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Abstract

Extrinsic and intrinsic regulators are responsible for the tight control of hematopoietic stem cells (HSCs), which differentiate
into all blood cell lineages. To understand the fundamental basis of HSC biology, we focused on differentially expressed
genes (DEGs) in long-term and short-term HSCs, which are closely related in terms of cell development but substantially
differ in their stem cell capacity. To analyze the transcriptional regulation of the DEGs identified in the novel transcriptome
profiles obtained by our RNA-seq analysis, we developed a computational method to model the linear relationship between
gene expression and the features of putative regulatory elements. The transcriptional regulation modes characterized here
suggest the importance of transcription factors (TFs) that are expressed at steady state or at low levels. Remarkably, we
found that 24 differentially expressed TFs targeting 21 putative TF-binding sites contributed significantly to transcriptional
regulation. These TFs tended to be modulated by other nondifferentially expressed TFs, suggesting that HSCs can achieve
flexible and rapid responses via the control of nondifferentially expressed TFs through a highly complex regulatory network.
Our novel transcriptome profiles and new method are powerful tools for studying the mechanistic basis of cell fate
decisions.
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Introduction

Hematopoiesis is a complex and dynamic process, which

generates mature blood cells throughout the life of organisms. In

the adult bone marrow, long-term hematopoietic stem cells (LT-

HSCs) maintain a balanced pool of stem cells, which also

differentiates into more mature short-term hematopoietic stem

cells (ST-HSCs), multipotent progenitors with a lower self-renewal

capacity. It is believed that the blood lineage choice of HSCs is

governed by a stepwise cell fate decision [1,2]. However, recent

studies have raised questions about the hierarchical hematopoietic

system [3,4]. Many studies based on genome-wide gene expression

profiling [5–9] have demonstrated that specific extrinsic and

intrinsic regulators play key roles in hematopoiesis [10–12].

Recently, high-throughput sequencing techniques have been

applied widely [13–15], which have provided new insights into in

vivo transcription factor (TF) binding and epigenetic modifica-

tions [16–18]. Systems biology approaches are also enhancing our

understanding of the regulatory dynamics of hematopoiesis [19].

Despite the biological importance of the formation of all blood

cells via a transition from LT-HSC to ST-HSC, little is known

about the mechanism that underlies this early differentiation. A

major explanation for this deficiency is a lack of comprehensive

genome-wide identification studies and characterizations of the

regulatory elements that govern gene expression in HSCs. The

profiling of potential key regulators [8,17,20] and the large-scale

integration of datasets [21,22] have improved our understanding

greatly. However, these studies are limited to a small number of

factors that function in heterogeneous HSCs, which were isolated

using different combinations of monoclonal antibodies. Therefore,

unconsidered key regulators may exist at this early stage of

hematopoiesis. Indeed, novel key factors [23,24] and new multip-

otent progenitors [3,4,25] have been identified recently.

To address these deficiencies, we developed a computational

method on the basis of novel transcriptome data from adult mouse

bone marrow HSCs; CD34{KSL (c-kit+Sca1+Lin2) LT-HSCs

and CD34zKSL ST-HSCs, a widely used strategy to isolate

HSCs at high purity [26,27]. Our method uses a regression-based

approach [28–30] to model the linear relationships between gene

expression and the characteristics of regulatory elements compiled

from a database. In the present study, we extended this regression

modeling-based approach using large-scale log-linear modeling

(LLM) [31], which considered the combinatorial nature of TFs.

Thus, our method can systematically infer the regulation modes

exerted by TFs that are probably necessary for gene expression, as

well as suggesting synergistic TF modules. Using our transcrip-

tome profiles and this novel method, we characterized transcrip-

tional regulatory modes related to HSCs, which suggested the
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functional importance of TFs expressed at steady-state or low

levels. Remarkably, we identified 24 differentially expressed TFs

that targeted 21 putative TF-binding sites (TFBSs) in LT-HSCs.

These TFs might be essential for maintaining the HSC capacity

during the early stage of hematopoiesis.

Results

Extensive transcriptome discovery
RNA-seq analysis of HSCs. To establish transcriptional

profiles, we extracted total RNA from mouse LT-HSCs

(CD34{KSL) and ST-HSCs (CD34zKSL), and performed

SOLiD RNA-seq assays in triplicate. We generated 44–70 million

50 bp short reads, among which 44%–63% were mapped

uniquely to the mouse genome (mm9) via our recursive mapping

strategy [32]. These uniquely mapped reads (uni-reads) were used

for further analysis (Table S1). We used the TopHat/Cufflinks

pipeline [33] to quantify the RNA abundance of RefSeq genes as

fragments per kilobase of exon per million mapped reads (FPKM).

This analysis confirmed the high reproducibility among replicates

(Figure S1A). We also assessed the overlap between our profile and

public expression profiles [8,9]. This comparison showed that our

RNA-seq assay uniquely identified 8275 and 9220 genes from LT-

and ST-HSCs, respectively (Figure 1A). This indicates that our

study successfully identified a more detailed transcriptome

landscape than previous studies.

The application of different monoclonal antibodies to purify

HSC populations may have diverse effects on the resulting

expression profiles [2], which are related to issues regarding the

functional purification of HSCs [10,26] and the heterogeneous

expression in single cells [4,10,34]. In fact, a comparison between

our findings and the results of an RNA-seq analysis of HSCs

isolated using distinct markers [15] demonstrated that there were

great differences, particularly among genes that were expressed at

low levels (Figure S1B). In addition, we performed qRT-PCR

using 90 genes that were randomly selected from our samples, and

confirmed that RNA quantities relative to the housekeeping gene

B2m were in overall agreement (Figure 1B). However, genes that

were expressed at low levels were substantially different. These

results suggest the difficulty in detecting and quantifying rare

transcripts in HSCs.

Identification of differentially expressed genes

(DEGs). We identified genes with high expression levels

(FPKM, w3) and calculated the fold change (FC) in gene

Figure 1. Extensive transcriptome discovery based on the RNA-seq assay. (A) Our RNA-seq assay discovered over 8200 mRNAs that were
not detected in microarray-based studies. (B) RNA quantities relative to those of the housekeeping gene beta-2 microglobulin (B2m) were correlated
in qRT-PCR and RNA-seq assays, but variations were also observed in genes that were expressed at low levels. (C) Analysis of gene expression changes
detected a transcriptionally active state in ST-HSCs with a larger number of genes than those considered previously. (D) We categorized genes into 4
classes; Class A and Class B, in which FC w2 and FPKM w3, Class C (6332 genes), in which FC ƒ2 and FPKM w3, and Class D (6006 genes), in which
FPKM ƒ3. Class A and Class B represented DEGs, Class C represented steady-state transcription genes, and Class D represented genes with noisy
expression and/or functional low-expression genes. (E) Enriched GO biological process (GO-BP) terms detected by DAVID (EASE score, v0:01,
complete lists in Tables S10 and S11).
doi:10.1371/journal.pone.0093853.g001
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expression. This analysis detected the transcriptionally active state

of ST-HSCs (Figure 1C), which supported the results of previous

studies [6,7,15]. Our RNA-seq assay detected a higher number of

DEGs than those reported previously, which may have been

related to our more comprehensive transcriptome discovery

method. We categorized the genes into 4 classes using a change

of 2-fold as the threshold [15] (Figure 1D): Class A, 363 genes

upregulated in LT-HSC; Class B, 743 genes downregulated in LT-

HSC; Class C, 6332 genes with FC ƒ2 and FPKM w3; and Class

D, 6006 genes with low expression (FPKM, ƒ3). Thus, Class A

and Class B represented DEGs, Class C represented steady-state

transcription genes, and Class D represented genes with noisy

expression and/or functional low expression genes.

We searched for any gene ontology (GO) terms enriched in

DEGs using the DAVID Bioinformatics Resources [35]. Figure 1E

shows the representative GO terms (Tables S10 and S11 for

complete lists). This analysis showed that DEGs were involved in

the immune response, cell–cell communication, and signal

transduction. This was not surprising because extrinsic and

intrinsic signals and molecules contribute to the biology of HSCs

in the bone marrow microenvironment [1,10,11,36]. In addition to

these common biological processes, Class A genes were involved

particularly in cell death, cell differentiation, and homeostasis,

whereas Class B genes were involved in DNA repair, cell cycle

progression, and cell organization. These results were consistent

with those of previous studies that showed that apoptosis and cell-

cycle regulators play critical roles in maintaining a balanced pool

of HSCs and in the expansion of progenitor populations [5,37,38].

Differentially expressed cell-surface molecules and

TFs. DEGs included 77 cell-surface molecules with the ’’cell

surface’’ (GO:0009986) GO term (Table S2), some of which are

known to be associated with hematopoiesis: in Class A, Vwf, Lhcgr,

Cxcl12, and Tgfbr3; in Class B, CD244, CD33, and Clec12a. CD34,

which was used to isolate HSCs in this study, exhibited an

upregulation of over 12-fold in ST-HSCs compared with LT-

HSCs. To obtain high HSC purities, these cell-surface molecules

will be useful as alternative or additional markers.

DEGs also included 57 TFs that were annotated in TRANS-

FAC [39], i.e., 31 in Class A and 26 in Class B (Tables 1 and S3).

These differentially expressed TFs included known hematopoietic

regulators (e.g., Gata2, Tal1, and Satb1) and previously unconsid-

ered TFs, such as the hepatocyte nuclear factor Foxa3, the BTB-

domain zinc finger Zbtb20, the DNA-binding domain Arid5a, and

the epigenetic regulator Uhrf1. It was noteworthy that a large

number of TFs belonged to Class C (303 TFs) and Class D (341

TFs) (Tables S4 and S5). In particular, TFs with synergistic

functions in HSCs [17] and that belonged to TF families, such as

Fox, Lmo, and Sox (which are required by HSCs), were present in

Class C and/or Class D. These results may suggest that, in

addition to differentially expressed TFs, TFs with coding genes

that are expressed at stable or low levels are functionally important

molecules.

Computational modeling of DEG promoters
Workflow overview of promoter modeling. To determine

the upstream regulatory elements that are essential for DEG

transcription, we used a linear regression model that was used

widely for this purpose in previous studies [28,30]. The underlying

assumption of this model is that the expression levels of genes are

controlled by the sum of the independent activities of regulators,

such as DNA-binding factors or epigenetic marks. These activities

Table 1. Top ten differentially expressed transcription factors.

Class Gene FC* Microarray{ Description

A Rorc 6.4252 RAR-related orphan receptor gamma

Hoxb5 5.1317 homeobox B5

Rarb 3.8601 retinoic acid receptor, beta

Cdkn1c 3.8479 M,Fo cyclin-dependent kinase inhibitor 1C (P57)

Fosb 3.0942 Fi,M FBJ osteosarcoma oncogene B

Car1 2.9839 M carbonic anhydrase 1

Id1 2.9708 inhibitor of DNA binding 1

Klf1 2.8796 M Kruppel-like factor 1 (erythroid)

Nr4a1 2.7957 Fi,M nuclear receptor subfamily 4, group A, member 1

Foxa3 2.7509 forkhead box A3

B Satb1 3.7749 Fi,M,Fo special AT-rich sequence binding protein 1

Hnf4a 3.1733 hepatic nuclear factor 4, alpha

Trf 2.5921 transferrin

Hmgb2 2.0842 M high mobility group box 2

Runx3 1.9827 runt related transcription factor 3

Irf8 1.8349 interferon regulatory factor 8

Arid5a 1.7884 AT rich interactive domain 5A (MRF1-like)

Uhrf1 1.4536 ubiquitin-like, containing PHD and RING finger domains, 1

Zfp422 1.4477 Fi,M zinc finger protein 422

Notch1 1.3403 notch 1

*log2 fold change.
{M: Mansson et al. [8], Fo: Forsberg et al. [6], Fi: Ficara et al. [9].
doi:10.1371/journal.pone.0093853.t001
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can be approximated using high-throughput in vivo experi-

ments [40,41] or knowledge-based computational approach-

es [25,30]. As a preliminary test, we applied the linear regression

model described in our previous study [29] using ChIP-seq data for

10 major TFs [17]. In this approach, we used genome-wide TF-

binding instances that occurred within +5kb regions from

transcription start sites (TSSs), and predicted the FPKMs of

DEGs by using a simple linear regression model with rigorous

statistical tests. However, we were unable to detect any significant

effects, and the correlation between the observed and predicted

FPKMs was v0:3. This failure may, in part, reflect the possibility

that these TFs exert regulatory functions as distal enhancers,

rather than through proximal promoters [17,42].

To identify regulators from proximal promoter regions com-

prehensively, we used TRANSFAC [39], which is a database that

curates w1:5 million ChIP-seq sites, and designed a workflow

coupled with intensive computations (Figure 2). First, we prepared

the promoter sequences of DEGs and searched for putative TFBSs

and mouse TFs that are known to bind to the TFBSs in

TRANSFAC using the MATCH tool [43]. This procedure

Figure 2. Overview of computational promoter modeling. We searched putative TFBSs and mouse TFs from +5kb DNA sequences of TSSs,
and used these for inferring TF–TF interaction probability and calculating TGASs. We searched the best combination of TFBSs represented by TGASs
to predict FPKMs of a gene class in LT- or ST-HSCs by performing 5-fold CVs iteratively.
doi:10.1371/journal.pone.0093853.g002
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identified 140 and 141 TFBSs for Class A and Class B promoters,

respectively. Among these, 70 TFBSs in Class A and 69 TFBSs in

Class B were targeted by at least one TF with a highly expressed

coding gene (FPKM, w3). In total, 265 and 267 TFs were

involved in Class A and Class B, respectively.

Next, we calculated the TFBS–gene association score (TGAS)

using 5 distinct scoring schemes, which were employed as

explanatory variables in a linear regression model. These scores

considered matrix similarity, positional bias of TFBSs, the

expression levels of TFs, and the probability of TF–TF interactions

(Materials and Methods). Given a TGAS, we searched exhaus-

tively for the best combination of TFBSs, including pairwise

interactions between TFBSs. We performed a 5-fold cross-

validation (CV) to avoid the risk of over-fitting. This procedure

was repeated 100 times with different random seeds. An ensemble

of 100 regression coefficients (RCs) for a TFBS provides statistical

information of the estimated regulatory activity of the TFBS. We

conducted statistical tests using these ensembles. We applied this

workflow to 4 regression models to predict the expression levels of

each of the Class A and Class B genes in LT- or ST-HSCs.

We attempted to characterize promoter architectures by testing

the different TGASs mentioned above, rather than by comparing

our approach with other modeling methods. This was because of

the difficulty of implementing existing methods using our inputs

and analyzing their results. We also aimed to determine regulatory

activities by analyzing 4 models. We characterized the context-

dependent function of regulators that activated and repressed the

transcription of distinct genes depending on the cellular con-

text [44,45]. Thus, our approach provided a detailed picture of the

regulatory modes involved in context-dependent gene expression.

Inference of higher-order TF interactions. The co-occu-

pancy of a promoter by multiple TFs contributes synergistically to

transcriptional regulation. We considered this when calculating

TGAS by performing probabilistic LLM [31] coupled with

iterative random sampling. The input matrix used for LLM, i.e.,

n promoters in rows |m TFs in columns, comprised binary values

that represent the existence of TFBSs for m TFs in n promoters.

Using this matrix, LLM was employed to infer the conditional

(in)dependency of TF occurrences, i.e., TF–TF interactions in

higher-order conditional distributions. It should be noted that

LLM cannot determine whether an interaction is competitive or

cooperative.

The huge number of TFs means that LLM is not adequate to

compute them all; therefore, we performed random sampling with

10 arbitrary selected TFs, which means that an inferred TF–TF

interaction was observed constantly in the 28 state combinations of

8 TFs. This sampling procedure was terminated if an outcome had

no effect during 105 runs. We calculated the interaction

probability Pr for all possible TF pairs using this iterative sampling

procedure (Materials and Methods). After repeating the sampling

procedure 1,367,639 times for Class A and 1,406,837 times for

Class B, we retrieved 50 and 77 interactions (Pr~1:0) from Class

A and Class B, respectively (Tables S12 and S13).

Performance of regression models. Overall, Pearson’s

correlation coefficient Rs in learning and testing of 5-fold CVs

showed a slight over-fitting in the range of v0:2 (Figure S5),

which was acceptable in our sense. One of the reasons for this

over-fitting was the unbalanced numbers between testing genes

and TFBSs; e.g., 72 Class A genes (a subset of 5-fold CV) were

tested by a model with over 100 predictors that were trained by

the remaining Class A genes. This implies that the constructing of

a model to generalize the gene regulation for an HSC population

is a highly difficult challenge that is associated with the degrees of

functional purity and heterogeneity and the limit of regulatory

features used in the modeling.

Table 2 summarizes the results obtained from the linear

regression models. The results showed that TGAS V coupled with

LLM had the highest mean R between the observed and predicted

gene expression. Interestingly, TGAS IV, which removed TFBSs

where all TFs had FPKM ƒ3, yielded poor–quality models,

suggesting that these TFBSs were also necessary for modeling gene

regulation. In addition, compared with the main effect terms

(denoted as ’’single’’ in Table 2), a large number of pairwise terms,

i.e., A|B, where A and B are 2 distinct TFBSs that were not

included as main effect terms, contributed to the modeling.

Indeed, the initial models that comprised only the main effect

terms selected on the basis of Akaike’s information criterion (AIC)

showed an R v0:6.

The improvement observed using TGAS V compared with the

use of TGAS III was not remarkable. To assess this improvement,

we performed a two-sample t-test using RC ensembles of TFBSs

that were common in the 2 models. This analysis indicated that

these models yielded considerably different TFBS activities (Figure

S2A). In most cases, TF interaction scores (Equation 9) were

ineffectively small. However, specific TFBSs, such as AP-1, Ets,

and Ebox, had high scores (Figure S2B) because of the relatively

larger number of TFs that interacted to occupy these TFBSs

(Prw0). This apparently affected the different estimations.

Overall, pairwise interactions between TFBSs reflected regula-

tory modules that appeared to be essential components of the

transcriptional machinery. The incorporation of cooperative and

competitive interactions among TFs into quantitative models is

also essential for determining the transcriptional network based on

a fine-tuned explanation of gene expression.

Propensity of inferred TFBS activities
Identification of significant TFBSs and changes of

regulatory activities. To assess the statistical significance of

TFBS activities, we performed single-sample t-tests using RC

ensembles on the basis of TGAS V (Figure S3). This analysis

identified 142 TFBSs that rejected the null hypothesis that the

mean value of RCs was equal to zero (pv0:05). This included

several known hematopoietic regulators, such as Arnt, C/EBP,

CREB, Ebox, Egr-1, GATA-X, and IRF (Figure 3A). In

particular, GATA-X targeted by Gata1, Gata2, or Gata3 (Class A)

was significant only in the model of Class A in ST-HSCs.

Consistent with a recent analysis of Hlf function [25], we inferred

positive RCs for HLF in all 4 models, which suggests that it

functions as an activator. Hlf was upregulated by 1.9-fold in LT-

HSCs (Class C). We also validated PPARG activity using a

competitive repopulating assay (see below).

Overall, 83 of the 142 TFBSs were detected by all 4 models,

among which 14 TFBSs were unique in Class A or Class B (Table

S6). Furthermore, 73% (61/83) of the common TFBSs appeared

to have same effects on the activities in LT- and ST-HSCs, e.g., a

positive RC in LT-HSC was also positive in ST-HSC. Interest-

ingly, this effect was the opposite in Class A and Class B, for which

typical examples are marked by rectangles in Figure 3A. There

were also exceptional cases, including IRF-2, HOXA7, and

DMRT3. The results obtained using TGAS III had similar

properties.

Gain and loss of activities during HSC progression. To

analyze the change of TFBS activities between LT- and ST-HSCs,

we tested 2 RC ensembles of a TFBS using a two-sample t-test

under the null hypothesis that the mean values were equal. This

analysis found that the null hypothesis was rejected for 71 TFBSs

(Class A) and 58 TFBSs (Class B) (pv0:001) (Figure 3B). The

Transcriptional Regulation in HSCs
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multiple-testing correction reduced these numbers to 49 and 42 in

Class A and Class B, respectively (pv0:001) (Tables S8 and S9).

Interestingly, although these TFBSs had different mean values, the

effects of the activities were mostly unchanged; a positive (negative)

activity in LT-HSC was still positive (negative) in ST-HSC, i.e.,

75% (53/71) in Class A and 84% (49/58) in Class B. In most cases,

the strengths of these activities increased markedly in ST-HSC,

i.e., 85% (45/53) in Class A and 76% (37/49) in Class B. These

results suggest that the maintenance of self-renewal and the

differentiation competence in ST-HSCs require a vigorous

transcriptional program.

As an intuitive insight into the gain and loss of activities

during HSC progression, we found that downregulation of Class A

in ST-HSC relative to LT-HSC was accompanied by a gain of

negative RCs in ST-HSC (e.g., CKROX, GABP, C/EBPdelta,

and myogenin/NF-1) and by a loss of positive RCs in LT-HSC

(e.g., IRF-2, HEN1, POU6F1, and RBP-jkappa). Similarly,

upregulation of Class B in ST-HSC relative to LT-HSC was

Table 2. Result obtained using the linear regression models.

Linear regression TFBS contents

Class Cell TGAS* TFBSs R{ Single Pairwise

A LT-HSC I 83.91 (5.7238)1 0.8016 (0.0205) 18.98 (2.1070) 64.93 (5.7745)

II 98.69 (5.5492) 0.8482 (0.0197) 30.67 (2.6685) 68.02 (5.8378)

III 103.73 (4.5296) 0.8722 (0.0134) 29.14 (2.5220) 74.59 (5.0062)

IV 47.28 (2.9260) 0.6771 (0.0165) 11.15 (1.2835) 36.13 (2.9888)

V 108.12 (4.9138) 0.8850 (0.0124) 31.82 (2.6921) 76.30 (5.1449)

V-1 84.42 (4.0748) 0.8334 (0.0154) 18.59 (6.3594) 65.83 (7.0129)

V-2 51.90 (2.9648) 0.7164 (0.0155) 11.96 (1.1128) 39.94 (3.0588)

V-3 91.38 (4.3053) 0.8284 (0.0146) 28.01 (2.5120) 63.37 (4.8634)

ST-HSC I 83.02 (5.3907) 0.8087 (0.0204) 20.66 (1.9709) 62.36 (5.9389)

II 101.65 (4.7188) 0.8463 (0.0180) 37.47 (2.8088) 64.18 (5.6416)

III 106.77 (4.0394) 0.8730 (0.0114) 36.29 (2.7579) 70.48 (4.5902)

IV 50.34 (3.1376) 0.6786 (0.0215) 17.63 (2.0768) 32.71 (3.6064)

V 108.49 (4.5618) 0.8777 (0.0132) 37.62 (2.7378) 70.87 (5.2548)

V-1 85.01 (4.2883) 0.8289 (0.0160) 22.75 (2.1372) 62.26 (4.3327)

V-2 53.32 (3.1012) 0.6867 (0.0191) 21.53 (2.2470) 31.79 (3.5222)

V-3 86.71 (4.8853) 0.8126 (0.0196) 26.03 (2.6399) 60.68 (5.4934)

B LT-HSC I 77.82 (5.6451) 0.6177 (0.0183) 21.98 (2.1400) 55.84 (6.2749)

II 100.86 (4.3244) 0.7016 (0.0147) 30.33 (2.8002) 70.53 (4.9748)

III 105.78 (3.8251) 0.7311 (0.0125) 27.96 (2.4614) 77.82 (4.1434)

IV 49.50 (2.8231) 0.5410 (0.0143) 15.29 (1.7164) 34.21 (3.1058)

V 108.45 (4.2270) 0.7466 (0.0111) 27.20 (2.4819) 81.25 (4.3183)

V-1 87.86 (3.7895) 0.6736 (0.0159) 28.59 (3.1051) 59.27 (4.9272)

V-2 53.74 (2.7879) 0.5548 (0.0145) 15.54 (1.5324) 38.20 (3.1969)

V-3 84.45 (3.8350) 0.6662 (0.0149) 24.95 (2.5744) 59.50 (4.6573)

ST-HSC I 77.65 (4.7924) 0.6077 (0.0175) 21.42 (2.0745) 56.23 (5.3514)

II 100.69 (5.3846) 0.6980 (0.0169) 25.74 (2.4602) 74.95 (6.0056)

III 105.87 (4.1633) 0.7262 (0.0140) 24.73 (2.4448) 81.14 (4.8477)

IV 50.07 (2.8679) 0.5160 (0.0161) 14.36 (1.7235) 35.71 (3.3920)

V 107.32 (4.4763) 0.7325 (0.0135) 24.77 (2.6338) 82.55 (4.6720)

V-1 86.98 (3.8781) 0.6716 (0.0166) 22.62 (2.4891) 64.36 (4.6206)

V-2 54.09 (2.9397) 0.5354 (0.0164) 15.65 (1.8993) 38.44 (3.5080)

V-3 84.96 (4.1639) 0.6544 (0.0165) 21.47 (2.4185) 63.49 (4.9830)

E.g., at the top line, the final regression model predicted Class A FPKMs in LT-HSCs using TGAS I, resulting in the correlation coefficient R~0:8016. This model included
83.91 TFBSs consisting of 18.98 single TFBSs and 64.93 pairwise TFBSs.
*TFBS-Gene association scores; (I) MATCH score only, (II) including distribution of TFBSs, (III) including expression changes in TFs, (IV) same as (III) but only including
TFBSs targeted by highly expressed TFs, and (V) including the TF–TF interactions in the log-linear model. (V) was modified to remove TFs: coded by undetectable
transcripts (V-1), those that belonged to Class D (V-2), or by removing the 21 TFBSs in Figure 4B (V-3).
{Pearson’s correlation coefficient; once the final regression model was found, R reflecting the model quality is calculated to measure the degree of correlation between
the observed and predicted FPKMs.
1Data are presented as the means (and standard deviation in parentheses).
doi:10.1371/journal.pone.0093853.t002
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followed by a gain of positive RCs in ST-HSC (e.g., SF1, Oct-4,

GATA-6, and RORalpha) and by a loss of negative RCs in LT-

HSC (e.g., PBX1, IPF1, MYB, KAISO, and Pax-4). However,

many of the TFBSs in each class exhibited activity changes that

differed greatly from our intuitive expectations, which suggests

that the high level of complexity in the transcriptional circuit is

related to context-dependent gene expression.

Functional importance of TFs coded by rare transcripts
Regulatory effects of TFs from gene classes that were

expressed at low and undetectable levels. We constructed

TF–gene networks on the basis of the links between the 142 TFBSs

and their downstream target genes. The networks had vast

numbers of edges: 40,896 edges among 204 TFs that targeted 114

TFBSs of Class A in LT-HSC; 45,882 edges among 237 TFs that

targeted 114 TFBSs of Class A in ST-HSC; 97,946 edges among

253 TFs that targeted 134 TFBSs of Class B in LT-HSC; and

96,975 edges among 243 TFs that targeted 125 TFBSs of Class B

in ST-HSC.

The majority of TFs involved in these networks belonged to

Class D and transcripts that were not detected in our RNA-seq

assay (Figure 4A). Only a small portion of these genes were

detected by microarray analyses [8,9], i.e., the numbers in

parentheses in Figure 4A. Our qRT-PCR assay detected only 1

or 2 of these genes, suggesting that they originated from rare

transcripts, i.e., TF-coding genes expressed at low or undetectable

levels in HSCs. To assess the importance of these TFs, we

modified TGAS V to remove the regulatory effects from the TFs;

by setting F~0 (Equation 8) for unexpressed TF-coding genes

(TGAS V-1) and for TF-coding genes in Class D (TGAS V-2). As

a result, Rs were lower than TGAS V when the model removed

these effects (Table 2), which suggests their important contribution

Figure 3. Propensity of significant TFBS activities. (A) Heat map showing regression coefficients (RCs) of 142 potentially important TFBSs
(pv0:05). Rectangles indicate typical cases of opposing RCs in Class A and Class B. (B) We found that 71 and 58 TFBSs from Class A and Class B
promoters, respectively, had significantly different RCs in LT- and ST-HSCs (pv0:001).
doi:10.1371/journal.pone.0093853.g003
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to the modeling. Indeed, many known factors [17,46] were present

in these categories.

Competitive repopulation assay with activated

Pparg. The suggestion that TF-coding genes expressed at low

levels are important contributors to transcriptional regulation

prompted us to investigate the function of Pparg, which remains

controversial in HSC biology [47]. Pparg was categorized into Class

D (0.3747 FPKM in LT-HSC and 0.2616 FPKM in ST-HSC),

and its binding site PPARG had negative RCs in all 4 models

(Figure 3A). To confirm this PPARG activity, we treated LT-

HSCs with GW1929, a high agonist of Pparg

As shown in Figure 5A, we performed a transplantation assay

using LT-HSCs that were cultured for 5 days with or without

GW1929. GW1929-treated HSCs exhibited decreased chimerism

at 20 weeks after the transplantation compared with the controls

(Figure 5B). The contribution of T-cell, B-cell, and myeloid

lineages to the total donor-derived cells was not highly different

(Figure 5C). These results suggest the possibility that the excessive

activity of PPARG influences negatively the long-term repopulat-

ing activity of HSCs, which supports the capacity of our approach

to infer the activities of regulatory elements in HSCs.

Identification of potential key regulators
Differentially expressed TFs and their target sites. The

regulatory networks (Figure 4A) involved differentially expressed

TFs, i.e., 18 TFs regulated Class A in LT-HSC (13 from Class A

and 5 from Class B) and 24 TFs regulated Class B in LT-HSC (16

from Class A and 8 from Class B). These TFs targeted 21 TFBSs

that are well-studied hematopoietic regulators, including the Fos/

Jun complex [50], Ebox-binding bHLH TFs [51], the GABP

complex [52], and retinoic acid receptors [53]. In particular, AP-1

and Egr-1 appeared in all of the models and were targeted by

immediate early response genes that are important for apoptosis

and differentiation [50] and that are downregulated in ST-

HSCs [54]. Interestingly, our model showed that some of these

TFs are highly modulated by other TFs that were not differentially

expressed (Figures 4B and S4). This may explain the observation

that the models with TGAS V-1 and TGAS V-2 reduced the

predictive performance.

Putative function of the differentially expressed

TFs. Many recent studies have reported that epigenetic effects

are important factors in hematopoiesis [16,18,55]. What would

happen if the 21 TFBSs targeted by differentially expressed TFs

were turned off by DNA methylation, for example? This question

was suggested by the recent finding that CpG-methylated regions

colocalize with TFBSs in HSCs [56]. To answer this question, we

removed each set of TFBSs that appeared in Figures 4B and S4,

and performed regression modeling in this condition. The results

showed slightly lower Rs (TGAS V-3 in Table 2), however, the

Figure 4. Inference of transcriptional regulatory networks. (A) Systematic representation of TF–gene networks and the change of TFBS
activities between LT-HSCs and ST-HSCs. Genes that produce TFs that putatively bind to important TFBSs (Figure 3A) existed in each class. Some of
them were not detected in the RNA-seq assay, and were categorized as ’’Undetected’’. The numbers on the gray-colored arrows denote the number
of TFs in the corresponding class that bind to Class A or B gene promoters, suggesting that the majority of TFs belonged to nondifferentially
expressed gene classes. The numbers in parentheses indicate TFs that were detected in microarray-based studies, suggesting the extensive discovery
of our assay. As shown in the middle panel, we inferred that the positive or negative activities of TFBSs are mostly unchanged between cells, but are
inverted between Class A and Class B. (B) Subnetworks of (A) in LT-HSCs. The majority of TF-coding genes were not differentially expressed, whereas
24 TFs binding to 21 TFBSs were present among DEGs (Class A and Class B) and interacted strongly with nondifferentially expressed TFs (Figure S4
shows the subnetworks in ST-HSCs).
doi:10.1371/journal.pone.0093853.g004

Figure 5. Long-term competitive reconstitution assay. (A) Scheme of the competitive repopulation assay using GW1929, a high agonist of
Pparg. (B) Analysis of the proportion of donor-derived CD34{KSL HSCs obtained from untreated (Control) and treated (GW1929) recipient mice at

20 weeks posttransplant. Each dot represents a single mouse. (C) Relative contributions of CD4z or CD8z (T-cell lineage), B220=CD45Rz (B-cell
lineage) and Mac-1+ or Gr-1+ (myeloid lineage) cells in donor-derived Ly-5.1+ cells of recipient mice at 20 weeks posttransplant. Black, T-cell lineage;
gray, B-cell lineage; white, myeloid lineage. Data are presented as the mean +SD.
doi:10.1371/journal.pone.0093853.g005
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overall propensity of the activities was not different from those

shown in Figure 3A (Figure 6A).

Interestingly, specific TFBSs (e.g., GATA-X, Ets, and IRF) that

were targeted by differentially expressed TFs were determined

(Figure 6B). The most remarkable change was that GATA-X

acquired positive activities in LT-HSCs. It is well known that

GATA and AP-1 frequently co-occupy chromatin sites and that

they play critical roles in cell fate decisions to commit to erythroid

Figure 6. Alternative regulators potentially important in the presence of dysfunctional TFBSs that are targeted by differentially
expressed TFs. (A) Heat map showing the regression coefficients (RCs) of 129 potentially important TFBSs (pv0:05) that were identified after the
removal of the TFBSs in Figures 4B and S4. The overall propensity of TFBS activities were not different from those shown in Figure 3A. (B) This removal
test identified subnetworks that involve alternative TFBSs targeted by differentially expressed TFs. These included GATA-X, Ets, and IRF, which are
related to erythroid/megakaryocytic lineage commitment; 6 TFBSs were targeted by 11 TFs in LT-HSCs, and 5 TFBSs were targeted by 8 TFs in ST-
HSCs.
doi:10.1371/journal.pone.0093853.g006
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vs. myeloid lineages [57,58]. More recent studies have shown that

epigenetic marks control the interactions among Gata factors and

other hematopoietic TFs [55], and that the DNA methylation

patterns of the GATA and AP-1 motifs are mutually exclusive

during early hematopoiesis [56].

Overall, our results suggest that the 24 TFs that target 21

TFBSs (Figure 4B) are key regulators of HSCs. The ST-HSCs

used here exhibited lymphoid-priming features [8] with preferen-

tially repressive potential megakaryocyte/erythroid genes (Table

S7). Therefore, these regulators may be related to lymphoid-

lineage development. Our model showed that dysfunctions in

these regulators led to alternative regulators related to erythroid/

megakaryocytic lineage development competence. This supports

the recent remarkable finding of a novel lineage commitment

pathway                      [4].

Discussion

HSC fate is controlled tightly by extrinsic and intrinsic

factors [1,2,10-12,36]. The identification and characterization of

these factors may lead to more effective clinical therapies for

acquired and congenital blood disorders. Owing to recent

advances in experimental and computational techniques, many

recent studies [3,4,25] have begun to move beyond the traditional

beliefs regarding hematopoiesis. However, the determination of

the upstream regulatory elements that are responsible for the

development of the hematopoietic system remains far from

adequate and requires the application of various approaches. In

the present study, we established novel transcriptome profiles from

mouse LT- and ST-HSCs using an RNA-seq assay and developed

a computational method for exploring the potential modes of

transcriptional regulation based on these profiles.

Our RNA-seq assay confirmed the transcriptionally active state

of ST-HSCs [6,7,15] with markedly high numbers of DEGs. These

DEGs included 77 cell-surface molecules and 57 TFs (Tables 1

and S2–S5), which indicates that specific extrinsic and intrinsic

regulators respond actively during the transition between LT- and

ST-HSCs. During this transition, we observed that many

previously annotated lineage-specific genes [8] were up- and

downregulated (Table S7). In particular, lymphoid potential genes

that preferentially undergo upregulation in ST-HSCs and

potential megakaryocyte/erythroid genes had opposite patterns,

suggesting that lymphoid priming occurs during this early stage.

To investigate the regulatory activities of known factors, we

conducted a preliminary study using our previous method [29] and

ChIP-seq data for 10 major hematopoietic regulators [17];

however, we were unable to obtain any significant results

(Rv0:3). This failure prompted us to extend our approach in

the following manner (Figure 2). To approximate TFBS activities,

we employed cis- and trans-regulatory information from TRANS-

FAC [39]. Furthermore, to consider the combinatorial regulation

of TFs, we incorporated the probabilities of the conditional TF–

TF interactions inferred by LLM [31]. Thus, our approach

systematically inferred the regulatory activities of TFBSs, and

suggested potential synergistic TF modules. Consequently, we

found that motif similarity, the positional distribution of motifs,

and expression changes in TFs were the most informative features

for the promoter modeling of DEGs. Using LLM, we quantified

the TFBS activities on the basis of the fine-tuned explanations of

DEGs (TGAS V in Table 2).

Many hematopoietic TFs [6,17] were included among the

transcriptional steady-state gene set (Class C), the low-level

expression gene set (Class D), or the genes expressed at

undetectable levels. Throughout this study, we found that the

regulatory effects of these TFs and their target sites are essential to

explain the regulation of DEGs. This may explain, in part, the

observation that our preliminary model using 10 major hemato-

poietic TFs was not well fitted. We further supported this finding

by performing a transplantation assay of LT-HSCs cultured with

activated Pparg (Figure 5). Furthermore, we found that these TFs

modulated differentially expressed TFs that are likely to be

important during commitment to specific lineages (Figures 4B and

6B). However, LLM inferred low probabilities for interactions

between known co-operative TF pairs (Tables S12 and S13), e.g.,

Gata2 and Erg (Pr~0:23 in Classes A and B) and Gata2 and Tal1

(Pr~0:32 in Class A, Pr~0:4 in Class B), which suggests that

their co-operation regulates specific gene sets.

We identified 142 TFBSs that contributed significantly to the

regression models (pv0:05). Among these, 71 TFBSs (Class A)

and 58 TFBSs (Class B) exhibited a considerable gain or loss of

their activities during cell differentiation (pv0:001). As illustrated

in Figure 4A, the effects of TFBS activities represented by plus or

minus signs of RCs were mostly unchanged between cells but

were inverted between DEGs. The strengths of TFBS activities

increased markedly in ST-HSCs compared with LT-HSCs. We

applied our method to 2 public RNA-seq datasets that

represented sequential cell development (MII oocytes and two-

cell embryos) and lineage commitment (megakaryocyte/erythroid

precursors and megakaryocytes) (Figure S5). This analysis showed

that the results of cell-lineage commitment agreed with the

propensity of the regulatory activities detected in HSCs, rather

than with that of sequential cell development. Therefore,

regulators that play similar or different roles in accordance with

cellular contexts might be general features that underlie cell fate

decisions.

Overall, our results suggest that HSCs exhibit flexible and rapid

responses to local needs by controlling TFs that are expressed at

steady-state or low levels via a highly complex regulatory network.

Further studies should consider the implications of these regulatory

modes based on instructive and/or stochastic models of stem cell

fate decisions. In the present study, we demonstrated that specific

lineage-affiliated TFs formed a resultant set of transcriptional

regulation, i.e., 24 differentially expressed TFs that contributed

significantly to the model were modulated by other TFs that were

not differentially expressed. These TFs include immediate early

genes (e.g., Fos, Jun, and Egr1) that induce an early genomic

response related to HSC biology [50,54]. If they become dysfunc-

tional, LT-HSCs may be primed to an erythroid/megakaryocytic

lineage via pathways that are controlled by other TFs (e.g., Gata

factors, ETS family, and IRF family).

In summary, we obtained novel transcriptome data and

developed a computational method for promoter modeling. Our

method can be applied easily to other biological systems. Using

these approaches, we identified transcriptional regulation modes

that provide insights into how HSCs determine their phenotype.

Future works that overcome the limitations of the present study,

such as the inclusion of enhancer activities that appear to be

important in hematopoiesis [17,42] and the analysis of the

influence of transcriptional heterogeneity at the single-cell

level [4,10,34], which can be assayed using promising tech-

niques [59–61], would refine our findings and advance our

understanding of the kinetic and regulatory aspects of stem cell

biology.
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Materials and Methods

Animals
All experimental protocols were reviewed and approved by the

Institutional Animal Care and Use Committee of Tokyo Women’s

Medical University (approval ID: 13-99-2-B). Mice were pur-

chased from Sankyo Labo Service.

Cell collection
CD34{KSL (c-kit+Sca1+Lin2) LT-HSCs or CD34zKSL ST-

HSCs were sorted, as described previously [36]. In brief, we

isolated bone marrow cells from 8- to 10-week-old C57BL/6 mice

and stained them with antibodies for CD34 (RAM34, eBios-

ciences, San Diego, CA), Sca-1 (E13-161.7, BD Biosciences

Pharmingen, San Jose, CA), c-kit (2B8, BD Biosciences Pharmin-

gen), and a lineage marker (Lineage Detection Kit, Miltenyi Biotec

Inc., Bergisch Gladbach, Germany). Subsequently, we analyzed

the stained cells using a MoFlo XDP cell sorter system (Beckman

Coulter, Fullerton, CA).

RNA sequencing and real-time PCR
After obtaining total RNA extracts from 5000 LT- or ST-HSCs

using Isogen (Nippon Gene, Tokyo, Japan) in triplicate, we

synthesized cDNA using a SMARTer Pico cDNA amplification kit

(Clonetech, Mountain View, CA) and amplified them with 20

cycles of PCR. Using the standard protocols for the SOLiD

system, we sequenced the amplified cDNA using a SOLiD

sequencer (Life Technologies, Carlsbad, CA), as described

previously [36]. In the RT-PCR assay, total RNA was obtained

from the sorted cells and cDNA was synthesized as described

above. We performed RT-PCR using a TaqMan Gene Expression

Assay (Life Technologies) for the genes indicated with the BioMark

HD system (Fludigm, South San Francisco, CA).

Read mapping and quantification
We used the TopHat (v1.4.1)/Cufflinks (v.2.0.2) pipeline [33]

with the sequenced reads (quality score, w15). The pipeline was

coupled to Bowtie (v.0.12.7) [62]. We employed the recursive read

mapping method, as described previously [32]. In brief, we applied

TopHat by truncating the 3
0

ends of unmapped reads and by

realigning the reads using more stringent parameters. We set the

parameters empirically, which were used sequentially, as the read

length, ’’-initial-read-mismatches’’, ’’-segment-mismatches’’, and

’’-segment-length’’: (50, 3, 2, 25), (46, 3, 2, 23), (42, 3, 2, 21), (38, 2,

0, 19), and (34, 2, 0, 17).

The pipeline, which quantifies RNA abundance as fragments

per kilobase of exon per million mapped reads (FPKM), mapped

sequenced reads to the mouse genome (mm9), and then assembled

transcripts with uniquely mapped reads (uni-reads) for each

replicate. We used Cuffcompare to merge all the transcript

assemblies; 14,728 and 14,128 RefSeq-annotated genes in LT-

and ST-HSCs, respectively. Using the merged transcript assembly,

we performed Cuffdiff, which calculates FPKMs across all

replicates and detects DEGs via two-group t-tests coupled to a

Benjamini–Hochberg false discovery rate (FDR) procedure. We

further used transcripts that satisfied the following conditions:

successful deconvolution, FDR of v0:05, complete match of

intron chain, and FPKM of w0:001. The mouse genome and

RefSeq annotation were downloaded from http://genome.ucsc.

edu/.

Long-term competitive reconstitution assay
We cultured CD34{KSL HSCs derived from C57BL/6-Ly5.1

congenic mice for 5 days with or without 20mM GW1929 (Sigma-

Aldrich, St. Louis, MO) in S-Clone SF-03 medium (Sanko-

Junyaku Co., Tokyo, Japan) supplemented with 0.5% bovine

serum albumin (Sigma, St. Louis, MO) and 50 ng/ml mouse stem

cell factor and 50 ng/ml mouse TPO (all from R&D systems,

Minneapolis, MN). Next, we performed a long-term competitive

reconstitution assay by transplanting cultured cells with 5|105

whole bone marrow competitor cells derived from C57BL/6-

Ly5.2 Wt mice into lethally irradiated (9.5 Gy) C57BL/6-Ly5.2

Wt mice.

Log-linear model (LLM)
Suppose that we consider binary-stated (absence or presence)

TFs {A, B, C}. The observed counts fall into 23-dimensional

contingency table by cross-classifying the TF states. The full model

(FM), which contains all the possible interactions, gives the

logarithms of probabilities as follows:

log pijk~lzlA
i zlB

j zlC
k zlAB

ij zlAC
ik zlBC

jk zlABC
ijk , ð1Þ

where i, j and k are the state indices of {A, B, C}, ls are unknown

parameters, lAB
ij , lAC

ik and lBC
jk represent the interaction effects

among the indexed variables. If an instance of A is independent of

B, FM can be reduced to a reduced model (RM) with respect to

the hierarchy [31], which is given as follows:

log pijk~lzlA
i zlB

j zlC
k zlAC

ik zlBC
jk : ð2Þ

This model can be reformulated as

pijk~(pizk
:pzjk)=pzzk, ð3Þ

where ’’+’’ denotes the summation over the corresponding index.

This formula is equivalent to Pr(A~i,B~j C~kj )~Pr(A~ij
C~k:)Pr(B~j C~kj ), which means that A and B are independent

in the conditional distribution given C (A B Cj ).

To find the most parsimonious RM, we remove an interaction

term from the current model and measure two p-values for the

asymptotic x2 test of a likelihood ratio G 2 statistic [31]. The p-

values comprise p_FM, which is the difference between FM and

RM, and p_RM, which is the difference between the current

model and RM. We accept a removal if it yields the largest p_RM

(§0:01), and we terminate if any removal test yields v0:01 for

either p_RM or p_FM.

Iterative random sampling for LLM
A large number of TFs can easily yield a vast dimensional

contingency table. To find a near optimal parsimonious model

even in such higher-dimensional space, we designed an iterative

sampling scheme that allowed us to calculate interaction

probability Pr as follows.

Let G~fV,Eg is an undirected graph, where V is a finite set of

vertices (TFs) and E is a set of edges, which represent the

interactions between vertex pairs. The scheme is as follows.

1. 1. S~fs1, . . . ,skg, a nonredundant combination of TFs, is

selected randomly from all TFs (k~10 in the present study).

2. For all possible vertex pairs (si,sj), the trial number ntryij of an

edge between si and sj is counted (i.e., FM of k variables).
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3. LLM infers the best model G0~(S,E0), where E0 is a set of edges

that represents TF–TF interactions.

4. For all possible vertex pairs (si,sj), if an edge in E0 links a pair

(si,sj), the observed edge frequency nobsij for this pair is

counted.

5. For all possible vertex pairs (si,sj), the interaction probability Pr

for a pair (si,sj) is updated using nobsij=ntryij .

6. If G~(V,E), where E is a set of edges (Pr~1:0), is not changed

with a large number of samplings (~100,000); therefore, this

procedure is terminated. Otherwise, steps 1–5 are repeated.

Linear regression model
We used a multivariate regression model

log Yi~
X

j

wjXijzei, ð4Þ

Xij~
X

k

xk, ð5Þ

where Yi is the expression of gene i, Xij is TGAS of the jth TFBS

in the promoter region of gene i, wj is RC of the jth TFBS, and ei

is the error term. TGAS is the sum of scores xk, where k represents

the position of the jth TFBS in promoter i. We tested the following

forms of xk.

N I: matrix similarity s of TFBS j scored using MATCH[43]

(xk~sk).

N II: TGAS I modified by a location-dependent weight L,

xk~sk|Lk: ð6Þ

N III: TGAS II weighted by the expression fold change (F) of

TFs,

xk~sk|Lk|
X

k
0

F
k
0 , ð7Þ

where k
0

is the index of TFs binding to TFBS j. If FPKM for

TF is ƒ3, we use F~1.

N IV: the same as TGAS III, but we removed TFBSs where

none of the TFs had FPKM of w3.

N V: TGAS III weighted using both Fs of interactive TFs and

the interaction probability Pr estimated by LLM,

xk~sk|Lk|(
X

k
0

F
k
0zI

k
0 ) ð8Þ

I
k
0~

Xk0

i
0
~1

Xk0

j
0
wi
0
F

i
0F

j
0Pr

i
0
j
0 : ð9Þ

We used a published method to calculate L [40]. First, we

calculated the distribution of TFBS j in bins ( = 500 bp) of

promoter regions and created a histogram Hreal . Next, we

randomized the positions of TFBS j and created a histogram

Hrand . L for the kth TFBS j is given by the following:

Lk~

0, if Hreal(m)vHrand (m)

Hreal(m){Hrand (m)

Hreal(m)
, if Hreal(m)§Hrand (m),

0
@ ð10Þ

where m represents the index of bin that corresponds to the

position of the kth TFBS j. This location-dependent weight takes a

value between 0 and 1, where a higher weight implies nonrandom

occurrence.

Stepwise selection of the regression model
We built a regression model with the explanatory variable X

and then reduced the model using AIC. Let the reduced model be

Y
0

with X
0
. X{X

0
~fx1,x2, . . .g is the variables removed on the

basis of AIC. V is the set of all pairwise terms of xixj (i=j). We

searched any elements of V that improve Pearson’s correlation

coefficient r of 5-fold CV on testing datasets.

1. Randomly select vi ([V ) and add it to X
0
, which yields X

00
.

2. Perform 5-fold CV with X
00

and calculate the averaged r on

testing datasets.

3. If the r has been improved, update X
00

to X
0
.

4. Repeat step 1–3 until all vi have been tested.

5. Calculate Pearson’s correlation coefficient R between observed

and predicted FPKMs of all genes by using the final model.

We run this procedure 100 times using different random seeds.

The final R is referred to as a model quality in this study.

Bioinformatics analysis
We obtained array-based gene expression profiles [8,9] from

BloodExpress [63], RNA-seq data for megakaryocyte/erythroid

precursors and megakaryocytes from http://genome.ucsc.edu/

encode/, and RNA-seq data for MII oocytes and two-cell embryos

from DDBJ DRA001066. The public RNA-seq datasets were

analyzed using the pipeline mentioned above. To search putative

TFBSs and TFs in TRANSFAC professional (released in January

2013) [39], we prepared +5kb DNA sequences from transcription

start sites (TSSs) annotated in RefSeq (http://www.ncbi.nlm.nih.

gov/refseq/), and applied the MATCH tool in the minimize false-

positive mode [43].

To analyze the enriched GO terms, we used the DAVID

Bioinformatics Resources [35]. Significant terms detected by

DAVID (EASE score, a modified Fisher’s exact p-value, v0:01)

were grouped into representative ancestor terms in the dataset GO

Slim2 using CateGOrizer [64]. We used the R programming

language (http://www.r-project.org/) for regression modeling and

to perform statistical tests. Although all p-values were adjusted by

Bonferroni correction (Tables S6 and S8–S11), we used uncor-

rected p-values throughout this study to avoid too conservative

interpretation that would reduce biologically meaningful findings.

Data access
The RNA-seq data generated in this study have been deposited

in the DDBJ (DNA Data Bank of Japan) Sequence Read Archive

(DRA) under accession number DRA001213. The online version

of LLM is available at http://dbtmee.hgc.jp/tools/.
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Supporting Information

Figure S1 Correlation analysis of gene expression levels
measured using RNA-seq assays. (A) Reproducibility based

on triplicate analyses of LT- and ST-HSCs. (B) Comparison of the

gene expression correlations in the present study to those reported

by Karlsson et al. [15], who purified HSCs using CD48 , CD150 ,2 +

CD342, CD9high KSL for LT-HSCs and CD482, CD150+,

CD9low KSL for ST-HSCs.

(EPS)

Figure S2 Contribution of higher-order TF interaction
scores estimated by LLM. (A) Statistical differences of 2

regression coefficient (RC) ensembles of a TFBS found commonly

by TGAS III and V (two-sample t-test). (B) Distribution of the TF

interaction score Ik in Equation 9.

(EPS)

Figure S3 Box plots of RCs estimated by 100 iterations
of regression modeling with TGAS V. Pos and Neg represent

the positive (red) and negative (blue) mean values of RCs (red line),

respectively.

(EPS)

Figure S4 Subnetworks involved in ST-HSC regulation.
Although the majority of TF-coding genes found in ST-HSCs

(Figure 4A) were not differentially expressed, 26 differentially

expressed TFs that putatively bind to 21 TFBSs were present

among DEGs (Class A and Class B).

(EPS)

Figure S5 Propensity of the TFBS activities inferred
from public RNA-seq datasets. We applied our method to

public RNA-seq datasets related to sequential cell development (A)

and lineage commitment (C). Our procedure evaluates the

averaged R of 5-fold CV on testing datasets (blue line). If a model

improved R in testing, the model was accepted and its R value

between the observed and predicted gene expression of all genes

was measured (red line). (B) Of 147 TFBSs (pv0:05), 67 TFBSs

(Class A; upregulated in Oo) and 80 TFBSs (Class B; upregulated

in 2C) exhibited significant gains and losses of activity (pv0:001).

In addition, 73% (49/67) of Class A and 52.5% (42/80) of Class B

genes exhibited no changes in the effects of their TFBS activities

between cells, i.e., positive (negative) in Oo was still positive

(negative) in 2C. We found that 16% (8/49) of Class A and 83%

(35/42) of Class B genes had increased activities in 2C compared

with Oo. (D) Among 150 TFBSs (pv0:05), 98 TFBSs (Class A,

upregulated in MEP) and 114 TFBSs (Class B, upregulated in Mk)

exhibited significant gains and losses of activity (pv0:001). We

also found that 83% (81/98) of Class A and 76% (87/114) of Class

B genes exhibited no changes in the effects of their TFBS activities.

All of the TFBSs in both classes exhibited increases in the strengths

of their activities in Mk compared with MEP. R, Pearson’s

correlation coefficient; Oo, MII oocytes; 2C, 2-cell embryo; MEP,

megakaryocyte/erythroid precursor; Mk, megakaryocyte.

(EPS)

Table S1 RNA-seq mapping statistics.
(XLSX)

Table S2 Differentially expressed cell-surface mole-
cules.
(XLSX)

Table S3 Differentially expressed transcription factors.
(XLSX)

Table S4 Transcription factors categorized into Class
C.
(XLSX)

Table S5 Low expressed transcription factors (Class D).
(XLSX)

Table S6 Average regression coefficient of 142 TFBSs.
(XLSX)

Table S7 Classification of MkE, GM, and Lymphoid-
associated genes.
(XLSX)

Table S8 TFBSs significantly different in the regression
coefficient between LT- and ST-HSCs (Class A).
(XLSX)

Table S9 TFBSs significantly different in the regression
coefficient between LT- and ST-HSCs (Class B).
(XLSX)

Table S10 Enriched GO terms in Class A.
(XLSX)

Table S11 Enriched GO terms in Class B.
(XLSX)

Table S12 Result of log-linear model in Class A.
(XLSX)

Table S13 Result of log-linear model in Class B.
(XLSX)
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