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Abstract

Dimensionality reduction is a common tool for visualization and inference of population structure from genotypes, but popular methods ei-
ther return too many dimensions for easy plotting (PCA) or fail to preserve global geometry (t-SNE and UMAP). Here we explore the utility
of variational autoencoders (VAEs)—generative machine learning models in which a pair of neural networks seek to first compress and then
recreate the input data—for visualizing population genetic variation. VAEs incorporate nonlinear relationships, allow users to define the di-
mensionality of the latent space, and in our tests preserve global geometry better than t-SNE and UMAP. Our implementation, which we
call popvae, is available as a command-line python program at github.com/kr-colab/popvae. The approach yields latent embeddings that
capture subtle aspects of population structure in humans and Anopheles mosquitoes, and can generate artificial genotypes characteristic
of a given sample or population.
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Introduction
As we trace the genealogy of a population forward in time,
branching inherent in the genealogical process leads to hierarchi-
cal relationships among individuals that can be thought of as
clades. Much of the genetic variation among individuals in a spe-
cies thus reflects the history of isolation and migration of their
ancestors. Describing this population structure is itself a major
goal in biogeography, systematics, and human genetics; wherein
one might attempt to infer the number of genotypic clusters sup-
ported by the data (Holsinger and Weir 2009), estimate relative
rates of migration (Petkova et al. 2016), or observe turnover in the
ancestry of people living in a geographic region (Antonio et al.
2019).

Estimation of population structure is also critical for our abil-
ity to accurately link genetic variation to phenotypic variation,
because population structure is a major confounding factor in
genome-wide association studies (GWAS) (Lander and Schork
1994; Pritchard and Donnelly 2001; Freedman et al. 2004;
Marchini et al. 2004). Downstream studies that use GWAS infor-
mation can themselves be compromised by inadequate controls
for structure, for instance in recent work trying to identify the
effects of natural selection on complex traits (Mathieson and
McVean 2012; Berg et al. 2019; Sohail et al. 2019). Dimensionality
reduction via principal components analysis (PCA) has been an
important tool for geneticists in this regard, and is now com-
monly used both to control for the effects of population structure

in GWAS (Patterson et al. 2006; Price et al. 2006) as well as for visu-

alization of genetic variation.
As a visualization tool however, PCA scatterplots can be diffi-

cult to interpret because information about genetic variation is

split across many axes, while efficient plotting is restricted to two

dimensions. Though techniques like plotting marginal distribu-

tions as stacked density plots can aid interpretation, these re-
quire binning samples into “populations” prior to visualization,

are rarely used in practice, and remain difficult to interpret in

complex cases. Recently two techniques from the machine learn-

ing community—t-SNE (van der Maaten and Hinton 2008) and

UMAP (McInnes et al. 2018)—have shown promising performance
in producing two-dimensional visualizations of high-dimensional

biological data. In the case of UMAP, Diaz-Papkovich et al. (2019)

recently showed that running the algorithm on a large set of prin-

cipal component axes allows visualization of subtle aspects of

population structure in three human genotyping datasets.
However, interpreting UMAP and t-SNE plots is also compli-

cated by a lack of so-called global structure. Though these meth-

ods perform well in clustering similar samples, distances

between groups are not always meaningful—two clusters sepa-

rated by a large distance in a t-SNE plot can be more similar to

each other than either is to their immediate neighbors (Becht
et al. 2019). The degree to which initialization and hyperpara-

meter tuning can alleviate this issue remains an open question in

the literature (Kobak and Linderman 2019).
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To create meaningful and interpretable visualizations of pop-
ulation genetic data, we would like a method that encodes as
much information as possible into just two dimensions while
maintaining global structure. One way of achieving this is with a
variational autoencoder (VAE).

VAEs consist of a pair of deep neural networks in which the
first network (the encoder) encodes input data as a probability
distribution in a latent space and the second (the decoder) seeks
to recreate the input given a set of latent coordinates (Kingma
and Welling 2013). Thus a VAE has as its target the input data it-
self. The loss function for a VAE is the sum of reconstruction er-
ror (how different the generated data is from the input) and KL
divergence between a sample’s distribution in latent space and a
reference distribution which acts as a prior on the latent space
[here we use a standard multivariate normal, but see Davidson
et al. (2018) for an alternative design with a hyperspherical latent
space]. The KL term of the loss function incentivizes the encoder
to generate latent distributions with meaningful distances
among samples, while the reconstruction error term helps to
achieve good local clustering and data generation. VAE’s have
been used extensively in image generation (Larsen et al. 2015;
Gulrajani et al. 2016; Hou et al. 2016) and several recent studies
have applied them to dimensionality reduction and classification
of single-cell RNAseq data (Grønbech et al. 2018; Lafarge et al.
2019; Wang and Gu 2018; Hu and Greene 2019). At deeper time-
scales than we test here, Derkarabetian et al. (2019) recently ex-
plored the use of VAEs in species delimitation.

In population genetics two recent studies have studied the
utility of generative deep neural networks for creating simulated
genotypes. Montserrat et al. (2019) use a class-conditional VAE to
generate artificial human genotypes, while Yelmen et al. (2019)
use a restricted Boltzman machine and provide an in-depth as-
sessment of the population genetic characteristics of their artifi-
cial genotypes. These studies found that such generative
methods can produce short stretches of artificial genotypes that
are difficult to distinguish from real data, but performance was
improved by using a generative adversarial network—either in
combination with a VAE as in Montserrat et al. (2019) or as a
standalone method in Yelmen et al. (2019). In this study we focus
not on generation of simulated genotypes, but instead on the
learned latent space representations of genotypes produced by a
VAE, and study when and how they can best be used for visualiz-
ing population structure.

We introduce a new method, popvae (for population VAE), a
command-line python program that takes as input a set of
unphased genotypes and outputs sample coordinates in a low-
dimensional latent space. We test popvae with simulated data
and demonstrate its utility in empirical datasets of humans and
Anopheles mosquitoes. In general, popvae is most useful for com-
plex samples for which PCA projects important aspects of struc-
ture across many axes. Relative to t-SNE and UMAP, the
approach appears to better preserve global geometry at the cost
of less pronounced clustering of individual sample localities.
However, we show that hyperparameter tuning and stochasticity
associated with train/test splits and parameter initialization are
ongoing challenges for a VAE-based method, and the approach is
much more computationally intensive than PCA.

Methods
Model
In this manuscript, we describe the application of a VAE to popu-
lation genetic data for clustering and visualization (Kingma and

Welling, 2013). Formally let X be our dataset consisting of N
observations (i.e., individual genotypes) such that
X ¼ fx1; x2; . . . ; xNg, and let the probability of those data with
some set of parameters h be phðXÞ. For VAEs we are interested in
representing the data with a latent model, assigning some latent
process parameters z, such that we can write a generative latent
process as phðx; zÞ ¼ phðzÞphðxjzÞ, where phðzÞ is the prior distribu-
tion on z. The last conditional probability here phðxjzÞ is often re-
ferred to as the decoder, as it maps from latent space to data
space.

For VAEs we also define a so-called encoder model q/ðzjxÞ,
where / represents the parameters of the encoding (the mapping
of x to the latent space z), and we seek to optimize the encoder
such that q/ðzjxÞ � phðzjxÞ. In practice the parameters / represent
the weights and biases of the encoding neural network. We thus
step from data space by using:

ðl; logðrÞÞ ¼ EncoderNeuralNetworkðXÞ (1)
q/ðzjxÞ ¼ N ðz; l;diagðrÞÞ: (2)

The complete VAE information flow then has three steps: the
encoder estimates sample distributions in latent space as q/ðzjxÞ,
we sample from the prior on the latent space using phðzÞ, and fi-
nally decode back to data space using phðxjzÞ. Training is then
performed by optimizing the evidence lower bound or ELBO which
has parameters of the encoder and decoder within it such that:

‘h;/ðXÞ ¼ Eq/ðzjxÞ½log phðx; zÞ � log q/ðzjxÞ�: (3)

Optimization of the ELBO here leads to simultaneous fitting of
the parameters of the encoder, /, and the decoder, h. In practice
we use binary cross-entropy between true and generated sequen-
ces for the first term, and KL divergence of sample latent distribu-
tions (relative to a standard normal Nð0; 1Þ) for the second term
of Equation (3). A graphical depiction of this computational flow
can be seen in Figure 1.

Implementation
We implemented this model in python 3 using the tensorflow
and keras libraries (Abadi et al. 2015; Chollet et al. 2015), with pre-
processing relying on numpy, pandas, and scikit-allel (Oliphant
2006; McKinney 2010; Miles and Harding 2017). popvae reads in
genotypes from VCFs, Zarr files (https://zarr.readthedocs.io/en/
stable/), or a bespoke hdf5 file format. Genotypes are first filtered
to remove singletons and nonbiallelic sites, and missing data is
filled by taking two draws from a binomial distribution with prob-
ability equal to the allele frequency across all samples [a binned
version of the common practice of filling missing genotypes with
the mean allele frequency (Jombart 2008; Dray and Josse 2015)].
Filtered genotpes are then encoded with 0/0.5/1 representing ho-
mozygous ancestral, heterozygous, and homozygous derived
states, respectively.

Samples are split into training and validation sets before
model training. We also experimented with using all samples for
training and a fixed number of epochs but found this generally
led to poor performance (Appendix 1, Supplementary Figure S1).
Training samples are used to optimize weights and biases of the
neural network, while validation samples are used to measure
validation loss after each training epoch (a complete pass
through the data), which in turn tunes hyperparameters of the
optimizer. By default we use a random 90% of samples for train-
ing. However we found considerable variation in latent represen-
tations of some datasets when using different sets of training and
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validation samples (see, e.g., Supplementary Figure S2), so we en-
courage users to compare multiple training runs with different
starting seeds when interpreting plots.

Popvae’s encoder and decoder networks are fully connected
feed-forward networks whose size is controlled by two parame-
ters—“width,” which sets the number of hidden units per layer,
and “depth,” which sets the number of hidden layers. We experi-
mented with a range of network sizes and set defaults to depth 6
and width 128, which performed well on the empirical analyses
described here (Supplementary Table S1 and Figure S3A).
However we also include a grid search function by which popvae
will conduct short training runs across a user-defined range of
network sizes and then fit a final model using the network size
with minimum validation loss.

We use a linear activation on the input layers to both net-
works and a sigmoid activation on the output of the decoder [this
produces numeric values bound by (0, 1)]. We interpret the sig-
moid decoder outputs as the probability of observing a derived al-
lele at a site, consistent with our 0/0.5/1 encoding of the input
genotypes. All other layers use “elu” activations (Clevert et al.
2015), a modification of the more common “relu” activation
which avoids the “stuck neuron” problem by returning small but
nonzero values with negative inputs.

We use the Adam optimizer (Kingma and Ba 2014) and con-
tinue model training until validation loss has not improved for p
epochs, where p is a user-adjustable “patience” parameter. We
also set a learning rate scheduler to decrease the learning rate of
the optimizer by half when validation loss has not improved for
p=4 epochs. This is intended to force the optimizer to take small
steps when close to the final solution, which increases training
time but in our experience leads to better fit models. Users can
adjust many hyperparameters from the command line, and mod-
ifying our network architectures is straightforward for those fa-
miliar with the Keras library.

To evaluate model training popvae returns plots of training
and validation loss by epoch (e.g., Supplementary Figure S4), and
also outputs estimated latent coordinates for validation samples
given the encoder parameters at the end of each epoch. These
can then be plotted to observe how the model changes over the
course of training, which can sometimes help to diagnose overfit-
ting. We also include an interactive plotting function which

generates a scatter plot of the latent space and allows users to
mouse-over points to view metadata (Supplementary Figure S5).
This is intended to allow users to quickly iterate through models
while adjusting hyperparameters. In Appendix 1, we discuss al-
ternate approaches to network design and optimization tested
while developing popvae.

Data availability
popvae is available at https://github.com/kr-colab/popvae, and
scripts for reproducing plots and analyses in this manuscript are
available at https://github.com/cjbattey/popvae_analysis_scripts.
HGDP genotypes used in this paper are available at ftp://ngs.
sanger.ac.uk/production/hgdp, AG1000G genotypes at https://
www.malariagen.net/data/ag1000g-phase-2-ar1, and 1000
genomes phase 3 data at https://www.internationalgenome.org/
category/phase-3/.

Supplementary material is available at figshare: https://
doi.org/10.25387/g3.13311539. .

Results
Latent spaces reflect human migration history
We first applied popvae to 100,000 SNPs from chromosome 1 in
the Human Genetic Diversity Project [HGDP; Bergström et al.
(2020)], a sample of global modern human diversity. The resulting
latent space reflects geography from the point of view of human
demographic history (Figures 2 and 4, Supplementary Figure S6).
Sub-Saharan African and South American populations are placed
on opposite ends of one latent dimension, and north African
(Mozabite) and east Asian samples are on opposite ends of the
second; mirroring the geography of Africa and Eurasia. Samples
from the Americas are roughly centered among Eurasian samples
on latent dimension (LD) 2, consistent with recent demographic
modeling studies suggesting a mix of Eurasian ancestries in an-
cestral American populations (Posth et al. 2018; Flegontov et al.
2019). Indeed the closest American samples to the European clus-
ter are Maya individuals who were found to have low levels of re-
cent European admixture in previous analyses (Rosenberg et al.
2002; Bergström et al. 2020) (Supplementary Figure S6), suggesting
popvae is picking up on the signal of gene flow associated with
European colonization of the Americas.

Figure 1 A schematic of the VAE architecture. Input allele counts are passed to an encoder network which outputs parameters describing a sample’s
location as a multivariate normal in latent space. Samples from this distribution are then passed to a decoder network which generates a new genotype
vector. The loss function used to update weights and biases of both networks is the sum of reconstruction error (from comparing true and generated
genotypes) and KL divergence between sample latent distributions and Nð0; 1Þ.
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These patterns are similar to those seen in PCA, but many
aspects of ancestry that are difficult to see on the first two PC
axes are conveniently summarized in popvae’s latent space. For
example, differentiation within the Americas and Oceania is not
visible until PC6 and PC7, respectively, but is clear in the 2D VAE
latent space. This shows adjacent clusters for the islands of
Bougainville and Papua New Guinea, and a cline in Eurasian an-
cestry from North through South America (Supplementary Figure
S6).

To highlight the flexibility of the VAE approach, we also
trained a model with a 1D latent space and used this to scale col-
ors on a sampling map (Figure 3). This results in a single latent di-
mension that approximates the diagonal of our 2D model, with
African and East Asian samples on either end of the spectrum. A
comparison using PCA but summarizing only the first principal
component emphasizes diversity within Africa (Supplementary
Figure S7) and provides little resolution for out-of-Africa groups.

Finally, to emphasize the correspondence of the VAE latent
space with geography, we can also directly compare geographic
and latent spaces by rescaling both sets of coordinates with a z-
normalization and plotting them together on a map (Figure 4). As
can be seen, the visual correspondence between geographic and
latent coordinates is striking in this case.

Inversions and population structure in Anopheles
mosquitoes
We next applied popvae to DNA sequenced from the Anopheles
gambiae/coluzzii complex across sub-Saharan African by the
AG1000G project (Miles et al. 2017; AG1000G Consortium 2020)
(Figure 5). Using 100,000 randomly selected SNPs from chromo-
some 3R we again find that the VAE captures elements of popula-
tion structure that are not apparent by visualizing two PC axes at
a time. For example, samples from Kenya and the island of
Mayotte off East Africa are highly differentiated (Fst > 0.18 rela-
tive to all other groups), but are placed between clusters of pri-
marily west-African coluzzii and gambiae samples on a plot of
PC1/2. The VAE instead places these populations on the opposite
end of one latent dimension from all other groups and closest to
Ugandan samples—similar to their relative geographic position
and positions on PC3/4. The VAE also captures the relatively high
differentiation of samples from Gabon and significant variation
within Cameroon, which are not visible until PC6 and PC8, re-
spectively. Further details of population structure in this species
complex are discussed in AG1000G Consortium (2020).

A. gambiae/coluzzii genomes are characterized by a series of
well-studied inversions on chromosomes 2L and 2R (Coluzzi et al.

Figure 2 PCA axes 1–8 (left) and popvae run at default settings (right) for 100,000 random SNPs from chromosome 1 of the HGDP data. Axes are flipped
to approximate geography.

Figure 3 HGDP population locations with color scaled to the mean latent coordinate of a 1D popvae latent space.
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2002) which segregate within all populations and are associated
with both malaria susceptibility and ecological niche variation

(Riehle et al. 2017). The large 2La inversion contains at least one
locus for insecticide resistance (Rdl), and has experienced multi-
ple hard sweeps and introgression events in its recent history

(Grau-Bové et al. 2020). Inversions have significant effects on local
PCA (Li and Ralph 2019) which often lead to samples clustering
by inversion karyotype rather than geography on the first two PC
axes (Ma and Amos 2012).

To test how our VAE responds to inversions we fit models
to SNPs extracted from 200,000 bp nonoverlapping windows
across the 2LA inversion in the AG1000G phase 2 data

(Figure 6, Supplementary Figure S11). We took an approach
similar to Li and Ralph (2019) to summarize differences in la-
tent spaces across windows while accounting for axis rotation

and scaling. Latent dimensions were first scaled to 0–1 and the
pairwise Euclidean distance matrix among individuals was cal-
culated for each window to generate rotation- and scale-
invariant representations of the latent space. We then

calculated Euclidean distances among all pairs of per-window
distance matrices, giving us a matrix representing relative dif-

ferences in latent spaces across windows. Last, we used multi-
dimensional scaling to compress this distance matrix to a
single dimension, and plotted this value against genomic posi-

tion across the 2La inversion region.
This analysis found two clear classes of latent spaces inside

and outside the inversion (Figure 6). Outside the inversion sam-
ples generally cluster by species and geography, while inside the

inversion samples form three clusters corresponding to the ho-
mozygous and heterozygous inversion karyotypes, similar to
results found with PCA (Riehle et al. 2017; Grau-Bové et al. 2020).

Interestingly the VAE retains geographic and species clustering
within inversion classes, but loads these aspects of structure on a
different latent dimension than the karyotype clusters (e.g., LD1

reflects species clusters while LD2 reflects inversion karyotypes
in the windows shown in Figure 6). Unlike PCA, latent dimensions
from a VAE are not ranked by variance explained and nothing in
the loss function incentivizes splitting particular aspects of

Figure 5 PCA (left) and VAE (right) run on 100,000 random SNPs from chromosome 3R of the AG1000G phase 2 data.

Figure 4 Comparing the VAE latent space with the geography of sampling localities in non-American HGDP samples (see Supplementary Figure S8 for a
plot including the Americas). Circles show z-normalized sample locations in latent space and squares show the corresponding location in geographic
space.
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variation onto separate axes, so we found this pattern of parti-

tioning geographic and karyotypic signals somewhat surprising.

Simulations and sensitivity tests
In general a method’s ability to detect population structure in

a sample of genotypes scales with the degree of differentiation

and the size of the genotype matrix. Patterson et al. (2006)

found that there is a “phase change” phenomenon by which

methods like PCA transition from showing no evidence of

structure to strong evidence of structure when Fst � 1=
ffiffiffiffiffiffiffi

nm
p

,

where n is the number of genotyped SNPs and m is the num-

ber of sampled individuals.
To compare the performance of PCA and VAE around this

threshold, we ran a series of two-population, isolation with mi-

gration model coalescent simulations in msprime (Kelleher et al.

2016) while varying the symmetric migration rate to produce an

expected equilibrium Fst ranging from 0.0001 to 0.05. We sampled

50 diploid genomes from each population and downsampled the

resulting genotype matrix to 10,000 SNPs. Given this sample size

we expect the threshold for detecting structure to be approxi-

mately Fst ¼ 0.001.
With tuned hyperparameters the VAE appeared slightly more

sensitive to weak structure than the first two axes of a PCA

(Figure 7). Both popvae and PCA reflect some population struc-

ture at Fst >¼ 0:005 (though this is clearer in the VAE) but none at

Fst <¼ 0:001, consistent with Patterson et al. (2006)’s “phase

change” suggestion. However the VAE’s performance was highly

sensitive to hyperparameter tuning on this dataset. At default

settings popvae latent spaces reflect no clear structure until Fst ¼
0.05 (Supplementary Figures S12 and S13). In particular we found

that increasing the “patience” parameter to 500 was necessary for
even marginal performance in this case, and running a grid

Figure 6 Latent spaces reflect inversion karyotypes at the 2La inversion in A. gambiae/coluzzii. (A) VAE latent spaces for AG1000G phase 2 samples from
windows near the 2La inversion breakpoints, colored by species. (B) Multidimensional scaling values showing difference in the relative position of
individuals in latent space across windows—high values reflect windows in which samples cluster by inversion karyotype, and low values by species.

Figure 7 VAE latent spaces and PCA run on two-population coalescent simulations with Fst varying from 0.0001 to 0.05. Points are colored by population.
popvae was run with tuned hyperparameters and patience set to 500. See Supplementary Figure S12 for (much worse) performance with default
settings.
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search across network sizes was needed to match PCA’s sensitiv-

ity to weak structure.

Comparison with UMAP and t-SNE
In addition to PCA we also compared the VAE’s latent spaces to t-

SNE (van der Maaten and Hinton 2008) and UMAP (Diaz-

Papkovich et al. 2019) (Supplementary Figures S14 and S15), both

of which have been used recently for population genetic visuali-

zation. We first ran both methods on the top 15 PC axes [follow-

ing Diaz-Papkovich et al. (2019)] with default settings on the

human and Anopheles datasets and used the R packages “umap”

(Konopka 2019) and “tsne” (Donaldson 2016) as our reference

implementations.
For HGDP data both UMAP and t-SNE produce latent spaces

that roughly correspond to continental regions (Supplementary

Figure S14). Running both methods at default settings, UMAP’s la-

tent space was much more tightly clustered—for example group-

ing all samples from Africa into a single small region. Similar

patterns were seen in the AG1000G data (Supplementary Figure

S15)—both t-SNE and UMAP produce latent spaces that strongly

cluster sample localities and species. However, global geometry

appeared to be poorly preserved in t-SNE and UMAP latent

spaces. That is, though clusters in latent space correspond to

sampling localities, distances among clusters do not appear to

meaningfully reflect geography or genetic differentiation.
To compare how well different methods reflect geography, we

compared pairwise distances among individuals in latent and

geographic space for Eurasian human samples (HGDP regions

Europe, Central/South Asia, the Middle East, and East Asia).

Geographic distances were great-circle distance calculated on a

WGS84 ellipse with the R package “sp” (Pebesma and Bivand

2012). Distances were scaled to 0–1 for this analysis, and we cal-

culated the coefficient of determination (R2) across geographic

and latent-space distance for each method as a metric. VAE la-

tent space distances have the strongest correlation with geo-

graphic distance (Figure 8; R2 ¼ 0:659), followed by PCA

(R2 ¼ 0:561), UMAP (R2 ¼ 0:529), and t-SNE (R2 ¼ 0:342).
Finally to test how parameter tuning of tSNE and UMAP

impacts our results, we reproduced our analysis of HGDP data us-

ing double and triple the default values for n_neighbors (UMAP)

and perplexity (tSNE). Though scatter plots are visually similar at

these settings (Supplementary Figure S16) the correlation be-

tween latent-space and geographic distances of Eurasian samples

is improved in both methods at double default settings (t-SNE:

R2 ¼ 0:631, UMAP: R2 ¼ 0:611; Supplementary Figure S17). At tri-

ple default settings we observed slightly better performance for

tSNE and slightly worse for UMAP (Supplementary Figures S18

and S19).

Run times and computational resources
We compared popvae’s run times to PCA, UMAP, and t-SNE using
sets of 100,000 and 10,000 SNPs from the HGDP as described
above. popvae was run using default settings (i.e., fitting a single
network rather than running a grid search over network sizes) us-
ing a consumer GPU (Nvidia GeForce RTX 2070). PCAs were run in
the python package scikit-allel (Miles and Harding 2017), which
in turn relies on singular-value decomposition functions from
the numpy library (Oliphant 2006).

popvae was much slower than PCA or UMAP, but comparable
to running t-SNE on PC coordinates. However, for datasets of the
size we tested here none of these run times present significant
challenges—all methods return sample latent coordinates in less
than five minutes. We have not conducted exhaustive tests on
CPU training times for popvae, but in general find these to require
at least twice as much time as GPU runs.

However for larger datasets we expect popvae’s run time per-
formance would suffer further in comparison to PCA and UMAP.
The major computational bottleneck is loading tensors holding
weights for the input and output layers of the encoder and de-
coder networks into GPU memory. These tensors have dimen-
sions n_snps x network_width so they become extremely large
when running on large genotype matrices. Our development ma-
chine has 8GB GPU RAM and can process up to roughly 700,000
SNPs in a single analysis using a 128-unit-wide network.
Throughout this study we have limited our analysis to relatively
small subsets of genome-wide SNPs to allow us to explore a range
of network sizes in reasonable time. Scaling up to a single model
fit to all genome-wide SNPs—on the order of 107 for datasets like
the HGDP—would require access to specialized hardware with
very large GPU memory pools.

Generating genotypes
The VAE framework also allows us to generate genotypes charac-
teristic of a given population by sampling from the latent space
of a trained model. Simulated genotypes generated by process-
based models like the coalescent are a key tool in population ge-
netics, because they allow us to explore the impact of various
generative processes—demography, selection, etc.—on observed
genetic variation (Adrion et al. 2020a). In contrast popvae’s gener-
ative model provides essentially no mechanistic insight beyond
the strong observed correlation of latent and geographic spaces.
However, if the VAE accurately reproduces characteristics of real
genotypes it could be a fast alternative to simulation that does
not require parameterizing a custom demographic model.

We compared these approaches by analyzing empirical data
from European (CEU), Han (CHB), and Yaruban (YRI) human gen-
otypes in the 1000 Genomes Project data (Consortium et al. 2015).
We first subset 50 samples from each population and then fit a

Figure 8 Comparing pairwise distances in geographic and latent space for Eurasian human genotypes across four dimensionality reduction methods
run at default settings. All distances are scaled to 0–1. Black lines show a 1:1 relationship.
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2D popvae model to all SNPs from chromosome 22. To generate
genotypes, we drew a sample from the latent distribution of each
individual and passed these coordinates to the trained decoder
network. We interpret the sigmoid activation output of our de-
coder as the probability of observing a derived allele at each site,
and generate derived allele counts by taking two draws from a bi-
nomial distribution with p ¼ gi;j where gi;j is the decoder output
for individual i at site j.

As a baseline comparison we used coalescent simulations
from the standardpopsim library (Adrion et al. 2020a) of the
three-population out-of-Africa model (OutOfAfrica_3G09)—a rig-
orously tested implementation of the demographic model fit to
the joint site frequency spectrum in Gutenkunst et al. (2009) using
the msprime coalescent simulator (Kelleher et al. 2016). For this
comparison, we changed standardpopsim’s default human mu-
tation rate of 1:29� 10�8–2:35� 10�8 to match the rate used in
Gutenkunst et al. (2009), used the HapMapII_GRCh37 recombina-
tion map for chromosome 22, and sampled 100 haploid chromo-
somes from each population.

Last, we examined three facets of population genetic variation
on real, VAE-generated, and simulated genotype matrices: the
site frequency spectrum, the decay of linkage disequilibrium
with distance along the chromosome, and embeddings from a
PCA. These analyses were conducted in scikit-allel (Miles and
Harding 2017) after masking genotypes to retain only sites with
the most stringent site accessibility filter (“P”) in the 1000 genome
project’s phase 3 site accessibility masks. LD statistics were cal-
culated only for YRI samples using SNPs between positions 2:5�
107 and 2:6� 107 in the hg18 reference genome and summarized
by calculating the mean LD for all pairs of alleles in 25 distance
bins (similar results in three different genomic windows are
shown in Supplementary Figure S20). Results are plotted in
Figure 9.

In general we found all methods produce similar results in a
plot of the first two PC axes, suggesting they capture broad pat-
terns of allele frequency variation created by population struc-
ture. The site frequency spectrum is also very similar for the VAE

and real data, while the simulated genotypes suffer from a scal-
ing issue. This could reflect differences in the input data—
Gutenkunst et al. (2009) fit models to an SFS calculated from a set
of sanger-sequenced loci in 1000 genomes samples, rather than
the short-read resequenced SNPs from the 1000 Genomes project
we use—or an inaccuracy in one of the constants used to convert
scaled demographic model parameters to real values (accessible
genome size, generation time, or mutation rate). LD decay shows
the largest difference among methods. Simulation and real data
both reflect higher LD among nearby SNPs which decays with dis-
tance, while the VAE genotypes produced no correlation between
distance along a chromosome and pairwise LD.

These differences reflect the strengths and weaknesses of
each method. The VAE decoder does not require a pre-defined de-
mographic model and by design exactly fits the matrix size of in-
put empirical data, so it should not suffer from the scaling issues
that frequently impact population genetic models. But the lack of
mechanistic biological knowledge in its design means it misses
obvious and important features of real sequence data like the de-
cline of LD with distance. In this case, the lack of LD decay in VAE
decoder sequences means this implementation should not be
used for testing properties of analyses like GWAS, in which LD
among a subset of sequenced loci and an unknown number of
truly causal loci is a crucial parameter. Though other network
designs [e.g., a convolutional neural network (Flagel et al. 2019) or
a recurrent neural network (Adrion et al. 2020b)] could potentially
address the specific shortcoming of LD decay, the general prob-
lem of a nonmechanistic generator failing to mimic features of
the data produced by well-understood processes seems intrinsic
to the machine learning approach.

Discussion
Dimensionality reduction of genotypic variation is a key analytic
tool in modern genomics and their visualizations are often the
central figure of a genetic study. For example, Antonio et al.
(2019) studied a 10,000-year transect of genotypes from Rome

Figure 9 Comparing real, VAE-generated, and simulated genotype matrices for three populations from the 1000 genomes project. The VAE decoder and
coalescent simulation produce similar results in genotype PCA (A), but the VAE fails to reproduce the decay of LD with distance along the chromosome
seen in real data (B). The site frequency spectrum is very similar for real and VAE-generated genotypes, but suffers from scaling issues in the coalescent
simulation (C).
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and extensively used PCA to visualize changes in ancestry in the
city over time. In cases like this producing informative plots of
population structure is a requisite step for the analysis and can
shape the way data is interpreted both by authors and readers.

In this study we demonstrate how VAEs can be used for visu-
alization and low dimensional summaries of genotype data. VAEs
have at least two attractive properties for genetic data: they allow
users to define the output dimensionality, and they preserve global
geometry (i.e., relative positions in latent space) better than com-
peting methods. As we have shown in humans and mosquitoes,
this allows users to generate visualizations that summarize rela-
tionships among samples without either comparing across several
panels (as with PCA) or attempting to ignore possibly spurious pat-
terns of global structure (as with t-SNE and UMAP).

VAEs are also generative models. That is to say that VAEs allow
us to create genotypes that capture aspects of population genetic
variation characteristic of the training set. Though in theory this
could be used as an alternative to simulation, our implementation
fails to replicate at least one important aspect of real genomes—
the decay of linkage disequilibrium with distance along a chromo-
some—and thus offers limited utility for tasks such as boosting
GWAS sample sizes or as a substitute for simulation. We point
researchers interested in generating genotypes via deep learning
approaches to recent work by Yelmen et al. (2019) and Montserrat
et al. (2019), which describe similar, deep learning based methods
more tightly aimed at generating realistic genotypes.

There are also several significant limitations of our method as
a visualization tool. First, we lack a principled understanding of
how the VAE output maps to parameters of idealized population
models like the coalescent (Kingman 1982). This is in contrast to
PCA, which was first applied to population genetic data without
strong connections to theory (Menozzi et al. 1978) but is now fairly
well characterized in reference to population genetic models
(Novembre and Stephens 2008; McVean 2009).

Hyperparameter tuning is another challenge. As we showed,
popvae has many hyperparameters that significantly affect the
output latent space and no principled way to set them a priori.
Though we include a grid-search function for network sizes, this
is slow and is still dependent on other hyperparameters—like the
patience used for early stopping, or the learning rate of the opti-
mizer—which we have set to defaults that may not be optimal
for all datasets. This is not a unique issue to VAEs; hyperpera-
meters of methods like t-SNE and UMAP can significantly affect
embeddings (Kobak and Linderman 2019), and preprocessing
choices such as how to scale allele counts prior to PCA dramati-
cally vary the appearance of final plots (Patterson et al. 2006).
However it does require extra work on the part of users interested
in exploring the full parameter space.

A parallel issue is stochasticity in the output. Stochasticity is
introduced by the random test/train split, parameter initializa-
tion states, and even the execution order of operations run in par-
allel on GPU during model training. Though all but the last of
these can be fixed by setting a random seed, which itself could be
(unfortunately) seen as a hyperparameter, there is no obvious
way to compare models fit to different validation sets in a world
of limited training examples. This introduces noise which could
potentially allow users to cherry-pick a preferred latent space.

For example, one run of our best-performing network archi-
tecture on the HGDP data produced a latent space in which sam-
ples Papua New Guinea and Bougainville are separated by
roughly the same distance as samples from north Africa and East
Asia. In contrast all other fits of the same network architecture
cluster these samples (Supplementary Figure S2, see the top

middle panel). We chose a latent space for the main text that

lacked this feature because it occurred in only one training run,

but acknowledge this procedure is suboptimal. Developing a

method to summarize across multiple latent spaces, perhaps via

ensemble learning approaches, would be useful for postprocess-

ing VAE output when latent spaces vary.
The last major shortcoming is computational effort. Popvae is

much slower and more computationally intensive than PCA, and

requires specialized and expensive GPU or TPU hardware to run

on large sets of SNPs (Table 1).
One important question we did not explore in this study is

whether VAE latent space coordinates offer any improvement over

PCA when used as covariates to correct for population structure in

GWAS (Price et al. 2006). UMAP and t-SNE are generally thought to

be inappropriate for this use because of their failure to preserve

global geometry (Diaz-Papkovich et al. 2019), but because the VAE

appears to strongly reflect geography in humans it may be useful

for this task. Testing this aspect of the VAE could be done in simu-

lation but would benefit from empirical investigations in large hu-

man datasets—a task which is beyond the scope of the present

study, but perhaps fruitful for further investigation.
Here we have shown that our implementation of a VAE,

popvae, can produce informative visualizations of population

genetic variation and offers some benefits relative to compet-

ing methods. However our approach is just one implementa-

tion of a huge class of potential models falling under the VAE

umbrella. Altering the prior on the latent space (Davidson et al.

2018), the weighting of the loss function (Higgins et al. 2017),

or the type of neural network used in either the encoder or de-

coder all offer avenues for further research and potential im-

provement (see also Appendix 1, where we briefly describe

alternate approaches we experimented with). Entirely different

methods of visualizing population structure which focus on ge-

netic variants rather than individuals, like that proposed in

Biddanda et al. (2020), also offer a complementary perspective

on the nature of genetic differentiation. As population genetic

data becomes increasingly common across evolutionary biol-

ogy, we anticipate visualization techniques will receive in-

creased attention from researchers in many areas, and believe

VAEs offer a promising avenue for research.
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Flegontov P, Alt In Iş Ik NE, Changmai P, Rohland N, Mallick S, et al.

2019. Palaeo-Eskimo genetic ancestry and the peopling of

Chukotka and North America. Nature. 570:236–240.

Freedman ML, Reich D, Penney KL, McDonald GJ, Mignault AA, et al.

2004. Assessing the impact of population stratification on genetic

association studies. Nat Genet. 36:388–393.
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Appendix 1: Other things we tried that did
not work
We tried a bunch of things while developing pop-
vae. Here we document some of our dead-ends in
the hope they may be useful to others developing
similar methods.

A convolutional neural network
We first developed popvae using convolutional
neural networks (CNNs) for both the encoder
and decoder. The feed-forward network we use
here was originally intended as a naive baseline
for comparing our CNN performance, but it
turned out to be faster and more accurate (i.e.,
lower validation loss), and had much lower
memory requirements than any CNN we tried.
These included 2D CNNs run on phased haplo-
types, 1D CNNs run on unphased genotype
counts, hybrid CNNþfeed-forward networks
stacking convolutional and dense layers in suc-
cession, and restricting the CNN to either the en-
coder or the decoder.

A recurrent neural network
We also tested recurrent neural networks [using
the cudnnGRU() layer in keras] as one or both of
the encoder/decoder pair. Due to memory limita-
tions we were only able to test relatively small,
shallow networks with this approach (width 32,
depth up to 3). Like the CNNs these were slower,
less accurate, and more resource-intensive than
the dense network we describe in the main text.

Skipping the validation set
It would be nice to not need a validation set. The
train/test split introduces extra stochasticity and
you have to ignore some hard-earned data in train-
ing.

Unfortunately we could not find a good way of
setting the learning rate scheduler or establishing
a good stopping time for model training without a
validation set. Training on all samples leads to
constantly decreasing loss so all training runs go to
the maximum number of epochs. Examining the
progress of latent spaces through model training
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for these runs, the encoder seems to quickly iden-
tify and then refine structure in the input samples,
but eventually samples begin to cluster in a ring
around the origin at 0,0. This appears to reflect the
Gaussian prior on the latent space dominating the
loss function as the reconstruction error
approaches some lower bound. In runs with vali-
dation sets we observed that validation loss typi-
cally increases once points begin circling the origin
(Supplementary Figure S1), suggesting it reflects a
typical overfitting behavior. Unfortunately the
number of epochs needed for this to occur is differ-
ent for every dataset and we found no general so-
lution for estimating its location other than a
validation set.

So we recommend using a validation set of at
least 10%, and comparing latent spaces from runs
with multiple starting seeds (and so different
train/validation splits). In a pinch, users can set –
train_prop 1 to train on all samples and heuristi-
cally examine latent spaces output during training
to figure out a good stopping point.

Batch normalization
Putting a batch normalization layer anywhere in
either the encoder or decoder made validation loss
worse in all of our tests.

Dropout
As above, dropout layers either made no difference
or yielded slightly higher validation losses no mat-
ter where we put it.

Reweighting the loss function
Higgins et al. (2017) proposed a modification of the
standard VAE loss function which amounts to
multiplying the KL divergence by a factor b. This
puts extra weight on the normal prior of the latent
space and on the MNIST dataset delivered more
clustered and interpretable latent spaces.
Unfortunately the only suggested method for esti-
mating b in a truly unsupervised setting like ours is
heuristic examination of model output. We experi-
mented with several values and found no consis-
tent benefits either in latent space or validation
loss relative to our baseline approach. However
this seems like a productive area for further inves-
tigation and we plan to continue experimenting
along these lines (and encourage others to do so as
well).
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