
Predicting drug-induced liver injury: The importance of data 
curation

Eleni Kotsampasakou, Floriane Montanari, and Gerhard F. Ecker*

University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, 
Austria

Abstract

Drug-induced liver injury (DILI) is a major issue for both patients and pharmaceutical industry 

due to insufficient means of prevention/prediction. In the current work we present a 2-class 

classification model for DILI, generated with Random Forest and 2D molecular descriptors on a 

dataset of 966 compounds. In addition, predicted transporter inhibition profiles were also included 

into the models. The initially compiled dataset of 1773 compounds was reduced via a 2-step 

approach to 966 compounds, resulting in a significant increase (p-value < 0.05) in model 

performance. The models have been validated via 10-fold cross-validation and against three 

external test sets of 921, 341 and 96 compounds, respectively. The final model showed an accuracy 

of 64% (AUC 68%) for 10-fold cross-validation (average of 50 iterations) and comparable values 

for two test sets (AUC 59%, 71% and 66%, respectively). In the study we also examined whether 

the predictions of our in-house transporter inhibition models for BSEP, BCRP, P-glycoprotein, and 

OATP1B1 and 1B3 contributed in improvement of the DILI mode. Finally, the model was 

implemented with open-source 2D RDKit descriptors in order to be provided to the community as 

a Python script.
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1 Introduction

Drug-induced liver injury (DILI) is the term used for liver damage that is caused by drugs, 

herbal agents or nutritional supplements (Ghabril et al., 2010; Watkins and Seeff 2006). 

DILI has gained increasing attention in recent years (Raschi and De Ponti, 2015), as it is one 
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of the main causes for attrition during clinical and pre-clinical studies and the main reason 

for drug withdrawal from the market or for labeling with a black box warning (Ballet 1997; 

Chen et al., 2011; O’Brien et al., 2006; Regev 2014). Thus, great effort has been invested 

towards elucidating the toxicological processes and mechanisms that result in manifestations 

of DILI (Vinken, 2015). It is widely accepted that, together with metabolizing enzymes, liver 

transporters play an important role for maintaining the integrity and proper function of the 

liver, and also influence the ADMET (absorption, distribution, metabolism, excretion and 

toxicity) profile of drugs (Faber et al., 2003; Shitara et al., 2013). Actually, there are several 

recent publications suggesting that inhibition of liver transporters might result in 

manifestations of DILI. For cholestasis in particular, strong evidence towards the role of the 

bile salt export pump (BSEP) (Aleo et al., 2014; Dawson et al., 2011; Padda et al., 2011; Qiu 

et al., 2016; Vinken 2015; Vinken et al., 2013; Welch et al., 2015) has been posed. There is 

also evidence for the multidrug resistance-associated protein 2 (MRP2) (Padda et al., 2011; 

Pauli-Magnus and Meier 2006), breast cancer resistance protein (BCRP) (Padda et al., 2011; 

Pauli-Magnus and Meier 2006), P-glycoprotein (Padda et al., 2011; Pauli-Magnus and Meier 

2006) and multidrug resistance-associated protein 3 and 4 (MRP3 and MRP4) (Padda et al., 

2011; Pauli-Magnus and Meier 2006; Welch et al., 2015) to be involved. For 

hyperbilirubinemia, another possible manifestation of hepatotoxicity, involvement of organic 

anion transporting polypeptides 1B1 and 1B3 (OATP1B1 and OATP1B3) (Chang et al., 

2013; Sticova and Jirsa 2013), MRP2 (Sticova and Jirsa, 2013) and to a smaller extent 

BCRP (Sticova and Jirsa, 2013) is discussed.

Although in vitro predictive methods are efficient for many toxic endpoints, they are time-

consuming and expensive (Bowes et al., 2012; Whitebread et al., 2005). In addition, for 

assessing hepatotoxicity, experimental methods such as in vitro tests and animal models, 

have been shown to share low concordance (< 50%) with human hepatotoxicity (Chen et al., 

2011; Liu et al., 2011; Olson et al., 2000).

This led to the development of predictive computational methods, which are summarized in 

two recent reviews by (Chen et al., 2014) and (Ekins, 2014). Although all these models 

generally perform quite well, they sometimes suffer from low statistical performance, 

imbalanced sensitivity vs specificity, or small data sets (Table 1).

In this study we generate in silico classification models for DILI by compiling multiple and 

diverse datasets from literature. We carefully curated these data regarding the chemotypes, 

as well as the accuracy of the class label. In addition, we are exploring the importance of 

hepatic transporter inhibition on DILI by using the predictions of a set of in-house in silico 
classification models as additional descriptors for the DILI model.

2 Methods

2.1 Data compilation

2.1.1 Training set—Searching PubMed, 2017 (http://www.ncbi.nlm.nih.gov/pubmed), 

Google, 2017 (https://www.google.at) and Scopus, 2017 (https://www.scopus.com/) using 

the terms: “drug-induced liver injury”, “DILI”, “drug-induced hepatotoxicity” identified 9 

unique datasets for human DILI/hepatotoxicity (Table 2).

Kotsampasakou et al. Page 2

Toxicology. Author manuscript; available in PMC 2019 March 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.ncbi.nlm.nih.gov/pubmed
https://www.google.at
https://www.scopus.com/


For visualizing the data structures and for converting the names into structures Marvin from 

ChemAxon, 2013 (http://www.chemaxon.com 2013) was used.

2.1.2 External test sets—After compiling the training set and generating the DILI 

model, we came across one more human DILI dataset that had initially escaped our attention 

(Liew et al., 2011). Additionally, there were two more datasets published after the model 

development (Chen et al., 2016; Mulliner et al., 2016) (Table 3).

All datasets (training set, the three external test sets and the merged test set) are provided in 

the Supplementary material.

2.1.3 Chemical curation—For each dataset we applied the following chemotype 

curation:

• Check for inorganic compounds using MOE 2014.09. (MOE, 2015) and remove 

any occurring.

• Using the Standardiser tool (Atkinson, 2014) created by Francis Atkinson; all 

salt parts and any compounds containing metals and rare or special atoms are 

removed from the dataset and the structures are standardized.

• Duplicates and permanently charged compounds are removed using MOE 

2014.09. (MOE, 2015) Here we must note that stereoisomers, even if 

biologically can be considered as different compounds, were considered as 

duplicates in our study, since they give the exactly same vector of descriptors. If 

two (or more) stereoisomers are of the same class, only one was kept. If they 

were of different classes, all were removed.

• 3D structures are generated using CORINA (version 3.4)(Sadowski et al., 1994) 

and their energy is minimized with MOE 2014.09 (MOE, 2015), using default 

settings, but changing the gradient to 0.05 RMS kcal/mol/A2. Existing chirality 

is preserved.

2.1.4 Class-label curation—Apart from the chemical curation of the data, we also 

apply careful curation regarding the class label of the compounds. In particular, after 

merging all individual datasets in one database, the majority of the compounds are present in 

more than one dataset. In case of conflicting class labels, the majority label is assigned to the 

compound. In case the class labels are equally distributed, the compound is considered as 

“ambiguous” and it is removed from the dataset. This leads to 1773 compounds, 794 

positives and 979 negatives. In Chart 1 the overlap of compounds (positives and negatives) 

across the different amount of sources is depicted. It is notable that for the case of 

occurrence in all 9 sources, we have only positives for DILI, which is in accordance with the 

fact that negative results are less often reported.

However, the first modeling attempt of the dataset gave only moderate results. Re-analyzing 

the dataset revealed, that for several co-occurring compounds, even labeled as DILI 

negatives by majority vote, the Fourches source (Fourches et al., 2010) was labeling them as 

positives. The Fourches dataset was compiled via text mining, a sophisticated but error-
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prone method (Caporaso et al., 2008; Zhu et al., 2013). Therefore, in order to improve the 

dataset quality, all compounds that were coming solely from the Fourches dataset (227 

compounds) were removed. Subsequently, all compounds coming from only a single source 

were removed, as they do not allow us to counter check the class label with at least one 

additional source. Following this concept leads to the removal of additional 584 compounds, 

which provides the final set of 966 compounds (500 positives and 466 negatives).

The differences in model performance after the class-label curation of the datasets is 

presented in the Supporting information (Table S1).

2.2 Generation of statistical models

2.2.1 Algorithms used—The 2-class classification models were built using the software 

package WEKA (version 3.7.12) (Hall et al., 2009). Performance of several base classifiers, 

such as logistic regression, tree methods (Random Forest and J48), Support Vector Machines 

(SMO in WEKA with polynomial, RBF and Puk kernels), Naïve Bayes, and k-nearest 

neighbors, several evaluating methods for attribute selection (AttributeSelectedClassifier), as 

well as for improving the statistical performance such as Bagging (Breiman, 1996) and 

Boosting (Freund and Schaphire 1996; Friedman et al., 2000) were evaluated. All in all, 

Random Forest (Breiman, 2001) with 100 trees was identified as the most promising 

classifier.

2.2.2 Molecular descriptors—For both datasets, several types of molecular descriptors 

have been calculated: all 2D MOE descriptors (192 descriptors in total), the 3D Volsurf 

series of descriptors (MOE 2015), PaDEL descriptors (Yap, 2010) and extended connectivity 

fingerprints of diameter 6 (ECFP6) using RDKit (Landrum). In general, the 2D MOE 

descriptors performed best.

In order to investigate the potential influence of transporter inhibition in DILI manifestation, 

we predicted the transporter inhibition profile of all compounds and used it as additional 

descriptors (Table S2). In particular, for OATP1B1 and 1B3 inhibition, we use our 

previously published models based on PaDEL descriptors (Kotsampasakou et al., 2015), as 

implemented in eTOXlab (Carrio et al., 2015). For BSEP inhibition, we useed the float 

predictions obtained from the model’s implementation as KNIME workflow (Montanari et 

al., 2016b). Also for P-glycoprotein (Schwarz et al., 2016) and for BCRP (Montanari et al., 

2016a) inhibition, the respective float prediction scores were used.

2.3 DILI model with open-source descriptors

Since MOE is a commercial software package, we also provide a free version of the model 

using exclusively open-source libraries. For this, the final model set-up (all 2D MOE 

descriptors and Random Forest with 100 trees) was taken and converted in the following 

way: descriptors were implemented in RDKit (Landrum, 2016) (196 descriptors in total) and 

the Random Forest was implemented with the scikit-learn machine learning library for 

python (Pedregosa et al., 2011). The script for training, cross-validating and using the model 

is provided as Supplementary material.
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2.4 Model validation

For model selection, 10-fold cross validation was used. The performance of each model was 

examined for accuracy, sensitivity, specificity, area under the curve (AUC) and precision. For 

the best models obtained, we performed 50 iterations by changing the cross-validation seed 

(for splitting the data within cross validation) and further performed a Welch (two-sample) t-
test in R (http://www.R-project.org/) to assess whether the model performance for the 

different training data sets (after class label curation) is indeed significantly different. This 

was also done to compare whether the addition of the predicted transporter interaction 

profiles significantly improves model performance. The best models are further validated via 

external testing by using the validation datasets described above.

2.5 Applicability domain of the models

The applicability domain was checked on KNIME with the Enalos nodes (Afantitis et al., 

2011; Melagraki et al., 2010) that compute the applicability domain on the basis of the 

Euclidean distances (Zhang et al., 2006). Additionally, we assessed to which extent the DILI 

datasets (both training and external test sets) were within the applicability domain of the 

transporters models, using the same procedure. The number of compounds within the 

model’s applicability domain for each model and for each DILI dataset is provided in the 

Supporting information (Table S3).

3 Results and discussion

3.1 Optimizing the training dataset – the importance of curation

Compiling the DILI dataset from the 9 data sources and performing the curation of the 

chemotypes and class labels according to majority vote initially lead to 1773 compounds. 

However, the first modeling attempts failed to yield models with acceptable performance. 

Analyzing the dataset revealed, that one source (Fourches) was compiled from text mining. 

Although text mining is a powerful approach for collecting data directly from narrative text, 

it is more prone to errors than manual extraction (Caporaso et al., 2008; Zhu and Kruhlak, 

2014). Two examples are tocopherol and carnitine, which were reported as hepatotoxic only 

by the Fourches source. According to literature, those two compounds rather show a 

hepatoprotective effect against DILI caused by other drugs (Bohan et al., 2001; Tayal et al., 

2007), than being hepatotoxic. Therefore, the compounds coming only from the Fouches 

dataset were completely removed. This reduction led to a new training set of 1547 

compounds and improved the statistical performance of the resulting models (see Table S3 

in the Supplementary material). In order to further improve the dataset quality, we also 

removed all compounds that appear only in one source (581 compounds). In this case, it is 

not possible to double-check the class label, which definitely adds noise to the data. Indeed, 

the model trained on this dataset shows additional improvement (Table S1).

In order to evaluate if the difference between the models generated on the three datasets is 

statistically significant, 50 iterations of 10-fold cross validation were performed by changing 

the cross-validation seed followed by a two sample t-test (Table S3). As can be seen, all 

parameters apart from specificity generally increase with higher quality of the data sets. 
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Especially sensitivity, which is of higher importance since we are dealing with a toxicity 

endpoint, presents a remarkable increase, rising from 46% to 68%.

Remarkably, the analysis also indicates no difference on the model performance whether 

using the transporters predictions as additional information or not.

3.2 DILI 2-class classification models

For the final training dataset of 966 compounds, the best models are obtained using all 2D 

MOE descriptors. However, this restricts broader usage, as its application is conditional to a 

respective license for calculating the descriptors. In order to offer the model to the scientific 

community in open-source form, we rebuilt it using all 2D RDKit descriptors (196 

descriptors in total; Table 4) and provide the respective python script.

As Table 4 shows, the performance of the models is quite stable and satisfactory for cross 

validation. As can one see, there is no substantial difference between the model obtained via 

using transporters predictions as additional descriptors (model A), and the one built with 

only the 2D MOE descriptors (model B;), which is further confirmed by statistical testing 

(p-values > 0.05). Furthermore, the open source model and the model built with proprietary 

descriptors can be considered equivalent, despite some minor changes for 10-fold cross 

validation and the external validation. The model remains robust also for external validation, 

with statistics values quite similar to those obtained by cross validation.

However, it has to be taken into account that the DILI dataset is based on toxicity reports. 

Thus, despite our complex workflow for curating the data, there still might be mislabeled 

compounds due to the drawbacks of the adverse event reporting system. Among these issues 

are: 1) under-reporting (Palleria et al., 2013; Rodgers et al., 2010; Zhu and Kruhlak, 2014) 

due to the voluntary character of the system (Chen et al., 2008; Hauben 2004; Zhu and 

Kruhlak, 2014), 2) difficulty in finding human toxicity data (often proprietary and post-

marketing data difficult to obtain) (Rodgers et al., 2010), 3) non-requirement of causality 

(Zhu and Kruhlak, 2014). The latter is quite serious in the contemporary era of 

polypharmacology, where many people, especially the elderly, receive more than one 

different medication. An indication of these drawbacks is the comparison of the class labels 

between overlapping compounds of the training and the test sets, as well as between the test 

sets themselves (formation of the merged external test set), which revealed contradiction of 

class labels in up to 20% of the compounds

3.3 Association of transporter inhibition profiles and DILI

There is ample evidence in literature for the association of selected liver transporters and 

DILI. This especially concerns BSEP (Aleo et al., 2014; Dawson et al., 2011; Padda et al., 

2011; Qiu et al., 2016; Vinken 2015; Vinken et al., 2013; Welch et al., 2015), BCRP (Padda 

et al., 2011; Pauli-Magnus and Meier 2006), P-glycoprotein (Padda et al., 2011; Pauli-

Magnus and Meier 2006), and OATP1B1/1B3 (Chang et al., 2013; Sticova and Jirsa 2013). 

This prompted us to introduce predicted inhibition profiles of these transporters into the 

feature matrix used for predicting DILI. However, we observed the same model performance 

for the models built with or without the transporter inhibition profile (Table 5, p-values < 

0.05).
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A possible reason for this might relate to the fact that the transporter inhibition profiles are 

based on predictions rather than on experimental data. Even though the transport inhibition 

models are reliable (AUC values in Table S2) and most of the compounds of the DILI 

training set belong to the respective applicability domains (Table S3), one cannot rule out the 

possibility of mispredictions, which in turn add noise into the feature matrix. However, when 

comparing the accuracy of the transporter models with the experience gained in the data 

curation task, the noise added by wrong predictions is not expected to be far beyond the one 

present in the DILI class labels.

Furthermore, liver transporters have overlapping substrate and inhibitor profiles (Giacomini 

et al., 2010; Homolya et al., 2003; König et al., 2013; Shugarts and Benet 2009). Apart from 

that, the hepatic homeostasis systems have ways to compensate the inhibition of one 

transporter, by overexpression of another (e.g. OATP1B1/OATP1B3) (Cui et al., 2009; 

Kalliokoski and Niemi 2009). Thus, inhibition of solely one transporter might not have a 

great impact in the proper function of the hepatocyte. This is also reflected in the data: the 

training compounds that are predicted as inhibitors for up to three transporters are not 

particularly enriched with DILI positives (451 DILI-positives and 443 DILI-negatives), 

while compounds predicted to inhibit at least four transporters are more likely to be DILI-

positives (49 DILI-positives and 23 DILI-negatives, p-value < 0.01). Furthermore, liver 

transporters other than those included in this study may additionally play a role in DILI: the 

multidrug resistance-associated protein 2 (MRP2) (Nicolaou et al., 2012; Padda et al., 2011; 

Pauli-Magnus and Meier 2006), the multidrug resistance protein 3 (MDR3) (Chan and 

Vandeberg, 2012; Pauli-Magnus and Meier, 2006) and MRP3 and MRP4 (Padda et al., 2011; 

Pauli-Magnus and Meier 2006; Welch et al., 2015). Unfortunately, due to the lack of 

experimental data, it was not possible to develop and validate in silico models for these 

transporters in order to include them in the study.

Finally, it might be that the complexity of the DILI endpoint itself does not allow a strong 

association between liver transporter inhibition with DILI. Indeed, several other mechanisms 

produce hepatotoxicity (Vinken, 2015): formation of reactive metabolites by cytochrome 

P450 (Corsini and Bortolini 2013; Schadt et al., 2015; Utkarsh et al., 2015), formation of 

glutathione adducts (Schadt et al., 2015) and mitochondrial toxicity (Aleo et al., 2014; 

Schadt et al., 2015) are examples of mechanisms for causing DILI that are not specifically 

addressed in this study.

4 Conclusions

Drug-induced liver injury is a major issue for patients and, therefore, also for the process of 

drug discovery. Within the last decade, several attempts have taken place to predict DILI 

based on the chemical structure of a compound. In a more mechanistic based approach, one 

could also think on predicting DILI on basis of i.e. biological fingerprints. As these are 

usually not available for larger compound sets (at least not in the public domain), we 

included predicted liver-transporter interaction profiles as additional information. The liver 

transporter models have been developed in the course of the eTOX project and are available 

in eTOXsys, the integrated data mining and computational model environment established in 

the course of the project. Surprisingly, although the role of liver transporter for 
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hepatotoxicity has clearly been demonstrated, this additional piece of information did not 

significantly improve model performance. Potential reasons for this are outlined above, and 

most probably the biological fingerprint needs to be substantially broadened by including 

additional transporter and enzymes to see a significant effect on model performance.

The predictivity of computational models heavily depends on the quality of the respective 

training data set and the domain it covers. In this work, we compiled datasets for DILI 

available in literature and carefully curated them both with respect to the chemical structures 

as well as for their class labels (DILI positive, DILI negative). This reduced the amount of 

compounds available for classification models from 1773 to 966, and in return remarkably 

increased the quality of the models developed. While in general bigger datasets are preferred 

for machine learning approaches, the current work once more stresses out the significance of 

data quality. However, there might be still an amount of mislabeled compounds, as the 

conflicting class labels for overlapping compounds in the training and test sets show. This 

further strengthens the tremendous need for industry-driven collaborative efforts such as the 

eTOX project to share data and to make them publicly available for mining and exploitation. 

Only large sets of high quality data will allow deriving predictive in silico models covering a 

broad chemical space.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

Acc Accuracy

ADMET absorption, distribution, metabolism, excretion, toxicity

AUC area under the curve

BA balanced accuracy

BCRP breast cancer resistance protein

cpd(s) compound(s)

CV cross validation

DILI drug-induced liver injury
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EV external validation

IV internal validation

MCC Matthews correlation coefficient

MDR3 multidrug resistance protein

MRP2 multidrug resistance-associated protein 2

MRP3 multidrug resistance-associated protein 3

OATP1B1 organic anion transporting polypeptide 1B1

OATP1B3 organic anion transporting polypeptide 1B3

P-gp P-glycoprotein

RF Random Forest

SMO sequential minimal optimization

sd standard deviation

Sen sensitivity

Spec specificity

SVM support vector machines

References

Afantitis A, Melagraki G, Koutentis PA, Sarimveis H, Kollias G. Ligand-based virtual screening 
procedure for the prediction and the identification of novel beta-amyloid aggregation inhibitors 
using Kohonen maps and counterpropagation artificial neural networks. Eur J Med Chem. 2011; 
46:497–508. [PubMed: 21167625] 

Aleo MD, Luo Y, Swiss R, Bonin PD, Potter DM, Will Y. Human drug-induced liver injury severity is 
highly associated with dual inhibition of liver mitochondrial function and bile salt export pump. 
Hepatology. 2014; 60:1015–1022. [PubMed: 24799086] 

Atkinson, FL. Standardiser. 2014. (https://github.com/flatkinson/standardiser/tree/1.0.1)

Ballet F. Hepatotoxicity in drug development: detection, significance and solutions. J Hepatol. 1997; 
26(Suppl 2):26–36. [PubMed: 9204407] 

Bohan TP, Helton E, McDonald I, Konig S, Gazitt S, Sugimoto T, Scheffner D, Cusmano L, Li S, 
Koch G. Effect of L-carnitine treatment for valproate-induced hepatotoxicity. Neurology. 2001; 
56:1405–1409. [PubMed: 11376200] 

Bowes J, Brown AJ, Hamon J, Jarolimek W, Sridhar A, Waldron G, Whitebread S. Reducing safety-
related drug attrition: the use of in vitro pharmacological profiling. Nat Rev Drug Discov. 2012; 
11:909–922. [PubMed: 23197038] 

Breiman L. Bagging predictors. Mach Learn. 1996; 24:123–140.

Breiman L. Random forests. Mach Learn. 2001; 45:5–32.

Caporaso JG, Deshpande N, Fink JL, Bourne PE, Cohen KB, Hunter L. Intrinsic evaluation of text 
mining tools may not predict performance on realistic tasks. Pac Symp Biocomput. 2008:640–651. 
[PubMed: 18229722] 

Carrio P, Lopez O, Sanz F, Pastor M. eTOXlab, an open source modeling framework for implementing 
predictive models in production environments. J Cheminform. 2015; 7:8. [PubMed: 25774224] 

Kotsampasakou et al. Page 9

Toxicology. Author manuscript; available in PMC 2019 March 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://github.com/flatkinson/standardiser/tree/1.0.1


Chan J, Vandeberg JL. Hepatobiliary transport in health and disease. Clin Lipidol. 2012; 7:189–202. 
[PubMed: 22859919] 

Chang JH, Plise E, Cheong J, Ho Q, Lin M. Evaluating the in vitro inhibition of UGT1A1, OATP1B1, 
OATP1B3, MRP2, and BSEP in predicting drug-induced hyperbilirubinemia. Mol Pharm. 2013; 
10:3067–3075. [PubMed: 23750830] 

Marvin. Marvin Suite; 2013. ChemAxon. http://www.chemaxon.com

Chen Y, Guo JJ, Healy DP, Lin X, Patel NC. Risk of hepatotoxicity associated with the use of 
telithromycin: a signal detection using data mining algorithms. Ann Pharmacother. 2008; 42:1791–
1796. [PubMed: 19033479] 

Chen M, Vijay V, Shi Q, Liu Z, Fang H, Tong W. FDA-approved drug labeling for the study of drug-
induced liver injury. Drug Discov Today. 2011; 16:697–703. [PubMed: 21624500] 

Chen M, Hong H, Fang H, Kelly R, Zhou G, Borlak J, Tong W. Quantitative structure-activity 
relationship models for predicting drug-induced liver injury based on FDA-approved drug labeling 
annotation and using a large collection of drugs. Toxicol Sci. 2013; 136:242–249. [PubMed: 
23997115] 

Chen M, Bisgin H, Tong L, Hong H, Fang H, Borlak J, Tong W. Toward predictive models for drug-
induced liver injury in humans: are we there yet? Biomark Med. 2014; 8:201–213. [PubMed: 
24521015] 

Chen M, Suzuki A, Thakkar S, Yu K, Hu C, Tong W. DILIrank: the largest reference drug list ranked 
by the risk for developing drug-induced liver injury in humans. Drug Discov Today. 2016; 21:648–
653. [PubMed: 26948801] 

Cheng A, Dixon SL. In silico models for the prediction of dose-dependent human hepatotoxicity. J 
Comput Aided Mol Des. 2003; 17:811–823. [PubMed: 15124930] 

Corsini A, Bortolini M. Drug-induced liver injury: the role of drug metabolism and transport. J Clin 
Pharmacol. 2013; 53:463–474. [PubMed: 23436293] 

Cruz-Monteagudo M, Cordeiro MN, Borges F. Computational chemistry approach for the early 
detection of drug-induced idiosyncratic liver toxicity. J Comput Chem. 2008; 29:533–549. 
[PubMed: 17705164] 

Cui YJ, Aleksunes LM, Tanaka Y, Goedken MJ, Klaassen CD. Compensatory induction of liver efflux 
transporters in response to ANIT-induced liver injury is impaired in FXR-null mice. Toxicol Sci. 
2009; 110:47–60. [PubMed: 19407337] 

Dawson S, Stahl S, Paul N, Barber J, Kenna JG. In vitro inhibition of the bile salt export pump 
correlates with risk of cholestatic drug-induced liver injury in humans. Drug Metab Dispos. 2011; 
40:130–138. [PubMed: 21965623] 

Ekins S, Williams AJ, Xu JJ. A predictive ligand-based Bayesian model for human drug-induced liver 
injury. Drug Metab Dispos. 2010; 38:2302–2308. [PubMed: 20843939] 

Ekins S. Progress in computational toxicology. J Pharmacol Toxicol Methods. 2014; 69:115–140. 
[PubMed: 24361690] 

Faber KN, Muller M, Jansen PL. Drug transport proteins in the liver. Adv Drug Deliv Rev. 2003; 
55:107–124. [PubMed: 12535576] 

Fourches D, Barnes JC, Day NC, Bradley P, Reed JZ, Tropsha A. Cheminformatics analysis of 
assertions mined from literature that describe drug-induced liver injury in different species. Chem 
Res Toxicol. 2010; 23:171–183. [PubMed: 20014752] 

Freund, Y; Schaphire, RE. Experiments with a new boosting algorithm. 13th International Conference 
on Machine Learning; San Francisco. 1996. 148–156. 

Friedman J, Hastie T, Tibsharni R. Additive logistic regression: a statistical view of boosting. Annals 
of Statistics. 2000; 95:337–407.

Ghabril M, Chalasani N, Bjornsson E. Drug-induced liver injury: a clinical update. Curr Opin 
Gastroenterol. 2010; 26:222–226. [PubMed: 20186054] 

Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer 
V, Hillgren KM, Hoffmaster KA, et al. Membrane transporters in drug development. Nat Rev Drug 
Discov. 2010; 9:215–236. [PubMed: 20190787] 

[last accessed 09/03/2017] Google. https://www.google.at

Kotsampasakou et al. Page 10

Toxicology. Author manuscript; available in PMC 2019 March 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.chemaxon.com
https://www.google.at


Greene N, Fisk L, Naven RT, Note RR, Patel ML, Pelletier DJ. Developing structure-activity 
relationships for the prediction of hepatotoxicity. Chem Res Toxicol. 2010; 23:1215–1222. 
[PubMed: 20553011] 

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: 
an update. SIGKDD Explor Newsl. 2009; 11:10–18.

Hauben M. Early postmarketing drug safety surveillance: data mining points to consider. Ann 
Pharmacother. 2004; 38:1625–1630. [PubMed: 15304626] 

Homolya L, Varadi A, Sarkadi B. Multidrug resistance-associated proteins: export pumps for 
conjugates with glutathione, glucuronate or sulfate. Biofactors. 2003; 17:103–114. [PubMed: 
12897433] 

König J, Muller F, Fromm MF. Transporters and drug–drug interactions: important determinants of 
drug disposition and effects. Pharmacol Rev. 2013; 65:944–966. [PubMed: 23686349] 

Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol. 2009; 
158:693–705. [PubMed: 19785645] 

Kotsampasakou E, Brenner S, Jäger W, Ecker GF. Identification of novel inhibitors of organic anion 
transporting polypeptides 1B1 and 1B3 (OATP1B1 and OATP1B3) using a consensus vote of six 
classification models. Mol Pharm. 2015; 12:4395–4404. [PubMed: 26469880] 

Landrum, G. RDKit: Open-Source Cheminformatics Software. 2016. http://refhub.elsevier.com/
S0300-483X(17)30170-1/sbref0200

Liew CY, Lim YC, Yap CW. Mixed learning algorithms and features ensemble in hepatotoxicity 
prediction. J Comput Aided Mol Des. 2011; 25:855–871. [PubMed: 21898162] 

Liu Z, Shi Q, Ding D, Kelly R, Fang H, Tong W. Translating clinical findings into knowledge in drug 
safety evaluation–drug induced liver injury prediction system (DILIps). PLoS Comput Biol. 2011; 
7:e1002310. [PubMed: 22194678] 

Liu J, Mansouri K, Judson RS, Martin MT, Hong H, Chen M, Xu X, Thomas RS, Shah I. Predicting 
hepatotoxicity using ToxCast in vitro bioactivity and chemical structure. Chem Res Toxicol. 
2015a; 28:738–751. [PubMed: 25697799] 

Liu R, Yu X, Wallqvist A. Data-driven identification of structural alerts for mitigating the risk of drug-
induced human liver injuries. J Cheminform. 2015b; 7:4. [PubMed: 25717346] 

MOE. Molecular Operating Environment (MOE). Chemical Computing Group Inc.; 1010 Sherbooke 
St. West, Suite #910, Montreal, QC, Canada, H 3A 2R7: 2015. 

Matthews EJ, Ursem CJ, Kruhlak NL, Benz RD, Sabate DA, Yang C, Klopman G, Contrera JF. 
Identification of structure-activity relationships for adverse effects of pharmaceuticals in humans: 
part B. Use of (Q)SAR systems for early detection of drug-induced hepatobiliary and urinary tract 
toxicities. Regul Toxicol Pharmacol. 2009; 54:23–42. [PubMed: 19422098] 

Melagraki G, Afantitis A, Sarimveis H, Igglessi-Markopoulou O, Koutentis PA, Kollias G. In silico 
exploration for identifying structure-activity relationship of MEK inhibition and oral 
bioavailability for isothiazole derivatives. Chem Biol Drug Des. 2010; 76:397–406. [PubMed: 
20925691] 

Montanari F, Cseke A, Wlcek K, Ecker GF. Virtual screening of DrugBank reveals two drugs as new 
BCRP inhibitors. J Biomol Screen. 2016a; 22:86–93.

Montanari F, Pinto M, Khunweeraphong N, Wlcek K, Sohail MI, Noeske T, Boyer S, Chiba P, Stieger 
B, Kuchler K, Ecker GF. Flagging drugs that inhibit the bile salt export pump. Mol Pharm. 2016b; 
13:163–171. [PubMed: 26642869] 

Muller C, Pekthong D, Alexandre E, Marcou G, Horvath D, Richert L, Varnek A. Prediction of drug 
induced liver injury using molecular and biological descriptors. Comb Chem High Throughput 
Screen. 2015; 18:315–322. [PubMed: 25747442] 

Mulliner D, Schmidt F, Stolte M, Spirkl HP, Czich A, Amberg A. Computational models for human 
and animal hepatotoxicity with a global application scope. Chem Res Toxicol. 2016; 29:757–767. 
[PubMed: 26914516] 

Nicolaou M, Andress EJ, Zolnerciks JK, Dixon PH, Williamson C, Linton KJ. Canalicular ABC 
transporters and liver disease. J Pathol. 2012; 226:300–315. [PubMed: 21984474] 

O’Brien PJ, Irwin W, Diaz D, Howard-Cofield E, Krejsa CM, Slaughter MR, Gao B, Kaludercic N, 
Angeline A, Bernardi P, Brain P, et al. High concordance of drug-induced human hepatotoxicity 

Kotsampasakou et al. Page 11

Toxicology. Author manuscript; available in PMC 2019 March 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://refhub.elsevier.com/S0300-483X(17)30170-1/sbref0200
http://refhub.elsevier.com/S0300-483X(17)30170-1/sbref0200


with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch 
Toxicol. 2006; 80:580–604. [PubMed: 16598496] 

Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, Lilly P, Sanders J, Sipes G, Bracken 
W, Dorato M, et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. 
Regul Toxicol Pharmacol. 2000; 32:56–67. [PubMed: 11029269] 

Padda MS, Sanchez M, Akhtar AJ, Boyer JL. Drug-induced cholestasis. Hepatology. 2011; 53:1377–
1387. [PubMed: 21480339] 

Palleria C, Leporini C, Chimirri S, Marrazzo G, Sacchetta S, Bruno L, Lista RM, Staltari O, Scuteri A, 
Scicchitano F, Russo E. Limitations and obstacles of the spontaneous adverse drugs reactions 
reporting: two challenging case reports. J Pharmacol Pharmacother. 2013; 4:S66–72. [PubMed: 
24347986] 

Pauli-Magnus C, Meier PJ. Hepatobiliary transporters and drug-induced cholestasis. Hepatology. 2006; 
44:778–787. [PubMed: 17006912] 

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, 
Weiss R, Dubourg V, Vanderplas J, et al. Scikit-learn: machine learning in python. JMLR. 2011; 
12:2825–2830.

[last accessed 09/03/2017] Home-PubMed-NCBI. http://www.ncbi.nlm.nih.gov/pubmed

Qiu X, Zhang Y, Liu T, Shen H, Xiao Y, Bourner MJ, Pratt JR, Thompson DC, Marathe P, Humphreys 
WG, Lai Y. Disruption of BSEP function in HepaRG cells alters bile acid disposition and is a 
susceptive factor to drug-induced cholestatic injury. Mol Pharm. 2016; 13:1206–1216. [PubMed: 
26910619] 

R Core Team. A Language and Environment for Statistical Computing. R Foundation for Statistical 
Computing; Vienna, Austria: 2013. (URL). http://www.R-project.org/

Raschi E, De Ponti F. Drug- and herb-induced liver injury: progress, current challenges and emerging 
signals of post-marketing risk. World J Hepatol. 2015; 7:1761–1771. [PubMed: 26167249] 

Regev A. Drug-induced liver injury and drug development: industry perspective. Semin Liver Dis. 
2014; 34:227–239. [PubMed: 24879986] 

Rodgers AD, Zhu H, Fourches D, Rusyn I, Tropsha A. Modeling liver-related adverse effects of drugs 
using k-nearest neighbor quantitative structure-activity relationship method. Chem Res Toxicol. 
2010; 23:724–732. [PubMed: 20192250] 

Sadowski J, Gasteiger J, Klebe G. Comparison of automatic three-dimensional model builders using 
639 X-ray structures. J Chem Inf Comput Sci. 1994; 34:1000–1008.

Schadt S, Simon S, Kustermann S, Boess F, McGinnis C, Brink A, Lieven R, Fowler S, Youdim K, 
Ullah M, Marschmann M, et al. Minimizing DILI risk in drug discovery – a screening tool for 
drug candidates. Toxicol In Vitro. 2015; 30:429–437. [PubMed: 26407524] 

Schwarz T, Montanari F, Cseke A, Wlcek K, Visvader L, Palme S, Chiba P, Kuchler K, Urban E, Ecker 
GF. Subtle structural differences trigger inhibitory activity of propafenone analogues at the two 
polyspecific ABC transporters: p-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). 
ChemMedChem. 2016; 11:1380–1394. [PubMed: 26970257] 

ELSEVIER; Scopus. https://www.scopus.com/ [last accessed 09/03/2017]

Shitara Y, Maeda K, Ikejiri K, Yoshida K, Horie T, Sugiyama Y. Clinical significance of organic anion 
transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and 
intestinal absorption. Biopharm Drug Dispos. 2013; 34:45–78. [PubMed: 23115084] 

Shugarts S, Benet LZ. The role of transporters in the pharmacokinetics of orally administered drugs. 
Pharm Res. 2009; 26:2039–2054. [PubMed: 19568696] 

Sticova E, Jirsa M. New insights in bilirubin metabolism and their clinical implications. World J 
Gastroenterol. 2013; 19:6398–6407. [PubMed: 24151358] 

Tayal V, Kalra BS, Agarwal S, Khurana N, Gupta U. Hepatoprotective effect of tocopherol against 
isoniazid and rifampicin induced hepatotoxicity in albino rabbits. Indian J Exp Biol. 2007; 
45:1031–1036. [PubMed: 18254208] 

Utkarsh D, Loretz C, Li AP. In vitro evaluation of hepatotoxic drugs in human hepatocytes from 
multiple donors: identification of P450 activity as a potential risk factor for drug-induced liver 
injuries. Chem Biol Interact. 2015; 255:12–22. [PubMed: 26718876] 

Kotsampasakou et al. Page 12

Toxicology. Author manuscript; available in PMC 2019 March 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.ncbi.nlm.nih.gov/pubmed
http://www.R-project.org/
https://www.scopus.com/home.uri


Vinken M, Landesmann B, Goumenou M, Vinken S, Shah I, Jaeschke H, Willett C, Whelan M, 
Rogiers V. Development of an adverse outcome pathway from drug-mediated bile salt export 
pump inhibition to cholestatic liver injury. Toxicol Sci. 2013; 136:97–106. [PubMed: 23945500] 

Vinken M. Adverse outcome pathways and drug-induced liver injury testing. Chem Res Toxicol. 2015; 
28:1391–1397. [PubMed: 26119269] 

Watkins PB, Seeff LB. Drug-induced liver injury: summary of a single topic clinical research 
conference. Hepatology. 2006; 43:618–631. [PubMed: 16496329] 

Welch MA, Kock K, Urban TJ, Brouwer KL, Swaan PW. Toward predicting drug-induced liver injury: 
parallel computational approaches to identify multidrug resistance protein 4 and bile salt export 
pump inhibitors. Drug Metab Dispos. 2015; 43:725–734. [PubMed: 25735837] 

Whitebread S, Hamon J, Bojanic D, Urban L. Keynote review: in vitro safety pharmacology profiling: 
an essential tool for successful drug development. Drug Discov Today. 2005; 10:1421–1433. 
[PubMed: 16243262] 

Xu Y, Dai Z, Chen F, Gao S, Pei J, Lai L. Deep learning for drug-Induced liver injury. J Chem Inf 
Model. 2015; 55:2085–2093. [PubMed: 26437739] 

Yap CW. PaDEL-descriptor: an open source software to calculate molecular descriptors and 
fingerprints. J Comput Chem. 2010; 32:1466–1474. [PubMed: 21425294] 

Zhang S, Golbraikh A, Oloff S, Kohn H, Tropsha A. A novel automated lazy learning QSAR (ALL-
QSAR) approach: method development, applications, and virtual screening of chemical databases 
using validated ALL-QSAR models. J Chem Inf Model. 2006; 46:1984–1995. [PubMed: 
16995729] 

Zhang C, Cheng F, Li W, Liu G, Lee PW, Tang Y. In silico prediction of drug induced liver toxicity 
using substructure pattern recognition method. Mol Inform. 2016; 35:136–144. [PubMed: 
27491923] 

Zhu X, Kruhlak NL. Construction and analysis of a human hepatotoxicity database suitable for QSAR 
modeling using post-market safety data. Toxicology. 2014; 321:62–72. [PubMed: 24721472] 

Zhu F, Patumcharoenpol P, Zhang C, Yang Y, Chan J, Meechai A, Vongsangnak W, Shen B. 
Biomedical text mining and its applications in cancer research. J Biomed Inform. 2013; 46:200–
211. [PubMed: 23159498] 

Kotsampasakou et al. Page 13

Toxicology. Author manuscript; available in PMC 2019 March 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Chart 1. 
Overlap of DILI positives and negatives across the different amount of sources.
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Table 1

Classification models for DILI reported in literature. Acc stands for accuracy, Sen for sensitivity, Spec for 

specificity, BA for balanced accuracy, CV for cross validation, EV for external validation and IV for internal 

validation.

Reference Descriptors Classification algorithm Data used Reported performance

Cheng and 
Dixon (2003)

2D molecular descriptor Ensemble recursive partitioning 382 drugs for CV CV: 76% Acc; 76% Sen; 75% 
Spec

54 drugs for EV EV: 81% Acc; 70% Sen; 90% 
Spec

Cruz-
Monteagudo et 
al. (2008)

Radial distribution function Linear discriminant analysis 74 drugs for CV CV: 84% Acc; 78% Sen; 90% 
Spec

molecular descriptors 13 drugs for EV EV: 82% Acc

Matthews et al. 
(2009)

Molecular descriptors 4 commercial QSAR programs ~1600 drugs for 
CV

CV: 39% Sen; 87% Spec

18 drugs for EV EV: 89% Sen

Rodgers et al. 
(2010)

topological
indices of molecular structures 
(MolConnZ) and Dragon 
molecular descriptors

k-nearest neighbor 37 drugs for EV 84% Acc; 74% Sen; 94% 
Spec

Fourches et al. 
(2010)

2D fragments and Dragon Support vector machine 531 drugs for CV 
18 compounds 
for EV

CV: 62–68% Accs

molecular descriptors EV: 78% Acc

Ekins et al. 
(2010)

extended connectivity functional Linear discriminant analysis 295 compound 
for CV

CV: 59% ACC; 53% Sen; 
65% Spec

class fingerprints of maximum 
diameter 6 (ECFC_6)

237 compounds 
for EV

EV: 60% Acc; 56% Sen; 67% 
Spec

Liew et al. 
(2011)

PaDEL molecular descriptor Ensemble of mixed learning 1087 compounds 
for CV

CV: 68% Accs; 67% Sen; 
70% Spec

120 compounds 
for EV

EV: 75% Acc; 82% Sen; 65% 
Spec

Liu et al. 
(2011)

functional class Bayesian models 888 drugs for 
training3 data 
sets with 40–148 
drugs for EV

EV: 60–70% Accs

fingerprints (FCFP_6)

Chen et al. 
(2013)

Mold2 chemical descriptor Decision Forest 197 drugs for CV CV: 70% Acc

Three data sets 
with
190–348 drugs 
for EV

EV: 62–69% Accs

Liu et al. 
(2015a)

physicochemical descriptors and 
fingerprints

Ensemble classifier 677 compounds 
for CV

81% BA; 66% Sen; 95% Spec

Muller et al. 
(2015)

physicochemical descriptors and 
fingerprints

Ensemble classifier 677 compounds 
for CV

81% BA; 66% Sen; 95% Spec

Muller et al. 
(2015)

ISIDA fragment descriptors SVM 424 drugs for CV 66% BA

Xu et al. 
(2015)

Encoding layers based on 
SMILES, PaDEL descriptors

Deep Learning 190, 475 & 1065 
compounds for 
CV

CV: 70–88% Accs; 70–90% 
Sens; 70–87% Specs

185,320, 236,198 
& 119 

EV: 62–87% Accs; 62–83% 
Sens; 62–93% Specs

Toxicology. Author manuscript; available in PMC 2019 March 18.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Kotsampasakou et al. Page 16

Reference Descriptors Classification algorithm Data used Reported performance

compounds for 
EV

Mulliner et al. 
(2016)

2D and 3D physicochemical 
descriptors

SVM with a genetic algorithm 3712 compounds 
for training

IV: 75% Acc; 73% AUC

221 compounds 
for IV

269 compounds 
for EV

Zhang et al. 
(2016)

FP4 fingerprints SVM 1317 compounds 
for training

Training set: 66% Acc; 85% 
Sen; 34% Spec; 55% AUC

88 compounds 
for EV

EV: 75% Acc; 93% Sen; 38% 
Spec; 61% AUC
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Table 2

Description of the sources upon which the training set was built. In number of compounds, “+” denotes the 

number of DILI-positive compounds and “−” the number of negative compounds. These numbers correspond 

to the number of compounds remaining after data curation in a source by source basis.

Source name Type of data Number of compounds Label choice

O’Brien et al. (2006) In vitro cell-based assay 132 (100+/32−) “severely” and “moderately” toxic are considered 
positives.

Rodgers et al. (2010) FDA reports database 382 (75+/307−) Authors classification

Fourches et al. (2010) Text mining 902 (620+/282−) Authors classification

Greene et al. (2010) Compilation of published data 385 (252+/133−) Authors classification

Ekins et al. (2010) Clinical data for hepatotoxicity 499 (294+/205−) Authors classification

Chen et al. (2011) FDA-approved labels 279 (218+/61−) “most DILI concern” and “less DILI concern” are 
considered positives

Liu et al. (2011) SIDER_2 database 835 (188+/647−) Authors classification

Zhu and Kruhlak (2014) Post-marketing safety data 1948 (651+/1297−) Authors classification, keeping only highest class 
certainty

Liu et al. (2015b) LiverTox database 583 (409+/174−) “hepatotoxic” and “possible hepatotoxic” are 
considered positives
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Table 3

Description of the sources upon which the test set was built. In number of compounds, “+” denotes the number 

of DILI-positive compounds and “−” the number of negative compounds. These numbers correspond to the 

number of compounds remaining after data curation in a source by source basis.

Source name Type of data Number of compounds Label choice

Liew et al. (2011) Micromedex reports of adverse reactions 341 (221+/120−) Authors classification

Mulliner et al. (2016) Compilation of public data, data from 
PharmaPendium and Leadscope

921 (519+/402−) Authors classification

Chen et al. (2016) Compilation of public data and LiverTox 96 (50+/46−) “most DILI concern” and “less DILI 
concern” are considered positives, “verified 
no DILI concern” as negatives

Merged The 3 external datasets were merged and 
the common compounds with contradictory 
class labels were removed

996 (541+/455−) Maintenance of the class labels of the 
original external test sets
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Table 4

Statistical performance of the final Random Forest (100 trees) model A) using all 2D MOE descriptors and 

transporter predictions (DILI_MOE_transp_RF model) or B) using only the 2D MOE descriptors 

(DILI_MOE_RF model) and the C) open source model (DILI_RDKit _RF100).

Accuracy Sensitivity Specificity AUC Precision

A) DILI_MOE_transp _RF100

10-fold CV (average +/− standard deviation for 50 iterations) 0.65 ± 0.01 0.68 ± 0.01 0.61 ± 0.01 0.69 ± 0.01 0.65 ± 0.01

Mulliner 921 cpds 0.57 0.63 0.50 0.59 0.62

Liew 341 cpds 0.67 0.72 0.56 0.71 0.75

Chen 96 cpds 0.59 0.54 0.65 0.61 0.63

Merged test set 966cpds 0.59 0.68 0.50 0.62 0.62

B) DILI_ MOE _RF100

10-fold CV (average +/− standard deviation for 50 iterations) 0.65 ± 0.01 0.68 ± 0.01 0.61 ± 0.01 0.69 ± 0.01 0.65 ± 0.01

Mulliner 921 cpds 0.58 0.60 0.55 0.59 0.63

Liew 341 cpds 0.68 0.68 0.67 0.71 0.79

Chen 96 cpds 0.63 0.56 0.70 0.66 0.67

Merged test set 966cpds 0.60 0.64 0.56 0.62 0.63

C) DILI_RDKit_RF100

10-fold CV (average +/− standard deviation for 50 iterations) 0.64 ± 0.01 0.70 ± 0.01 0.57 ± 0.01 0.69 ± 0.01 0.63 ± 0.01

Mulliner 921 cpds 0.60 0.64 0.54 0.62 0.64

Liew 332 cpds 0.67 0.72 0.56 0.71 0.72

Chen 95 cpds 0.64 0.64 0.64 0.73 0.64

Merged test set 966cpds 0.60 0.67 0.52 0.64 0.63

Notes: The number of compounds for the external datasets is slightly different for the predictions on model C because for some compounds 
(peptides), some descriptor values computed by RDKit were too large to be handled by the machine learning algorithm.
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