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Abstract: Pleiotropy, which refers to the ability of different mutations on the same gene to cause
different pathological effects in human genetic diseases, is important in understanding system-level
biological diseases. Although some biological experiments have been proposed, still little is known
about pleiotropy on gene–gene dynamics, since most previous studies have been based on correlation
analysis. Therefore, a new perspective is needed to investigate pleiotropy in terms of gene–gene
dynamical characteristics. To quantify pleiotropy in terms of network dynamics, we propose a
measure called in silico Pleiotropic Scores (sPS), which represents how much a gene is affected
against a pair of different types of mutations on a Boolean network model. We found that our
model can identify more candidate pleiotropic genes that are not known to be pleiotropic than the
experimental database. In addition, we found that many types of functionally important genes tend to
have higher sPS values than other genes; in other words, they are more pleiotropic. We investigated
the relations of sPS with the structural properties in the signaling network and found that there are
highly positive relations to degree, feedback loops, and centrality measures. This implies that the
structural characteristics are principles to identify new pleiotropic genes. Finally, we found some
biological evidence showing that sPS analysis is relevant to the real pleiotropic data and can be
considered a novel candidate for pleiotropic gene research. Taken together, our results can be used
to understand the dynamics pleiotropic characteristics in complex biological systems in terms of
gene–phenotype relations.

Keywords: pleiotropy; gene–gene interactions; Boolean network dynamics; signaling networks;
feedback loops

1. Introduction

Pleiotropy is the phenomenon in which one gene can result in multiple phenotypes or
traits [1–3]. In human genetic diseases, it means that different mutations within the same
gene cause different pathological effects [4,5]. This becomes an important contributor in
identifying a novel function of individual genes with respect to gene–gene interactions [6,7]
in system-level biological diseases [8,9]. In this regard, many methods have been modeled
to understand the pleiotropy. For example, an experimental study [10] performed several
laboratory cultures with the nath-10 polymorphism and explained its pleiotropic role in
the evolution of a cryptic genetic variation in C. elegans. In another study, a statistical
analysis [11] using canonical correlation analysis identified a novel candidate pleiotropic
associations between genetic variants and phenotypes. In addition, a few computational
models [12,13] deployed a pairwise combination of genome-wide association data from
the complex disease pleiotropy analysis and modular gene expression analysis. Another
study using a metabolic model [14] conducted constraint-based simulations for E. coli
and S. cerevisiae and found that pleiotropy is an emergent property of metabolic network.
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Finally, protein–protein interaction network analysis was also widely used, and some
studies [15–17] confirmed pleiotropic effects in biological molecular function, which lead
to complex diseases. Despite the interesting observations in previous studies, most of the
previous approaches focused on the pleiotropy analysis induced by undirected molecular
correlation networks. Therefore, a new approach is needed to investigate the pleiotropy
induced by a directed signaling network because it can explain the pleiotropy caused by a
gene–gene dynamical relationship.

To quantify the pleiotropic degree of a gene in terms of network dynamics, we pro-
posed in silico pleiotropic score (sPS), which is a measure to represent how differently
a gene affects the dynamics of other genes against different mutations, such as knock-
out [18,19] and over-expression [20] mutations. In this study, we employed the Boolean
network model [21,22] to simulate the network dynamics. A Boolean network model
implicitly assumes that all biological components are described by binary values, and
their interactions represented by Boolean regulatory functions [23], and it is well-known
to capture the silent dynamical properties of biological networks [23,24]. For example,
it has been used to analyze oncogene rules in Non-small cell lung cancer [25], to model
the C. albicans yeast for hyphal transition [26], to a matrix cell density sensing to contact
inhibition, proliferation, migration, and apoptosis [27], or to illustrate the regulatory effects
in cervical cancer [28]. A previous study showed that the dynamics influence of a gene to
another genes has some interesting structural characteristics in the signaling network [29].
This study can be extended because the pleiotropy is understood as the difference of the
dynamics influence against different mutation types. In this study, through intensive inves-
tigations with a signaling network, we observed that most of the dynamically affected genes
were related to the experimentally proved pleiotropic genes [30]. Moreover, we found that
sPS is negatively correlated with the previous standardized method pleiotropy [2]. Further,
we investigated the relationships of sPS with structural properties and found that they
have highly positive correlations with degree/in-degree/out-degree, feedback loops, and
centrality measures such as closeness, betweenness, stress, and eigenvector, in the signaling
network. This implies that the more central of genes, the more pleiotropic. Finally, we
found some biological evidence confirming that sPS analysis is relevant to the experimental
pleiotropic database, and it can be used for novel candidate pleiotropic gene characteristics.
Through a network visualization, we observed that most novel candidate pleiotropic genes
are closely located to the known pleiotropic genes. Taken together, these results help to
understand the importance of dynamics pleiotropic in complex biological systems in terms
of gene–phenotype relations.

2. Materials and Methods
2.1. Datasets

To examine the in silico dynamics-based pleiotropy, we employed a dataset of a cellu-
lar signaling network with 1659 genes and 7964 interactions [31], which was constructed
from Kyoto Encyclopedia of Genes and Genomes network (KEGG) database [32]. We
then retrieved the list of the pleiotropic genes from human phenotype ontology (HPO)
database [30,33], where (a) a gene vi is associated with n phenotypes, and (b) a phenotype p
is associated with n genes. In our analysis, this definition was used to sort KEGG genes that
are associated with any phenotypes in (a) and (b), and to compute their degree of pleiotropy
by the number of phenotypes of those genes. Further, we classified all KEGG genes with re-
spect to the functional importance genes by annotating them with cancer genes, drug-target
genes, essential genes, tumor-suppressor genes, oncogenes, and disease genes based on
TCGA CBioportal [34,35], DrugBank [35,36], DEG [37], TSGene [38,39], ONGene [40], and
DisGenet [41,42] databases, respectively (See Tables S1–S3 in Supplementary Materials).
We note that this study is not limited to the pleiotropic genes identified from the public
databases, because there are other ways to explore the pleiotropy, for example, lab exper-
iments [43] using high-throughput morphometric analysis of hundreds of thousands of
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single cells in the budding yeast Saccharomyces cerevisiae or experimental design in Drosophila
simulans with genome sequencing [44] to study pleiotropy.

2.2. Boolean Network Model

To examine pleiotropic dynamics of genes induced by different types of mutations in
a large-scale network, we applied a synchronous Boolean network model [23], which is
one of the simplest computational methods to elucidate the network dynamics [22] and has
been used to examine complicated behaviors of biological networks [45–47]. A Boolean
network is represented by a directed graph G(V, A), where V = {v1, v2, . . . , vN} is a set
of nodes, and A ⊆ V × V is a set of directed links. Each vi ∈ V has a value of 1 (on) or
0 (off), which means the possible states of the corresponding elements. A directed link(
vi, vj

)
represents a positive (activating) or a negative (inhibiting) relationship from vi to vj

(vi and vj are called source and target nodes of the link, respectively). Let v(t) denote the
state of node v at time step t. When a state of vi at time t + 1 is determined by the values
of ki, with other nodes vi1 , vi2 , . . . , viki

with a link to vi at time t, the update rule of vi is

represented by a Boolean function fi : {0, 1}ki → {0, 1} . Then, all nodes are synchronously
updated, and here, we implemented a nested canalyzing functions (NCFs) model [48,49] to
describe an update rule fi as follows:

fi(vi1(t), vi2(t), . . . , viki
(t)) =



O1 i f vi1(t) = I1
O2 i f vi1(t) 6= I1 and vi2(t) = I2
O3 i f vi1(t) 6= I1 and vi2(t) 6= I2 and vi3(t) = I3

...
Oki

i f vi1(t) 6= I1 · · · viki−1
(t) 6= Iki−1 and viki

(t) = Iki

Ode f otherwise

(1)

where Im and Om (m = 1, 2, . . . , ki) represent the canalyzing and canalyzed Boolean val-
ues, respectively, and Ode f is generally set to 1 −Oki

. In addition, we specified all Im
and Om values independently and uniformly at random between 0 and 1. We note that
many biological networks were successfully represented by NCFs [50–52], and NCFs also
properly fit biological experiments’ data [49] including pleiotropy analysis [11]. Those
support that NCFs can describe the network dynamics considerably similarly to those real
biological networks.

In a Boolean network, a network state at time t can be denoted by a list of state values
of all nodes, v(t) = [v1(t), v2(t), . . . , vN(t)] ∈ {0, 1}N . Next, every network state transits
to another network state through a set of Boolean update functions F = { f1, f2, . . . , fN}
and eventually converges to either a fixed point or a limit-cycle attractor starting from
its initial state. This attractor represents the diverse biological network behaviors such as
homeostasis or oscillation. The definition of the attractor is defined as follows.

Definition 1. Let v(0), v(1), · · · , be a network state trajectory starting at v(0). Then, the attractor
denoted by G, F, v(0) is represented by an ordered finite list of network states v(τ), v(τ + 1), . . . ,
v(τ + p− 1) where τ is the smallest time step such that v(t) = v(t + p) for ∀t ≥ τ with v(i) 6= v(j)
for ∀i 6= j ∈ {τ, τ + 1, . . . , τ + p− 1}. Herein, p represents the attractor length.

In this study, the examination of attractors is needed to find the affected genes. The
affected genes were obtained based on our previous work about gene–gene dynamics
influence networks [29]. To implement this, we specified a set of initial states, S, and
computed a state trajectory starting at every v(0) ∈ S until an attractor is found. We note
that the network dynamics can depend on the initial network states.

2.3. Computation of In-Silico Pleiotropic Scores (sPS)
Given a gene subject to different types of mutations, we propose sPS of the gene to

represent how much the other genes are differentially affected in terms of the dynamics that
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can be used to deepen the study of existing measures of pleiotropy analysis. Specifically,
we considered two mutations, knockout [19,53] and overexpression [54] mutations. The
knockout mutation represents the effect of suppressing the expression of a gene or the
pharmaceutical inhibition of the secondary messenger production or kinase/phosphate
activity [18,55]. On the other hand, the overexpression mutation represents the effect of
gene expression change [20,56]. In the Boolean network model, these mutations describe
scenarios where the state of mutated gene is frozen to 0 (off) state and 1 (on) state, respec-
tively, during a mutation duration time T. In this study, T is a parameter to denote the
mutation duration time, and thus a mutation is effective only for t ≤ T. This mutation
duration time is considered important since it can affect the mutation process of molecular
interaction networks [57,58]. Taken together, these mutations can be implemented by
changing F into F′ for t ≤ T as follows:

F′ = { f1, . . . , fi−1, α, fi+1, . . . , fN} (2)

where α is a set to 0 and 1 in the case of the knockout and the overexpression mutations,
respectively. Note that the update rule of vi is restored to fi after the time step T.

To compute sPS of a gene, we employed the notion of the gene–gene dynamics influ-
ence used in the previous work [29]. Given a Boolean network G(V, A) with a set of nodes
V = {v1, v2, . . . , vN} specified by a set of corresponding update rules F = { f1, f2, . . . , fN},
we generate a set of random initial states S. We first define the dynamics influence of gene
vi on gene vj, which represents how much the states sequence of vj is changed by a mu-
tation subject to vi as follows (see Figure S1 in the Supplementary Information for an
illustrative example):

1. For each initial state v(0) ∈ S, we obtain two attractors G, F, v(0) and G, F′, v(0)
in the wild-type and the vi-mutant networks, respectively. For convenience, let
G, F, v(0) = [v(τ), v(τ + 1), . . . , v(τ + p− 1)] and G, F′, v(0) = v′(τ′), v′(τ′ + 1),
. . . , v′(τ′ + p′ − 1).

2. We compute a distance between G, F, v(0)j and G, F′, v(0)j defined as follows:

d
(
v(0), vi, vj

)
= min

m∈[0, e−1]

∑c−1
l=0 I

(
vj(τ + l + m) 6= v′j(τ

′ + l)
)

c
(3)

where c and e are the least common multiple and the greatest common divisor, re-
spectively, of p and p′, and I(condition) is an indicator function where outputs 1 if
condition is true, and 0 otherwise. As a result, d

(
v(0), vi, vj

)
represents the minimum

ratio of a bitwise difference between the states sequence of vj in the wild-type and the
vi-mutant attractors over the least common period (c) of the two attractors.

3. Lastly, we compute the dynamics influence of vi on vj denoted by µ
(
vi, vj

)
by averag-

ing out d
(
v(0), vi, vj

)
over a set of initial states in S as follows:

µ
(
vi, vj

)
=

∑v(0)∈S d
(
v(0), vi, vj

)
|S| (4)

Then, let vi an arbitrary source gene in V. Based on the dynamics influence, we can
denote a set of affected genes as

{
vj ∈ V

∣∣µ(vi, vj
)
> 0

}
. Let Vk and Vo the sets of affected

genes with respect to the knockout and the overexpression mutations, respectively. We
then define sPS of a gene vi as follows:

sPS(vi) =
1
|S| ∑

v(0)∈S

[
1− |Vk ∩Vo|
|Vk ∪Vo|

]
. (5)

It represents the proportion of the genes that are included in the symmetric difference
of Vk and VO among their union. Figure 1 shows an illustrative example of computing
sPS. Let v1 a node subject to the knockout or the overexpression mutation. Through a
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computation of the dynamics influence from v1 to v2, v3 and v4, we obtained the sets of
affected genes regarding the knockout and the overexpression mutations, Vk = {v2, v3, v4}
and Vo = {v2, v4}, respectively. Thus, sPS(v1) = 1/3 which implies that the node v1 is
pleiotropic because sPS(v1) > 0.

Biomolecules 2022, 12, x FOR PEER REVIEW 5 of 17 
 

It represents the proportion of the genes that are included in the symmetric difference 
of 𝑉௞ and 𝑉ை among their union. Figure 1 shows an illustrative example of computing 𝑠𝑃𝑆. Let 𝑣ଵ a node subject to the knockout or the overexpression mutation. Through a 
computation of the dynamics influence from 𝑣ଵ to 𝑣ଶ, 𝑣ଷ and 𝑣ସ, we obtained the sets 
of affected genes regarding the knockout and the overexpression mutations, 𝑉௞ =ሼ𝑣ଶ, 𝑣ଷ, 𝑣ସሽ and 𝑉௢ = ሼ𝑣ଶ, 𝑣ସሽ, respectively. Thus, 𝑠𝑃𝑆(𝑣ଵ) = 1/3 which implies that the 
node 𝑣ଵ is pleiotropic because 𝑠𝑃𝑆(𝑣ଵ) > 0. 

 
Figure 1. An illustrative example of 𝑠𝑃𝑆 computation. An example of a signaling network 𝐺(𝑉, 𝐴) 
with a set of update rules 𝐹. Let 𝑣ଵ a node subject to the knockout or the overexpression mutations. 
The mutations change 𝐹 to 𝐹ᇱ where the state value of 𝑣ଵ is frozen to 0 and 1, respectively, for 𝑡 ≤ 𝑇. The sets of genes whose dynamics are influenced by the mutations are identified as 𝑉௞ and 𝑉௢, respectively. Accordingly, 𝑠𝑃𝑆 of 𝑣ଵis computed as the ratio of the symmetric difference of 𝑉௞ 
and 𝑉௢ over the union of them. 

2.4. A Standardized Measure of Degree of Pleiotropy 
A previous research used a standardized pleiotropic measure [2] to compute pheno-

typic effects in the baker’s yeast S. cerevisiae. Given a gene, they examined the average and 
the standard deviation of the number of transformed traits from wild-type cells, denoted 
by 𝑚௪௧ and 𝑆𝐷, respectively, and the number of transformed traits from a cell deficient 
of the gene, denoted by 𝑚ௗ. In addition, they defined a standardized measure by the z-
transformed pleiotropic score (𝑧𝑃𝑆) as follows: 𝑧𝑃𝑆 =  𝑚ௗ − 𝑚௪௧𝑆𝐷  (6) 

We note that this notion of pleiotropy is different from that in 𝑠𝑃𝑆. The former fo-
cused on the standardized cardinality of the set of affected genes. To examine the notion 
of 𝑧𝑃𝑆 in our work, we set 𝑚ௗ to the number of affected genes (i.e., |𝑉௞| or |𝑉ை|). In ad-
dition, we specified 𝑚௪௧ and 𝑆𝐷 as the average and the standard deviation of the num-
ber of associated phenotypes or traits of HPO database for every KEGG gene. In this way, 
we calculated 𝑧𝑃𝑆 of the KEGG associated with HPO database and compared with our 𝑠𝑃𝑆 of them. 

  

Figure 1. An illustrative example of sPS computation. An example of a signaling network G(V, A)

with a set of update rules F. Let v1 a node subject to the knockout or the overexpression mutations.
The mutations change F to F′ where the state value of v1 is frozen to 0 and 1, respectively, for t ≤ T.
The sets of genes whose dynamics are influenced by the mutations are identified as Vk and Vo,
respectively. Accordingly, sPS of v1 is computed as the ratio of the symmetric difference of Vk and Vo

over the union of them.

2.4. A Standardized Measure of Degree of Pleiotropy

A previous research used a standardized pleiotropic measure [2] to compute pheno-
typic effects in the baker’s yeast S. cerevisiae. Given a gene, they examined the average and
the standard deviation of the number of transformed traits from wild-type cells, denoted
by mwt and SD, respectively, and the number of transformed traits from a cell deficient
of the gene, denoted by md. In addition, they defined a standardized measure by the
z-transformed pleiotropic score (zPS) as follows:

zPS =
md −mwt

SD
(6)

We note that this notion of pleiotropy is different from that in sPS. The former focused
on the standardized cardinality of the set of affected genes. To examine the notion of zPS
in our work, we set md to the number of affected genes (i.e., |Vk| or |VO|). In addition, we
specified mwt and SD as the average and the standard deviation of the number of associated
phenotypes or traits of HPO database for every KEGG gene. In this way, we calculated zPS
of the KEGG associated with HPO database and compared with our sPS of them.

2.5. Structural Characteristics of Pleiotropic Genes

It is known that the structural characteristics of genes in biological network related to
their dynamics stability [59,60]. Here, we considered the following structural properties to
investigate the relations to sPS.
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• A feedback loop (FBL) means a sequence chain of nodes where any node is not
repeated except the starting and the end nodes [59,61]. In a given network G(V, E),
an FBL is a closed simple cycle in which all nodes except the starting and ending
nodes are not revisited; in other words, a path P of a length L(≥ 1) is represented by a
sequence of ordered nodes u1 → u2 → . . .→ uL+1 with no repeated nodes except u1
and uL+1. Hence, the P is called a feedback loop if u1 = uL+1. It was known that FBLs
play important roles for controlling dynamics behavior of signaling networks [61–64].

• Centrality properties including the closeness defined as the reciprocal of the average
distance from a node to every other node [4], the betweenness defined as the ability of
a gene to control communication between genes through the shortest paths [65], the
stress based on enumeration of the shortest paths [66], and the eigenvector represented
by the principal eigenvector of the adjacency matrix of the network, where each node
affects all of its neighbors [52].

• Degree of nodes represents the number of edge upon a gene link to another gene [4,64].
In addition, in-degree and out-degree mean the degree of the incoming and the
outgoing links only, respectively.

2.6. Random Network Generation

To verify that the results of sPS in the real molecular interaction networks are relevant
with randomly structured networks, we generated random networks using the Barabási
Albert (BA) model [67], which is a kind of network growth model with a preferential
attachment scheme, or called a probabilistic mechanism, where a new node is free to
connect to any node in the network, whether it is a hub or just has a single link.

2.7. Parallel Computation

For efficient in silico simulations, we implemented the computational program us-
ing PANET [46], which is an analysis tool of the network dynamics using the OpenCL
library (The recent version is available at http://panet-csc.sourceforge.net/, accessed on
26 November 2019). This allows us to compute large number of attractors in parallel
by assigning each initial random state in Equations (3)–(6) to a processing unit of CPUs
and/or GPUs.

2.8. Statistical Analysis

In this work, we conducted all statistical analysis using the Pearson correlation coef-
ficient and the Student t-test using MedCalc Statistical Software version 13.0.6 (MedCalc
Software bvba, Ostend, Belgium; http://www.medcalc.org; 2014) [68].

3. Results

In this work, we simulated sPS of all genes in the KEGG signaling networks using
a Boolean network model (see Section 2). A total of 1000 initial states were randomly
generated to calculate sPS, and the mutation duration time T was varied from 14 to
20 considering the network size of KEGG (|V| = 1659).

3.1. Comparison of sPS with the Observational Pleiotropy

To show that our approach is relevant to the real phenotype data, we plot a contingency
table between the degree of pleiotropy between our in silico model and HPO (Table 1). We
first listed every KEGG gene that is associated with any phenotypes in the HPO database
(see Supplementary Table S2). Next, we specified the degree of pleiotropy with respect
to the HPO database as the number of phenotypes or traits of the gene in HPO (‘HPO-
associated’). Further, we specified the degree of pleiotropy with respect to our in silico
model (the mutation duration time T was set to 20) as the number of KEGG affected genes
by the knockout and the over-expression mutations in sPS (‘sPS-associated’).

http://panet-csc.sourceforge.net/
http://www.medcalc.org
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Table 1. The list of genes compared between the degree of pleiotropy by HPO and sPS. The top 10
genes with the highest degree of pleiotropy are chosen by the number of phenotypes in HPO database
(‘HPO-associated’) and the number of KEGG genes affected by the knockout and the over-expression
mutations in sPS (‘sPS -associated’).

No. Gene Name HPO-Associated sPS-Associated

1 COL2A1 842 22
2 FGFR1 1045 7
3 FGFR2 1137 3
4 FGFR3 1006 5
5 LIMK1 733 2
6 NRAS 728 1
7 PIK3CA 751 9
8 PRKAR1A 697 1
9 PTEN 838 107
10 TGFBR2 586 78

Total 8363 235

We then selected top 10 HPO-associated genes that are also related to sPS. As shown
in the table, there are some genes that show a high degree of HPO-associated pleiotropy
but a low degree of sPS-associated pleiotropy. This shows that our method ‘sPS-associated’
supported the HPO-associated genes and can be used to analyze whose pleiotropic phe-
nomenon is known in terms of network dynamics.

Next, we investigated the relationship between sPS and zPS by varing the mutation
duration time (see Figure 2). As shown in Figure 2, there was a negative correlation between
them irrespective of the mutation duration time T (All p-values < 0.0001 using t-test). This
implies that our measure is different from the previous measure. This is because zPS
focused on the influential extent of the mutation, whereas sPS considers the degree of
influential difference caused by a pair of differences. In this regard, sPS can convey a novel
viewpoint of pleiotropy from the previous approach.

3.2. Relation of sPS and the Functional Importance Genes

Some pleiotropic genes are relevant to many functionally important genes such as
cancer genes, drug targets, essential genes, tumor suppressors, oncogenes, and disease
genes. For example, it is known that cancer is one of the lead causes of death in human
population [69,70], which comes from the accumulation of sequential mutations resulting
from cell abnormalities or genetic instability [71,72]. Accordingly, it is not surprising that
pleiotropic analysis has become very common in explore different cancer phenotypes [73].
Another examples is the investigation of drug-target genes through network-based analy-
sis [74,75], which shows a significantly different connectivity, more feedback loops, and
more evolutionary than non-drug target genes [76]. Thus, drug targets were considered
potential cancer therapeutics [77], and recently, they have been recognized as new therapeu-
tic targets for pleiotropic genes [78]. Furthermore, it has been identified that the deletion
of any essential genes can lead to death or infertility [79] and tend to be associated with
human disease genes [5,80]. Inspired by those results, we investigated the relationship
of sPS with functionally important genes. Firstly, we specified every KEGG gene into
‘cancer’, ‘drug-target (DT)’, ‘essential’, ‘tumor-suppressors (TSG)’, ‘oncogene (OCG)’, and
‘disease gene (DG)’ (see Supplementary Table S3 in detail). Secondly, we examined their
sPS values and classified them into two subset groups, ‘non-Zero sPS’ and ‘Zero-sPS’.
We compared the proportion of the functionally important genes between the two groups.
Figure 3a–f shows the result of cancer genes, drug targets, essential genes, tumor suppres-
sors, oncogenes, and disease genes, respectively. As shown in the figure, the ratio in the
non-zero sPS group is significantly larger than that in the zero-sPS group for all types
of functionally important genes and all mutation duration time T. In other words, the
functionally important genes tend to be more pleiotropic than the other genes based on
our in silico model. It is interesting that this result is relevant with some previous studies.
For example, the gene TERT was found to be a pleiotropic cancer gene associated with
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12 different cancer types [81], while PTPN2 was confirmed as a pleiotropic gene associated
with several autoimmune diseases [82]. This result indicates the promising usefulness of
sPS to predict the unknown pleiotropic role of functionally important genes.
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3.3. Relation of sPS and the Structural Characteristics

Some previous studies have shown that the structural characteristics of a gene in
signaling networks are related to its dynamical behavior [59,60]. In this regard, we ex-
amined the relation of sPS with the structural characteristics, specifically, the degree, the
involvement of feedback loops, and some centrality measures (Figure 4). For every KEGG
genes, we first compared the correlation coefficients between degree/in-degree/out-degree
of genes with sPS values.

As shown in Figure 4a, all degrees showed significantly positive correlations, irrespec-
tive of the mutation duration time T. It means that the sPS values tend to be larger as the
number of degree/in-degree/out-degree gets larger. In addition, we observed that the
correlation coefficient of sPS with in-degree was relatively lower than those with degree
and out-degree. In fact, the difference of the average sPS between two gene groups classi-
fied by in-degree values was not as large as that when two gene groups were classified by
degree or out-degree values (see Figure S2 in Supplementary Information). It is interesting
that degree shows more apparent relation than either specific sub degree type. Next, we
examined the relation of sPS with the involvement of feedback loops. Thus, we classified
each gene into ‘FBL’ and ‘No FBL’ groups if the gene was involved with any feedback loops
or not, respectively, and then compared the average sPS values of the groups. As shown
in Figure 4b, the average sPS value of ‘FBL’ group is significantly larger than that of ‘No
FBL’ group. This implies that a gene tends to be more pleiotropic when it is involved with
feedback loops. Moreover, we computed the correlation coefficient between the number of
feedback loops and sPS values and found significant positive relations (see Figure S3 in
Supplementary Information; All p-values < 0.0001 using t-test). This implies that feedback



Biomolecules 2022, 12, 1139 9 of 16

loops can play an important role in pleiotropy, as indicated in a previous study [83]. This
result is intriguing because many previous studies have shown the relation of feedback
loops with various dynamical behavior of biological networks [62,84]. For example, the
FBL plays role in amplifying (positive feedback loop) or inhibiting (negative feedback loop)
of the intracellular signals [62,84], related to disease comorbidity [85], or protein–protein
interaction [64]. Thus, this result can add the importance of feedback loop structure in
terms of the network dynamics. Finally, we examined the relations of centrality measures
such as closeness, betweenness, stress, and eigenvector with sPS values and found that all
of them have positive correlations (all p-values < 0.0001 using t-test), irrespective of the
mutation duration time (Figure 4c). In other words, it is likely that the more central gene
in signaling networks shows a higher sPS value. In particular, the correlation coefficient
of closeness, which indicates how closely a gene is located to other genes in a network,
was the largest. On the other hand, the correlation coefficient of stress was the lowest. It
is interesting that our centrality result is consistent with some previous results showing
that pleiotropic genes were more central in protein interaction networks [4,17]. In addition,
we examined the correlation coefficient of sPS values with degree/in-degree/out-degree
of nodes, feedback loops, and centrality measures in the BA random networks and could
observe consistent results (see Supplementary Figure S4). This implies that our results are
principles not only in real networks but also in artificially structured networks.
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3.4. Biological Evidence of Pleiotropic Genes Based on sPS

To reveal novel candidate pleiotropic dynamics by the sPS measure, we profiled the
genes with high sPS values from the KEGG network. A total of 29 genes are shown in
Table 2. Among them, ten genes were known to be the real pleiotropic genes, for example,
the PIK3CA (PIK3) gene, which is found to be most pleiotropic among targets of drugs abuse
in pharmacological experiments [86], and the ABL1 gene, which is expressed in all tissues
of mice pleiotropic phenotype T-cell signaling [87]. In addition, it was reported that EGFR
gene is a marker of pleiotropic effects in underlying kidney function and cardiovascular
disease [88]. It was clear that those genes were involved with many cancer types, associated
with drug targets, essentials, and disease genes. On the other hand, we found 19 novel
candidate genes in Table 2 that are not known in the experimental pleiotropic database. This
suggests that sPS can predict the unknown pleiotropic genes. As shown in the table, those
genes are very interesting because most of them are associated with various functionally
important genes such as cancer, drug target, oncogenes, tumor suppressors, essentials,
or disease genes. Specifically, all such genes were associated with disease genes. This
implies that disease genes tend to be pleiotropic. Further, we map the listed genes in
Table 1 into KEGG sub-network (Figure 5; see Figure S5 in the Supplementary Materials for
original network) for visualization. We note that only the listed genes and their neighbors
were included in the sub-network. In the figure, the known pleiotropic genes and the
novel candidate pleiotropic genes were marked by a blue and a yellow circle, respectively.
Interestingly, the novel candidate pleiotropic genes were located closely to the known
pleiotropic genes (most of the yellow circle was located from one of blue circle with length
1 in the network). This implies that the novel candidate pleiotropic genes tend to closely
interact with the known pleiotropic genes in the signaling network. This was relevant to a
study that found that larger effects of pleiotropy can also be caused by correlated effects
among traits [89] or the regulatory networks that are so highly interconnected influence
neighbor genes to have effects on the core disease genes [90]. In addition, most novel
candidate pleiotropic genes were involved in feedback loops in the network. Moreover,
their in-degree tends to be smaller than their out-degree. Hence, we can conclude that
novel candidate pleiotropic genes are not only associated with certain functional influence
genes but also have certain structural characteristics. Taken together, our sPS measure can
be more efficiently used to reveal novel candidate pleiotropic genes when it is combined
with structural characteristics index.
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Table 2. Significant pleiotropic genes in KEGG network.

No. Gene Name HPO sPS zPS NuCancer DT ES TSG OCG DG Deg In-Deg Out-Deg NuFBL

1 ABL1 1 0.6 −0.35 23 1 1 0 1 1 27 15 12 4588
2 PIK3CA 1 0.7 −0.06 19 1 1 0 1 1 51 45 6 40,101
3 EGFR 1 0.45 0.11 21 1 1 0 1 1 73 41 32 225
4 SERPINA1 1 0.21 −0.34 60 1 0 0 0 1 1 0 1 0
5 CAMK2B 1 0.44 −0.04612 0 1 0 0 0 1 15 10 5 19,612
6 PPP1CB 1 0.55 −0.06861 1 0 1 0 0 1 28 3 25 30,526
7 CAMK2A 1 0.63 −0.30841 0 1 1 0 0 1 15 10 5 19,612
8 NRAS 1 0. 78 −0.40583 1 0 1 0 1 1 44 28 16 20,154
9 CHP1 1 0.45 −0.08359 0 1 1 0 0 1 10 8 2 2970

10 PLA2G6 1 1 −0.42082 303 1 1 0 0 1 10 10 0 0
11 IGFBP3 0 0.45 0.08 1 1 1 1 0 1 1 0 1 0
12 PRKCA 0 0.48 0.06 0 1 1 0 1 1 24 7 17 10,054
13 ITGAM 0 0.86 −0.4 0 0 0 0 0 1 9 3 6 260
14 ROCK2 0 0.59 −0.12 0 1 1 0 0 1 7 3 4 39,206
15 PPP1CC 0 0.42 0.09 0 1 1 0 0 1 28 3 28 30,526
16 PPP1CA 0 0.52 −0.02 0 1 1 1 0 1 28 3 25 30,526
17 PRKAA1 0 0.40 −0.2035 0 1 1 1 0 1 3 0 3 0
18 PPP1R12A 0 0.73 −0.27844 0 0 1 0 0 1 15 3 12 7624
19 CDK2 0 0.61 −0.36836 0 1 1 1 0 1 10 3 7 4
20 PPP1CC 0 0.451327 0.043803 0 1 1 0 0 1 28 3 25 30,526
21 RALBP1 0 0.428571 −0.00116 0 0 0 0 0 1 6 2 4 648
22 CBLB 0 0.6045 −0.02364 1 0 1 0 1 1 60 4 56 1202
23 WNT11 0 0.5455 −0.34588 0 0 1 1 0 1 17 7 10 0
24 CAMK2D 0 0.75 −0.27844 0 1 0 0 0 1 15 10 5 19,612
25 CRK 0 1 −0.42082 0 0 1 0 1 1 45 31 14 5391
26 CALML5 0 0.4455 0.036309 0 0 0 0 0 1 36 9 27 11,451
27 GRIA1 0 0.90625 −0.39834 0 1 1 0 0 1 10 9 1 13,272
28 GRIA2 0 0.619048 −0.18102 0 1 1 0 0 1 10 9 1 13,272
29 GNA12 0 0.317647 0.013827 1 0 1 0 1 1 23 6 17 2528

HPO = 1 means the gene was confirmed in the real observational pleiotropic database, otherwise 0. DT = 1,
ES = 1, TSG = 1, OCG = 1, DG = 1 means the gene involves with drug-target, essential, tumor-suppressors,
oncogenes, or disease genes, respectively, otherwise 0. NuCancer abbreviates the number of associated cancer
types. Deg/In-Deg/Out-Deg denote the values of node degree/in-degree/out-degree. NuFBL abbreviates the
number of feedback loops involving gene.
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4. Discussion

In this study, we defined pleiotropic scores (sPS), which represents how much the
dynamics of a gene is affected against a couple of different mutations, herein the knockout
and the overexpression mutations, using a Boolean network model. We investigated our
approach using the KEGG signaling network. It was interesting to observe that the affected
genes with high sPS values were related to the real pleiotropic data and can explain the
dynamical behavior of pleiotropic genes. More interestingly, the various functionally
important genes were related to pleiotropic genes. Further, we also found that novel
candidate pleiotropic genes tend to closely interact with the known pleiotropic genes in
the signaling network. These results will enhance the understanding of dynamical effects
on pleiotropic genes, especially in large-scale biological systems. Despite the usefulness
of our approach, there are some limitations caused by the Boolean network model used
in this study. The first concern is the use of the nested canalyzing function to represent a
update of a gene status. However, some previous studies have proven its usefulness in gene
regulatory interactions. For example, 133 out of 139 rules compiled from a dataset about a
transcriptional regulatory network [50], or 39 out of 42 rules inferred from a dataset about
signaling pathways [91] can be classified into the nested canalyzing functions. Another
concern is the synchronous update scheme, which is less realistic than the asynchronous
update scheme. In fact, it is likely that the genes in the real signaling networks are regulated
in an asynchronous update rule. However, it is required to properly specify some unknown
parameters to implement the asynchronous scheme. For example, the asynchronous update
assumes that only one node can change state at any given moment, and each node has
the same probability of being updated [26]. This implies that the asynchronous update is
valid only when a correct strategy to choose an update sequence is known. In this regard,
a future study will include an approach to infer the update rule from real biological data
instead of generating random update rules. In addition, it will extend to a more generalized
analysis considering various mutation types.

5. Conclusions

Pleiotropy refers to the ability of different mutations within the same gene to cause
different pathological effects, and many computational methods have been suggested to
unravel the dynamics of the pleiotropy. However, little is known in identifying more com-
plicated dynamical relations of gene pleiotropy, since most of them focused on undirected
molecular interaction networks. Therefore, a new perspective is needed to investigate the
dynamical characteristics induced by gene–gene pleiotropic. In this work, we proposed a
measure to compute gene–gene in silico pleiotropic scores (sPS) representing how much
the gene is affected against the different type of mutations on dynamics using a Boolean
network model. We considered knockout and overexpression mutations to compute sPS
values. Through intensive investigations, we found that some functional importance genes
such as cancer, drug-target genes, tumor suppressors, oncogenes, essential genes, and
disease genes tend to have non-zero sPS values than other genes. Next, we investigated the
relationships of sPS and structural properties and found that there are positive correlations
with the number of nodes’ degree/in-degree/out-degree, feedback loops, and centrality
measures such as closeness, betweenness, stress, and eigenvector. More interestingly, we
were able to find some biological evidence confirming that sPS is relevant to real pleiotropic
data and can be used to find novel candidate pleiotropic gene characteristics. Overall, our
results suggest the usefulness of sPS in understanding the dynamics pleiotropic in complex
biological systems.
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genes (continuous).
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