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Abstract: The aim of the present study was to evaluate the effect of the hydroxyethyl-methacrylate
(HEMA) concentration and solvent content of dental adhesives on cell viability and cytokine (IL-1b,
IL-6, IL-10, TNF-α) release by human dental pulp cells (HDPCs). HDPCs were obtained from
fresh extracted human third molars. Experimental adhesives were prepared containing different
concentrations of HEMA (0%, 10%, and 20%) with and without solvent (ethanol 10%). Cylindrical
specimens were immersed on culture medium during 24 h to obtain the extracts. The cells were
incubated with extracts (culture medium + components leached from the adhesives) of different
adhesives, and cell viability and cytokine release were evaluated after 6 and 24 h of exposure.
Adhesives containing HEMA promoted high cell viability reduction after 6 h of exposure; but after
24 h, the results were similar to the ones found among control group cells. These effects on cell viability
were prominently increased with the addition of solvent. Although IL-1b release was not affected by
exposure to eluates, other cytokines (IL-10, IL-6, TNF-α) were modulated by the different experiment
conditions, directly influenced by the HEMA concentration and presence of solvent. Higher HEMA
concentrations, combined with the presence of solvent, can promote significant reduction on HDPC
viability, increasing the release of anti- and pro-inflammatory mediators.

Keywords: polymers; cytotoxicity; inflammation; pulp biology; biocompatibility; adhesives

1. Introduction

Resin materials are applied in several dental restorative procedures such as surface sealers [1],
cementation of intraradicular posts [2], repair of restorations [3,4] as well as bonding direct and indirect
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restorations [5–7]. The dental adhesives are agents used to promote the bonding between the dental
substrate and the resin materials. Due to the direct application on the dental structure, the dental
material’s should be evaluated regarding its biocompatibility, including cytotoxic effects [8–11] or
in vivo evaluations [12,13], to avoid toxic materials being used which can put patients at risk of health
problems. In situations like bonding to deep cavities, the resin monomers present in adhesive agents
can diffuse through the dentinal tubules of the thin remaining dentin and reach the dental pulp,
triggering cell and tissue responses such as inflammation processes [14,15]. This may induce processes
such as a transitory hypersensitivity after restorative procedures, and/or could require endodontic
treatment in some cases with non-remission of symptoms.

The inflammation is initiated by intracellular signalling cascades, resulting in the release of anti-
and pro-inflammatory mediators, coordinating the immune response [16], and may be triggered by the
damage caused by the monomers to the dental pulp cells (fibroblasts, odontoblasts, and macrophages).
Cytokines such as the IL-1, the IL-6 and the TNF-α can kick start the inflammatory process by
inducing alterations on the tissue, such as vasodilatation and defence cell recruitment [17]. In addition,
anti-inflammatory cytokines as the IL-10 can regulate this process, promoting a balance between tissue
damage and response [17].

As described, the monomers are toxic agents that can promote cell damage and consequently,
undesirable side effects on restorative procedures. Notwithstanding the hydroxyethyl methacrylate
(HEMA) not being the most toxic monomer used [18], the concern about this agent is based on its low
molecular weight, which allows such compound diffusion through the dentinal tubules, reaching the
pulp tissue [19,20]. HEMA influences cell function and cytokine release [21], which can modulate the
tissue response facing an aggression promoted by exposure to this agent.

Another aspect that should be considered in dental adhesives related to the toxic implication to
the dental pulp cells is the presence of solvent. Considering its inexorableness in view of the wet nature
of dentin, the solvent can increase the solubility of dental adhesives [22,23], increasing the release of
unreacted monomers to the aqueous environment. Consequently, this may enhance the toxic effects of
resin adhesive agents.

Despite not being fully elucidated, several studies report the toxic effects of monomers to different
cell types, demonstrating early injuries at membrane level and DNA-deep viability reduction [21,24,25].
These studies are important, as they provide the mechanisms regarding toxicity and influence on cell
functions [21,24,25]. However, most of the studies evaluate the monomers isolated, which does not
correspond to a clinical environment. This may lead to equivocated conclusions, considering that
the toxicity of a specific monomer could not be directly implicated in co-polymer toxicity increase.
When mixed with other monomers and co-polymerized, the effect of a specific monomer on cells
may be different due to the curing reaction and interaction among the agents, and/or entrapment of
unreacted monomers on the polymer chain, preventing their toxic effect. Therefore, the aim of this
study was to evaluate the influence of experimental solvated and non-solvated adhesives containing
different concentrations of HEMA and their viability and cytokine release (IL-1, IL-6, TNF-α, and IL 10)
from human dental pulp cells (HDPCs).

2. Materials and Methods

2.1. Cell Culture

Human dental pulp cells (HDPCs) were obtained from fresh extracted human third molars
(Ethics Committee Approval from Paulista University #2.961.606, São Paulo, Brazil). The teeth were
extracted, and the coronal part was sectioned on the cement-enamel junction using a sterilized diamond
disc under water-cooling. The pulp tissue was removed using a dentin excavator and immersed in
culture medium. After this, the tissue was immersed in collagenase type 1 (3 mg/mL; Sigma-Aldrich,
St. Louis, MO, USA). After 2 h, the resulting cells were cultured in Dulbecco’s Modified Eagles’ Medium
(DMEM, SIGMA Chemical Co., St. Louis, MO, USA) complemented with 10% foetal bovine serum
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(FBS, Cultilab, Campinas, São Paulo, Brazil), supplemented with 100 IU/mL of penicillin, 100 mg/mL
streptomycin and 2 mmol/L glutamine (GIBCO, Grand Island, NY, USA) until obtaining the cell number
needed to perform the experiments.

2.2. Experimental Groups

The experimental adhesives were prepared, and the groups distributed as presented in Table 1,
according to the HEMA (Esstech Inc., Essington, PA, USA) concentration and presence of solvent
(ethanol, Merck KGaA, Darmstadt, Germany). In addition to these components, the adhesives included
bisphenol glycidyl methacrylate (Bis-GMA, Esstech Inc., Essington, PA, USA) and triethylene glycol
dimethacrylate (TEGDMA, Esstech Inc., Essington, PA, USA). For all formulations, the used initiator
system was the camphorquinone (CQ, Esstech Inc., Essington, PA, USA) 0.4% wt., and co-initiator:
dimethylaminoethyl amine benzoate—0.8% wt. (EDAB, Sigma-Aldrich Inc., St. Louis, MO, USA).
All components were blended and homogenized for 1 h at room temperature (25 ◦C) with a magnetic
stirrer (2000 rpm). The composition of experimental adhesives within the respective group is listed
in Table 1.

Table 1. Experimental groups and their respective monomer composition.

Group
Composition (%)

Bis-GMA TEGDMA Ethanol HEMA

G1 50 50 − −

G2 45 45 − 10
G3 40 40 − 20

G4 45 45 10 −

G5 40 40 10 10
G6 35 35 10 20

G0—Control (without treatment)

2.3. Preparation of Eluates

To obtain adhesive eluates, samples (5 mm diameter, 1 mm thick) were prepared using a silicon
mould. After insertion of adhesive in the mould, the resin was covered by a glass slide (0.1 mm thick)
to avoid the formation of the oxygen-inhibited layer. Then, the samples were light-cured for 20 s using
a light-emitting diode unit (LED, Demi; 1200 mW/cm2, Kerr Company, Orange, CA, USA), with the
LED tip in contact with the glass-slide. Then, each specimen was individually placed in wells of
a 24-well sterile plate containing 1 mL of DMEM with no foetal bovine serum (FBS) and maintained
in an incubator at 37 ◦C for 24 h. Finally, the eluates were collected and applied on the HDPCs and
kept in contact for 6 h. For the control group (G0), the cells were cultured on fresh culture medium
(no FBS) at the same time it occurred with the eluates, and kept for the same period, to simulate the
experimental condition.

2.4. Cell Viability (MTT Assay)

For the experimental and control groups (n = 6), the cell viability was evaluated using MTT assay
by measuring the succinic dehydrogenase (SDH) activity, evaluating the mitochondrial activity of
cells by the methyl tetrazolium reaction. The assays were made in triplicate at three independent
experiments. As previously described, the cell metabolism was evaluated 6 and 24 h after exposure
to the eluates [26]. The cell viability was obtained in absorbance of SDH activity and transformed in
percentages considering the control group (DMEM) as 100%.
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2.5. Quantification of Cytokines Released from Dental Pulp Cells in Culture

Cytokines levels were determined in culture medium in contact with the HDPCs after eluates
exposure (n = 6; 6 and 24 h). The timepoints used were chosen based on previous study [27].
The analyses were performed according to the manufacturer’s instructions using ELISA kits from
Biolegend (San Diego, CA, USA). The plates were read with a spectrophotometer (SpectraMax i3;
Molecular Devices, CA, USA) at a wavelength of 450 nm. The concentrations of the cytokines in
the samples were calculated from the standard curves obtained from the recombinant cytokines [28].
Results were expressed as pg/mL of cytokine. The assays were made in triplicate at three independent
experiments for every sample with standard curves for IL-1b, IL-6, IL-10, TNF α. The detection limits
of each cytokine were 1–125 pg/mL for IL-1b; 4–500 pg/mL for TNF- α and IL-6, and 2–250 pg/mL
for IL-10.

2.6. Statistical Analysis

Prior to statistical analysis, the data was analysed for normality and homogeneity of variance.
Cell viability and cytokine release were analysed using one-way ANOVA. The Tukey’s test was applied
when needed. Statistical analysis was carried out using the SAS 9.1 statistical software (SAS Institute,
Cary, NC, USA) with a confidence interval of 95%.

3. Results

3.1. Cell Viability and Cytokine Release (6 h)

After exposure, the toxic effects were more evident, with lower cell viability observed for the
groups exposed to eluates of solvated adhesives (Figure 1). The non-solvated adhesives containing
HEMA (10% and 20%) had intermediary cell viability, whilst the non-solvated adhesive without HEMA
showed higher cell viability, similar to the control group (p > 0.999).
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Figure 1. Cell viability of dental pulp cells after exposure to extracts (6 h) of different adhesive models.
The percentages were obtained considering the control group (DMEM) as 100%. * indicate statistical
difference to the control group (p < 0.001). # indicate difference of HEMA10% to other experimental
groups—# p < 0.001; ## p < 0.05. ANOVA one-way and Tukey test (α = 0.05).

For the cytokine release, this relation was not perfectly elicited (Figure 2). After 6 h, no changes
were observed in IL-1b, IL-10 (p = 0.4922 and 0.5330). However, for IL-6, the solvated adhesive
containing 20% HEMA (G6) presented the higher cytokine release, with control group presenting the
lowest values. The other experimental groups had intermediary release, similar to control and G6.
For TNF-α, the control group presented the highest means after 6 h, with all experimental groups with
similar results.
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Figure 2. Cytokine release 6 h after exposure to different adhesive models. * indicate statistical
significant difference to control group—* p < 0.001; ** p < 0.05. (A) For IL-1b there was not observed
statistical differences among control and experimental groups (B) Only Hema 20% + Ethanol presented
statistical difference to control. The other experimental groups had intermediary results, similar to
control and HEMA 20% + ethanol. ANOVA one-way and Tukey test (α = 0.05). (C) The experimental
and control groups were statistically similar (D) Control group had the highest TNF-a release compared
to the other groups. The experimental groups presented similar TNF-a release.

3.2. Cell Viability and Cytokine Release (24 h)

The most prominent reduction on cell viability was observed for the solvated adhesive containing
HEMA 10 and 20%, statistically different of the other groups (p < 0.0001) (Figure 1). For this period
(24 h), the other tested adhesive models did not influence cell viability, which was similar to the
control groups.

For IL-1b, the experimental groups had similar release to the control group (no exposure to eluate)
(Figure 3; p = 0.6595). For IL-6, G6 (HEMA 20% + solvent) presented the highest release, whereas the
other experimental groups and control presented similar mean values. G6 had the highest means
of IL-10 as well, decreasing the amount released according to HEMA reduction and the absence of
solvent, with the control group presenting the lowest values.

For TNF-α, the control group and groups G1 (no HEMA) and G2 (HEMA 10%) presented the
lowest releases. G6 had the highest means whilst the other groups (G3, G4, and G5) presented
intermediate release, being similar to control group and to G6.
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Figure 3. Cytokine release 24 h after exposure to different adhesive models. * indicate statistical
significant difference to control group—* p < 0.001; ** p < 0.05. (A) For IL-1b, none differences were
observed after 24h of exposure. (B) The group containing HEMA 20% with ethanol promoted the higher
release of IL-6, statistically superior than the other experimental and control groups. (C) # indicate
statistical difference of experimental groups and HEMA 20% + ethanol—# p < 0.001. (D) Groups
with 0% and 10% HEMA containing ethanol were similar to control group and HEMA 20% + ethanol.
ANOVA one-way and Tukey test (α = 0.05).

4. Discussion

HEMA is a monomer that is widely used on dental adhesives due to its ability to reduce monomer
mixture viscosity, improving the adhesive system wettability [29,30]. However, due to its low molecular
weight, HEMA can diffuse through the thin dentin barrier of deep cavities [19,20], reaching the dental
pulp cells, promoting deleterious effects to the pulp tissue due to its toxicity [31]. Another important
fact regarding the adhesive agents that should be considered is the presence of solvent. This modulates
the properties of such materials, influencing the polymer formation, and consequently, the water
solubility [22,23,32], which may increase the toxicity of the adhesive agent.

Adhesives with no solvents are commercially presented as the third step on the etch-and-rinse
or second step of self-etch adhesives processes, following primer application. The use of solvated
adhesives without the use of a hydrophobic adhesive is observed when using simplified systems
like the one-bottle etch-and-rinse, or the self-etching and multi-mode adhesives [33]. Agents such as
acetone, ethanol, and water are the most used solvents on dental adhesives, with concentration ranging
from 20% to 30%. Despite the required step of solvent evaporation, the complete removal of this agent
is not feasible [32], which justifies the evaluation of solvated adhesives using 10% ethanol in the present
study, representing the remaining solvent on the adhesive after the solvent evaporation step.

The obtained cell viability results demonstrate that the higher the amount of HEMA, the higher
the toxic effects to the cells. Nevertheless, this toxicity is temporary, with increase of cell viability 24 h
after exposure to the non-solvated adhesives. In addition, HEMA toxicity is prominently increased
when solvent was added to the experimental adhesives, demonstrating that the modulation of adhesive
properties by the solvent, such as water sorption and solubility, can directly influence the toxicity to
the HDPCs, as previously shown by some studies [23,32,34,35].

Ethanol can increase the water solubility of dental adhesives [36], and the increasing of this
property may allow the leaching of higher amounts of toxic components. A previous study has
demonstrated the high cytotoxicity of universal adhesives [8]. Despite different methodology and cell
lines used, which can explain some differences in the results of the MTT assay, universal adhesives are
single-bottle agents, presenting high content of solvent in its composition. As demonstrated in this
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study, solvent is a component that can increase remarkably the toxicity of the adhesives. This can be
one of the most important reasons for the obtained results on the study cited [8].

Bis-GMA, TEGDMA and HEMA, components present on the tested adhesive models,
were probably released in higher concentration than the non-solvated adhesives, which may have
promoted more expressive toxic effects. Bis-GMA, one component of the model adhesives tested, was
shown to induce COX-2 expression and have PGE2 production via reactive oxygen species (ROS)
production, leading to dental pulp cells damage [37]. In addition, Bis-GMA is the most toxic monomer
used in bonding agents [38], and even in reduced concentrations, it may cause damage to pulp cells,
such as DNA lesions, and also oxidative stress due to the generation of ROS and GSH depletion [24,39].
The damage caused by ROS and the epoxy-compound metabolic intermediary of the Bis-GMA are
possibly involved in cell apoptosis after exposure to this resin monomer, as a result of the down
regulation of cdc2, cdc25C, and cyclinB1 [24], important genes that regulate cell cycle progression and
apoptosis [40].

TEGDMA and HEMA promote oxidative DNA damage caused by reactive oxygen species
(ROS) [21]. After cell exposure to these monomers, high levels of 8-oxoguanine (8 oxoG), a promoter
of oxidative DNA lesion, were noticed [25]. Although the effects observed in the present study may
be related to the different compounds present on the model adhesives, the direct influence of an
increased amount of HEMA promoting higher cytotoxicity and, more relevantly, the presence of
solvent, were clearly observed, considerably increasing the toxic effects.

The aggression to the cells cannot only cause cell viability reduction, but can also promote a release
of inflammatory mediators. IL-1 can start the inflammatory reaction, stimulate T-cell proliferation,
and stimulate the release of histamine from mast cells [17,41]. The major cellular sources of IL-1 are
fibroblasts, mononuclear phagocytes, and T and B lymphocytes [17]. Despite its importance in the
inflammatory process, IL-1 release was not influenced by the experimental conditions of this study,
in neither of the evaluated periods.

TNF-α, an important cytokine that can stimulate collagenase production and IL-6 synthesis and,
like the IL-1, initiate the inflammatory process [17,41], was influenced by the adhesives tested in the
present study. After 6 h, the experimental groups showed reduced release TNF-α compared to control.
However, after 24 h, the solvated adhesives containing HEMA 20% presented the highest release,
with groups 3, 4, and 5 presenting an intermediary cytokine release level.

The IL-6 higher release promoted by solvated resin containing HEMA 20% was observed after
6 and 24 h of exposure, with the other experimental groups presenting intermediate (6 h) or similar
release to the one noticed in control (24 h). IL 6 is produced by some cells including T-cells and
fibroblasts. IL-6 acts as a growth factor for mature B-cells and it is involved in T-cell activation and
differentiation [17,41]. The release of IL-6 in few hours (6 h) after exposure can indicate that an
inflammatory process can be initiated just after the bonding procedure to deep cavities and diffusing
of unreacted/leached monomers to the dental pulp. Based on these results, this inflammatory process
seems to be more prominent when solvated adhesives with a high amount of HEMA are used.

After aggression, not only pro-inflammatory but also immuno-modulatory mediators, such as
IL-10, may be released [42]. As observed, after 6 h of exposure, the dental pulp cells presented a similar
release of the cited cytokine. However, after 24 h, a significantly high amount of IL-10 was observed
on groups of solvated adhesives containing 10% or 20% HEMA. The release after 24h exposure could
be credited to the IL-6 release, which stimulates the release of potent anti-inflammatory mediators
such as IL-10 [43]. IL-10 inhibits the release of inflammatory cytokines, and inhibits the formation of
the inducible NO-syntheses (iNOS) and consequently the formation of NO [44], which can induce cell
apoptosis. This result indicates that, despite the aggression and release of pro-inflammatory cytokine
at early stages (6 h), the cells are able to release immuno-modulatory mediators aiming to control the
inflammatory process promoted by the leached monomers.

One limitation of the present study is the non-quantification of the released components after
immersion. However, this release was well demonstrated in several studies [45,46], and based on
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previous results, the time of immersion was stipulated as well as the discussion was supported. Despite
the toxicity of other tested experimental adhesive components (Bis-GMA and TEGDMA), the main
focus of this study was to evaluate the influence of HEMA and solvent on adhesives and these effects
on HDPCs, as these compounds can diffuse through the dentinal tubules, reaching the dental pulp [47].
As demonstrated, the toxicity of adhesives can be modulated by the presence of HEMA. However, the
effects are relevantly increased by the presence of solvents, probably due to the adhesive solubility
increase, consequently leaching unreacted monomers. The bonding procedures to address deep cavities
are critical and should be performed carefully due to the possibility of unreacted monomers diffusion
to the pulp tissue, which makes the study of variables and protocols necessary for better understanding
the consequences to dental pulp cells.

The development of new materials on dentistry is fast, focusing on the improvement of material
properties [48–51] and patient wellbeing. With this, studies evaluating the toxic effects of new and
existing materials are important to provide a safe and predictable treatment on the most diverse dental
specialties. Based on this, future studies focusing on biomaterial evaluation are important to maintain
the safe application and development of the dental products.

5. Conclusions

HEMA presents a dose-dependent toxic effect on pulp cells, which can be increased by the addition
of solvent. These results highlight the previous statement that not only the presence of HEMA or
other toxic monomers can indicate the toxicity of a resin material. The evaluation of the interaction
between the components in a co-polymerization, in different simulated clinical conditions is important
to understand the materials and its indications. The presence of solvent not only significantly reduced
cell viability, but also increases cytokine release, indicating that solvated adhesives can be more
harmful than non-solvated ones when used in deep cavities with thinner dentin barrier separating the
restorative procedure from the pulp tissue.
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