximately 42% under eCeT (interactive effect) (Fig 9A).

However, no effects were observed for stem and total aboveground biomass (Fig 9B and 9C).

Discussion

In earlier experiments carried out by our team [3], it was found that elevated temperature

(+2˚C above ambient) with adequate water availability, increased leaf area and leaf biomass

production of P.maximum, while the elevated atmospheric CO2 concentration ([CO2])

Fig 8. Starch content in leaves of P. maximum at Trop-T-FACE facility. Stack bars show the standard error. [CO2] levels: aC (ambient [CO2],

~400 μmol mol-1) and eC (elevated [CO2], ~600 μmol mol-1). Temperature levels: aT (ambient temperature) and eT (2˚C more than the ambient

temperature). ANOVA p-values are show and significant effects (p<0.05) are detailed in bold. [CO2] (isolated effect of elevated [CO2]), Temp.

(isolated effect of air warming) and [CO2] × Temp. (interaction of elevated [CO2] × Temp.).

https://doi.org/10.1371/journal.pone.0212506.g008
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(~600 ppm) reduced the leaf/stem ratio biomass of this species. In this work, we reported the

effects of warming and elevated [CO2] on the ultrastructure, leaf anatomy, and physiology of

P.maximum growing at the Trop-T-FACE facility. Here, we identified the main anatomical

mechanisms of acclimation in P.maximum leaves developed under elevated [CO2] and air

warming under field conditions (Fig 10). We found that a CO2-enriched atmosphere signifi-

cantly reduced the differentiation of epidermal cells to stomata on both leaf surfaces. The par-

allel changes in SD and SI exclude the possibility of changes in the epidermal cell size or

number (Fig 6), as observed in maize plants (Zea mays, C4) grown under 700 μmol mol-1 of

[CO2] [14]. However, in Panicum antidotale (Poaceae, C4) and Panicum decipiens (Poaceae,

intermediate C3/C4), stomatal density increased under 900 μmol mol-1 of [CO2], whilst in

Panicum tricanthum (C3) SD decreased, suggesting different acclimation mechanisms under

elevated [CO2] between Panicum species [13]. Stomatal number control is a protective mecha-

nism that enhances the utilization of water resources under elevated [CO2] [40, 41, 42]. This

response is considered a long-term acclimation mechanism that occurs only when leaves are

Fig 9. Dry mass of P. maximum at Trop-T-FACE facility. (A) Leaf dry mass. (B) Stem dry mass. (C) Total aboveground biomass. Stack bars show

the standard error. [CO2] levels: aC (ambient [CO2], ~400 μmol mol-1) and eC (elevated [CO2], ~600 μmol mol-1). Temperature levels: aT (ambient

temperature) and eT (2˚C more than the ambient temperature). ANOVA p-values are show and significant effects (p<0.05) are detailed in bold.

[CO2] (isolated effect of elevated [CO2]), Temp. (isolated effect of air warming) and [CO2] × Temp. (interaction of elevated [CO2] × Temp.).

https://doi.org/10.1371/journal.pone.0212506.g009
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fully developed under a CO2-enriched atmosphere. The influence of stomatal density on leaf

gas exchange was studied in detail in stomatal mutants of Arabidopsis thaliana (Brassicaceae)

[43], where fewer stomata on the leaf surfaces were responsible for decrease the stomatal con-

ductance (gs) and transpiration rate (E).

The gas exchange also changed as a result of short-term mechanisms, such as stomatal clo-

sure, which is considered one of the most important factors that reduce gs under elevated

[CO2] [44]. In this study, gs decreased under eC regardless of temperature level, probably due

to a combination of fewer stomata and reduced pore aperture induced by elevated [CO2]. As a

consequence, we observed lower transpiration rates under this treatment (Fig 7); this effect

was corroborated by our SWC data (Fig 1). The lower transpiration rates by plants under

eCaT conserved soil moisture because soil water uptake by the roots was also reduced [45, 46],

since transpiration flux was low. It is accepted that soil moisture conservation can benefit

plants, especially during water shortages periods [47–49]. However, under eCeT, air

warming counterbalanced the effects of eC on E and SWC, presumably due to the increased

evapotranspiration.

Fig 10. Main anatomical and physiological acclimation mechanisms of P. maximum developed under elevated [CO2] and warming. Created with BioRender.

Elevated [CO2] (eC, green circle, isolated effect of CO2) exerted more pronounced effects on epidermis anatomy and leaf gas exchange. A CO2-enriched

atmosphere reduced the differentiation of epidermal cells to stomata on both leaf surfaces, reducing stomatal density and index. In addition, stomatal aperture and

transpiration were also decreased. Therefore, water use efficiency, photosynthesis and starch content increased. Due to low transpiration flux, soil water content

was conserved during the experiment. Warming (eT, red circle, isolated effect of temperature) affected leaf structure and starch metabolism. Leaves developed

protection mechanisms against the effects of a warmer environment with a thicker adaxial cuticle and reduced size of vascular bundles and bulliform cells. Under

the combination of elevated [CO2] and warming (eCeT, purple circle, interaction of CO2 × temperature), warming cancelled the CO2 effect on soil water content

and transpiration. However, when combined, these two environmental factors produced a set of anatomical adjustments that contributed to the acclimation of this

species to future conditions increasing leaf biomass production. Down arrow: decrease. Up arrow: increase.

https://doi.org/10.1371/journal.pone.0212506.g010
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Although we observed that the increased size of epidermal cells did not cause a reduced

stomatal density, the cross-sectional thickness of the adaxial epidermis increased under eC
independent of temperature. This same pattern of response was found in leaves of Triticum
aestivum (Poaceae), suggesting that elevated [CO2] affected cell growth anisotropy [50]. Cell

expansion occurs due to the stimulation of elevated [CO2] on the enzymatic activity of xyloglu-

can endo-transglycosylase, which is responsible for the expansion of cell walls [51]. It has been

suggested that a thicker epidermis is a xeromorphic trait, and leaves grown under a CO2-

enriched atmosphere would be more resistant to drought since they would avoid increased

transpiration in a warmer environment [52].

We found that under elevated atmospheric [CO2], leaf-level carbon assimilation signifi-

cantly increased regardless of temperature (Fig 7A). An enhanced photosynthesis under ele-

vated [CO2] is often higher in C3 than in C4 species [10, 53]. However, some C4 species are

non-saturated under current [CO2] conditions [54]. This response was also observed in Brazil-

ian cultures of sugarcane (Saccharum officinarum, C4), in which photosynthesis was increased

by approximately 30% under elevated [CO2] [55, 56]. The enhancement in the photosynthetic

performance of P.maximum resulted in more numerous and larger starch grains in chloro-

plasts of bundle sheath cells (Fig 3), and a non-significant increase (10%) in the leaf starch con-

tent (Fig 8). Interestingly, Panicum antidotale (C4) plants grown under 900 μmol mol-1 of

[CO2], accumulated starch grains not only in the chloroplasts of bundle sheath cells, but also

on mesophyll [13]. The conservation of chloroplast ultrastructure under elevated [CO2] is in

agreement with previous studies performed on other Panicum species, such as P. antidotale
(C4), P. decipiens (C3-C4), and P. tricanthum (C3) [13]. However, it has been reported that

chloroplast ultrastructure can be damaged due to an excessive accumulation of starch grains

[57]. This phenomenon is considered to be one of the causes of photosynthesis acclimation

observed in some species exposed to elevated [CO2] levels [57, 58]. In this study, the gas

exchange adjustments resulted in an enhanced intrinsic water-use efficiency (iWUE) regard-

less of temperature level in P.maximum. The iWUE is one of the most sensitive parameters

that respond to elevated [CO2] levels, with increases of up to 229% in some species [45]. The

increase in iWUE is presumably an optimization of the ratio unit of assimilated carbon per

unit of water used under global change conditions, resulting in an amelioration of the adverse

effects of drought, on plant growth [59]. Plants often achieve improved iWUE by producing

leaves with fewer stomata [42], as observed in this study.

The ultrastructure of thylakoid membranes remained intact under warmed plots; however,

we observed a loss of integrity in the external membranes of chloroplasts under eCeT.

Although light-harvesting complexes are located in the thylakoid membranes, the external

membrane may act in the transport of molecules between the cytoplasm and stroma [60]. In

rice (Oryza sativa, Poaceae), ultrastructural damages that resulted in differences in the chloro-

phyll fluorescence yield were observed only under severe swelling of the thylakoid membranes,

while the external membrane remained intact [61]. To investigate the possible effect of this

morphological alteration on the photosynthetic process, we analyzed the chlorophyll fluores-

cence and MDA data measured at the same time as anatomical samplings. As observed in

S2 Fig, the Y(II) was not affected in any treatment, indicating no effects of treatments on

the maximum photochemical yield of photosystem II. Moreover, malondialdehyde (MDA),

which is a highly reactive compound and a natural marker of oxidative stress [37] was also not

affected by eCeT (S3 Fig). Furthermore, A was enhanced under eC, independent of tempera-

ture (Fig 7A). This set of physiological data indicated that the loss of integrity of the external

membrane of chloroplasts under eCeT was not expressed through any measurable deleterious

effect on photosynthesis.

Elevated [CO2] and air warming induces anatomical adjustments in Panicum maximum leaves

PLOS ONE | https://doi.org/10.1371/journal.pone.0212506 February 19, 2019 19 / 25

https://doi.org/10.1371/journal.pone.0212506


Contradicting our main hypothesis, air warming showed no effects on photosynthesis, and

carbon fixation was enhanced only by eC. However, we observed that starch grains in chloro-

plasts of BSC were smaller and less numerous under eT (Figs 4A, 4C, 4E, 5A, 5C and 5E),

which was confirmed by starch quantification (Fig 8). Starch is the main carbohydrate stored

in higher plants [62] and its content changes according to the starch–sucrose remobilization of

source–sink relationships. Besides the storage function, starch is reported to be an important

molecule acting in signaling networks between organs [63]. During air warming, plants remo-

bilize starch to other part plants to provide energy to sink tissues [63]. In this study, we hypoth-

esized that air warming acts as a stimulus to starch exportation. Reduced starch content was

also observed under eCeT, where A was higher, indicating that the stimuli of starch breakdown

are independent of [CO2] level, and surplus carbon provided by enhanced photosynthesis is

also being exported, presumably enhancing dry leaf mass under eCeT (Fig 9A).

We observed that leaves grown under moderate air warming developed adjustments to bet-

ter deal with the warmer environment. Our data showed that warmed leaves had a thicker

adaxial cuticle regardless of the [CO2] level, presumably as a response related to an acclimation

mechanism to avoid excessive water loss [64, 65]. The cuticle is a cutin hydrophobic layer, and

plays an essential role in isolating plant surfaces and reducing nanoscale water diffusion [66].

Interestingly, in Panicum antidotale (C4) plants, elevated [CO2] is responsible for increased

adaxial cuticle deposition [13]. Furthermore, we observed that the size of bulliform cells,

which store water, was decreased under eT. The bulliform cells are located at the adaxial leaf

surface between the vascular bundles, and are essential in the process of leaf wilting and open-

ing by controlling its turgor [67]. By reducing the volume of these cells, plants cause leaf wilt-

ing and reduce the leaf surface exposed to sunlight, indicating a better control of water loss

under warmer ambient temperatures. Excessive transpiration may lead to the cavitation of

xylem conduits, causing a disruption in the water flow and threatening plant survival [68]. In

this study, warmed plants showed a reduced of vascular bundle size. Smaller vascular bundles

decrease the probability of xylem cavitation [69], an essential adaptation in species grown

under warm environments. Besides, our data showed that eT lowered the leaf thickness. A 10%

reduction in leaf thickness was also observed in warmed (+2˚C) maize plants [15]. Thinner

leaves have an increased thermal conductivity, which provides a more efficient heat dissipation

with reduced water loss by evapotranspiration in warmer environments [5, 70]. Thin leaves

are adaptations often found in xeromorphic species [71], since small cells support a higher

negative turgor pressure than larger ones due to the relationship between the cell wall elasticity

and cell volume [71, 72].

We found no evidence of interactive effects between elevated [CO2] and air warming in

terms of anatomical responses of P.maximum. This result is consistent with those of other

studies [5, 73], which suggest that leaf anatomy may include a response of simple additive

effects under elevated [CO2] and temperature. However, under eCeT an interaction between

CO2 and air warming greatly enhanced leaf biomass production. This result was presumably

associated with the combination of anatomical acclimation mechanisms independently

developed by elevated CO2 and warming. In addition, increased photosynthesis and iWUE
performed by eC and starch remobilization performed by eTmay be contributed to the pro-

duction of more leaves, increasing dry leaf mass.

Conclusions

To our knowledge, this study was the first to provide evidence of the physiological and ana-

tomical mechanisms of acclimation in P.maximum leaves growing in a tropical environmental

under future conditions of elevated atmospheric [CO2] and temperature. We observed that
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elevated [CO2] exerted more pronounced effects on the epidermis anatomy and leaf gas

exchange, while air warming affected the leaf structure. When combined, these two environ-

mental factors produced a set of anatomical adjustments that contributed to the acclimation of

this species to future conditions increasing leaf biomass production, which is in agreement

with other experimental [3] and productivity models [74]. Acclimation strategies were related

to protection against the effects of a warmer environment and optimization of water use and

carbon fixation, enhancing the performance of this species under these environmental condi-

tions. Further studies should focus on the possible effects of elevated [CO2] and air warming

on the flower, pollen, and ovule anatomy, and how these alterations influence the fitness of

future generations.

Supporting information

S1 Fig. Meteorological conditions registered during the experimental period with P. maxi-
mum at Trop-T-FACE facility. (A) Average daily diurnal total solar radiation (Rad) and

accumulated daily rainfall. (B) Average daily relative humidity (Rh) and average daily air tem-

perature (Tair). (C) Average daily soil temperature (Tsoil). aT plots = plots with ambient tem-

perature; eT plots = warmed plots.

(TIF)

S2 Fig. Chlorophyll fluorescence image of effective PSII quantum yield (Y[II]) measured

at the end of the growing season in leaves of P. maximum at the Trop-T-FACE facility.

[CO2] levels: aC (ambient [CO2], ~400 μmol mol-1) and eC (elevated [CO2], ~600 μmol mol-1).

Temperature levels: aT (ambient temperature) and eT (2˚C more than the ambient tempera-

ture). Means are followed by standard error (mean ± standard error). Relative values ranging

from 0–1 of the Y(II) are displayed using an identical false color scale (bar is at the bottom of

the image).

(TIF)

S3 Fig. Malondialdehyde content (MDA) measured at the end of growing season in leaves

of P. maximum at the Trop-T-FACE facility. Stack bars shows the standard error. [CO2] lev-

els: aC (ambient [CO2], ~400 μmol mol-1) and eC (elevated [CO2], ~600 μmol mol-1). Temper-

ature levels: aT (ambient temperature) and eT (2˚C more than the ambient temperature). The

ANOVA p-values are shown and significant effects (p< 0.05) are detailed in bold. [CO2] (iso-

lated effect of elevated [CO2]), Temp. (isolated effect of air warming) and [CO2] × Temp.

(interaction of elevated [CO2] × Temp.).

(TIF)
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