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ABSTRACT: Poly(lactic acid) (PLA), one of the pillars of the current overarching
displacement trend switching from fossil- to natural-based polymers, is often used in
association with polysaccharides to increase its mechanical properties. However, the use
of PLA/polysaccharide composites is greatly hampered by their poor miscibility, whose
underlying nature is still vastly unexplored. This work aims to shed light on the
interactions of PLA and two representative polysaccharide molecules (cellulose and
chitin) and reveal structure−property relationships from a fundamental perspective
using atomistic molecular dynamics. Our computational strategy was able to reproduce
key experimental mechanical properties of pure and/or composite materials, reveal a
decrease in immiscibility in PLA/chitin compared to PLA/cellulose associations, assert
PLA-oriented polysaccharide reorientations, and explore how less effective PLA-polysaccharide hydrogen bonds are related to the
poor PLA/polysaccharide miscibility. The connection between the detailed chemical interactions and the composite behavior found
in this work is beneficial to the discovery of new biodegradable and natural polymer composite mixtures that can provide needed
performance characteristics.

■ INTRODUCTION
In response to growing environmental and safety challenges as
well as governmental regulations and incentives, policymakers
and industry stakeholders are steadily spearheading the
replacement of conventional fossil-based polymers for
biodegradable and renewable materials.1−3 Polylactic acid
(PLA), a polyester product of (L- and/or D-)lactide, is one of
the leading materials in this transition, since it combines good
end-product features (e.g., thermoplasticity, high-strength/
modulus, and low-temperature processability) with an eco-
friendly nature due to its biocompatibility, renewable sources
(e.g., corn, rice), recyclability, and benign degradation.4

Therefore, PLA has been applied in various industrial sectors
such as packaging, fibers and textiles, automotive, pharma-
ceutical, and medical industries.5,6 However, its application
range is still limited by some of its mechanical properties, such
as inherent brittleness, poor impact strength, and low thermal
stability.4,7,8

Diverse alternatives have been employed in the last decades
to enhance the toughness of PLA and achieve more balanced
mechanical properties in this material, including plasticization,
blending with other (bio)polymers, copolymerization, and
incorporation of fillers.7 Polysaccharides such as cellulose and
chitin have been considered as viable alternatives to enhance
PLA toughness because of their mechanical properties (e.g.,
biodegradability and high strength), affordability, and bioavail-
ability.8,9 Due to their underlying hydrophilicity, this class of
materials also promotes the PLA’s hydrolytic degradation, thus

rendering it more biodegradable.10 However, PLA association
with polysaccharides is severely hampered by their poor
compatibility, partially remediated with several strategies,
including aspect ratio modification,11 blending with plasticizing
agents,12 interphase cross-linking,13 and surface modification.14

Molecular simulation techniques offer a powerful toolset in the
effort of PLA compatibilization with other biorelevant matrices
by allowing the derivation of bottom-up structure−property
relationships from nanoscopic insights. For instance, atomistic
and mesoscopic molecular dynamics (MD) simulations have
been employed in the prediction and rationalization of the
miscibility and/or mechanical properties of PLA blends with
poly(styrene) and poly(vinylphenol),15 poly(styrene-co-vinyl-
phenol),16 poly(hydroxybutyrate),17 poly(butylene succi-
nate),18 poly(ε-caprolactone),19 and poly(ethylene glycol).20

Naturally, MD simulations have also been instrumental in
the characterization of PLA blends with polysaccharides.
Particular attention has been devoted to the characterization
of PLA blends with unmodified21 and functionalized22,23

cellulose nanocrystals (CNC). Such focus on CNC-containing
PLA composites is clearly justified by the superior mechanical
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characteristics of pristine CNC,24 despite its poor miscibility
with PLA. However, it has been shown that, due to better
interphase interactions, both the mechanical properties (e.g.,
tensile strength and elongation) and hydrolytic degradation
properties of PLA/cellulose composite samples are improved
when amorphous cellulose is employed in lieu of traditional
crystalline samples.25 Recent computational work26 comple-
ments this finding by shedding light on the role of cellulose
rearrangement on the improvement of the tensile properties of
cellulose-containing PLA formulations. Still, much less
consideration has been given to other important polysacchar-
ide associations with PLA, such as chitin and chitosan.

In this work, using advanced MD workflows, we aim at
bridging this gap and expanding the fundamental knowledge of
polysaccharide/PLA associations by (i) investigating their
mutual orientation and bulk organization, (ii) explaining
important mechanical properties such as elastic constants,
tensile strength, and glass transition temperature at the
molecular level, and (iii) exploring the role of intermolecular
interactions on the final properties of amorphous cellulose- and
chitin-containing PLA formulations.

■ MATERIALS AND METHODS
PLA, cellulose, and chitin structure models were created
considering polymeric chains with degrees of polymerization of
50 and 20, respectively, and terminated with hydroxyl groups
(see Figure 1). These degrees of polymerization were chosen

considering the trade-off between computational efficiency and
representability of the entanglement and mechanical properties
of polymers. These values were also based on previous
dedicated studies and deemed adequate to represent several
experimental properties of the polymers studied herein.26−29

To investigate the influence of different polysaccharide
concentrations on the mechanical properties and hydro-
philicity of PLA matrices, we selected five sets of cellulose-
and chitin-containing PLA composites with different concen-
trations summarized in Table 1. As performed in previous
literature work,26 we study a large range of molar
polysaccharide proportions in these composites, maintaining

PLA as the main component. We considered equal amounts of
PLA chains in the L and D configurations.

Schrödinger Materials Science Suite, version 21-430 was used
for all models and simulations. PLA, cellulose, and chitin
structure models were randomly positioned in periodic
simulation boxes using the random walk (Tangled Chain)
scheme of the Disordered System Builder having an initial
density of 0.5 g/cm3. Using this construction scheme, we
ignored crystalline or semicrystalline organizations and instead
considered all systems as fully amorphous.

The OPLS4 force field,31 including atomic point charges,
and van der Waals parameters as well as bonded interaction
terms was used. The force field has been shown to be accurate
in predicting the thermal properties of a large chemical space
of polymeric structures including polysaccharides.32,33 Molec-
ular dynamics (MD) simulations using the GPU-accelerated
Desmond engine34,35 were used to relax the constructed
systems and perform property calculations. Dispersive
interactions were limited to a cutoff of 9 Å radius while
electrostatic interactions were calculated using the U-series
treatment.36

For each polymeric system considered, 10 replicates with
different initial atomic configurations were generated to
improve statistics of the calculated polymer’s properties.
These systems were initially relaxed with a sequence of a 20
ps Brownian minimization in the canonical ensemble (NVT)
at 10 K, a 20 ps Brownian minimization in the isothermal−
isobaric ensemble (NPT) at 100 K, and a 100 ps MD run in
the NPT ensemble with a 1 fs time step using the Nose−
Hoover chain thermostat37,38 and the Martyna−Tobias−Klein
(MTK) barostat39 with respective relaxation times of 1 and 2
ps. To further equilibrate these systems, they were annealed to
a molten/amorphous state (above their glass transition
temperature) at 800 K for 5 ns followed by a cooling ramp
at a 2 K/ns rate until 300 K. These configurations were then
used as input for final production MD simulations in the NPT
ensemble at 300 K and 1.013 bar for 20 ns with a 2 fs time
step. Such simulation times are significantly longer than the
ones regularly employed in the literature,26,40−42 however, to
ensure that the equilibrium stage had been reached during
these runs, we analyzed the density evolution with time for
each simulation. As reported in Figure S1, we can observe that
equilibrium is reached within the first nanosecond of
simulation.

From the equilibrium stage of these production simulations,
several primary properties such as density, molar volume, and
cohesive energy were calculated. van der Waals (δvdW) and
electrostatic (δQ) components of the Hansen solubility
parameters were respectively obtained from the square root
of the division of the van der Waals (dispersive) and
electrostatic contributions of the cohesive energy (Ecoh) by

Figure 1. Molecular models employed in the representation of PLA
(a), cellulose (b), and chitin (c). Example of an MD-equilibrated
molecular model of a cellulose/PLA (respectively in green and pink)
system (d). C, O, H, and N atoms are, respectively, represented in
gray, red, hydrogen, and blue colors.

Table 1. Polysaccharide Content and Number of Chains of
Each Component in PLA/Polysaccharide Microscopic
Models

polysaccharide content (mol %)

number of chains

PLA polysaccharides

0 20 0
20 20 5
36 18 10
48 16 15
100 0 20
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the molar volume (Vm). The total Hansen solubility parameter
(δH) is then related to the individual components through the
formula δH

2 = δd
2 + δp

2. The hydrogen bond contribution is
included in the other terms for OPLS4. The distance between
Hansen parameters of different components (Ra) is given by
eq 1.43

= +Ra 4( ) ( )2
vdW,1 vdW,2

2
Q,1 Q,2

2
(1)

Energies of mixing (ΔEmix) in PLA/cellulose and PLA/
chitin blends were determined using eq 2, where φ and V,
respectively, stand for the molar composition and volume. A
and B stand for the pure systems and AB for PLA/
polysaccharide blends, respectively.
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Glass transition temperatures (Tg) were estimated by first
bringing the polymeric systems to a high temperature (800 K)
and then conducting stepwise cooling stages with 10 K
intervals and NPT MD simulations being carried out for 5 ns
in each stage until 100 K is reached. In each MD stage, we
tracked the density changes in each system. At the end of each
of them, if the density standard deviation exceeds 5%, an
additional 5 ns long NPT MD was performed. We used a 1 fs
time step for temperatures higher than 700 K and 2 fs time
step for temperatures below that temperature. We used a
hyperbolic fit44 to the density vs temperature curve to identify
the high- and low-temperature asymptotes. In this method, Tg
is defined as the temperature at which the intersection of these
asymptotes occurs. As described in a previous publication,32

we opted for this method as it overcomes ambiguities
associated with bilinear fits, namely, the selection of the valid
ranges for the high- and low-temperature linear zones and
allows for easy automated estimation of Tg values.

Elastic constants were calculated using a stress-based
method42,45 in which successive small strain increments
(0.2%) were applied to each structure model’s periodic
structure followed by 1 ns long Brownian minimizations at
10 K. From a linear fit of the resulting stress as a function of
the applied strain, we derived the stiffness matrix of each
material. With the assumption of the isotropic structure, we
calculated the Young’s modulus (I), shear modulus (G), and
Bulk modulus (κ) from the Lame ́ constants (λ, μ) (eqs 3 to
5).42,46

= + +E (3 2 )/( ) (3)

=G (4)

= +B 2 /3 (5)

Mechanical strain curves were generated by considering two
strain types. A strain type is defined in terms of the parameter
η, which relates the transverse strain increment (ε2 or ε3) to
the main axis strain increment (ε) by eq 6. In this work, we
considered η values corresponding to volume-conserving
uniaxial (η = 0.50) and pure uniaxial (η = 0.0) tensile loadings
with a constant strain rate of 1.5 × 108 s−1 for each of the three
Cartesian axes and then averaged over such axes. For each axis,
200 consecutive steps of 2 ns long NVT MD calculations were
performed at 300 K with strain increments of 0.002 ns of the
axis length. From the normal component of the stress−strain
curves (σnormal), we obtained the yield stress (σyield) and

ultimate stress (σultimate), respectively, defined as the maximum
stresses of the elastic and plastic deformation regimes.46

= + +1 (1 )2 (6)

The ⟨P2⟩ order parameter was used to identify structural
changes in the polymeric models and is defined by eq 7, where
θ is the angle between a segment vector and the orientation
axis of a probe molecule. We used the end-to-end distance (h)
and radius of gyration (Rg) to measure the compactness of the
polymer macromolecules. The former is straightforwardly
determined from the longest bond path ends, while the latter
is calculated from the average squared distance of any polymer
atom from its center of mass (eq 8). To measure the stiffness
of the polymeric backbone, we calculated the persistence
length (Lp), the distance over which two points in the polymer
chain become decorrelated, and can be calculated by eq 9. In
eqs 7−9, N is the number of atoms in the polymer, rk and rmean
are, respectively, the vector of the coordinates of a k-th atom
and the center of mass of the molecule, and L0 is the extended
chain length.
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The location and size of voids in the polymeric structures
were determined by a grid-based method where grid points are
in a void if they do not fall within the van der Waals radius of
any atom plus a probe radius. In this void estimation
procedure, grid spacings were defined with a 0.25−1 Å range
and a probe radius of 1.40 Å was utilized.

Hydrogen bonds were identified using a geometric criterion
where a hydrogen bond is identified when both the distance
between a donor (D) and acceptor (A) is less than 3.4 Å and
the D−H−A angle is larger than 120°. We calculated the
hydrogen bond lifetime in our polymeric systems using a
continuous autocorrelation function for the hydrogen bond,47

as given in eq 10:

=
+

C
h t h t

h t
( )

( ) ( )

( )
ij ij

ij

0 0

0
2

(10)

where to hij is returned a value of 1 or 0, respectively,
whether a hydrogen bond occurs between the i-th and j-th
atoms. The hydrogen bond lifetime (τLT) is then obtained by
fitting a bi-exponential curve to eq 10, as shown in eq 11:

= +A t B texp( / ) exp( / )LT 1 2 (11)

■ RESULTS AND DISCUSSION
Miscibility and Mutual Organization. To evaluate the

properties of the two PLA/polysaccharide blends studied in
this work, we first explored the individual characteristics of
each of the polymeric components. Polylactic acid displays
interaction patterns considerably different from those shown
by polysaccharide molecules. PLA presents a predominance of
dispersed forces, as clearly seen in the van der Waals
component of the Hansen solubility parameter (δH

PLA). On
the other hand, cellulose and chitin show a much larger
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presence of polar interactions, such as those found in hydrogen
bonds. This is again clearly seen in their respective solubility
parameters (δHcell and δH

chitin), which display a predominance of
its electrostatic components (cf. Figure 2a). Interestingly, the
van der Waals (vdW) component of δH

cell and δH
chitin is similar to

the same component of δH
PLA, indicating that the dispersive

interaction is similar between the PLA and polysaccharide
phases.

When compared to experimental measurements, our
calculated δH

PLA values showed varying degrees of agreement.
For instance, the δH

PLA value (19.7 MPa0.5) matched exactly
experimental measurements (19−20.7 MPa0.5),48−50 while δH

cell

(26.5 MPa0.5) and δH
chitin (23.6 MPa0.5) are considerably lower

than their corresponding experimental values (29.3 MPa0.5 and
41.15 MPa0.5).51,52 The discrepancy between calculated and
experimental solubility parameters observed in the poly-

saccharide materials can be explained by the inherent
crystallinity of typical experimental samples, particularly the
polysaccharide components.

Solubility parameters are particularly useful when they are
compared with a reference phase. The solubility parameter
distance (Ra) is commonly used as a simplified way to quantify
the difference in miscibility between two components, where
the larger the Ra is, the larger their immiscibility. Knowing that
polysaccharides and PLA are well-known experimentally by
their mutual immiscibility, we then compared Ra parameters
for both cellulose/PLA (Racell = 12.4 MPa0.5) and chitin/PLA
(Rachitin = 8.7 MPa0.5). This clearly confirms that these
polysaccharides are far from being soluble in PLA; however, it
also shows that chitin is much closer in miscibility to PLA than
cellulose.

Figure 2. Hansen solubility coefficient (solid lines) and its van der Waals (dashed lines) and electrostatic (dotted lines) components obtained from
cellulose- (black lines) and chitin-containing (blue lines) PLA blends (a) and energies of mixing of such blends at different polysaccharide contents
(b).

Figure 3. Representative snapshots of 20 mol % cellulose- (a) and chitin-containing (d) PLA composites and their respective density heat maps,
displaying the density of cellulose (b), chitin (e), and their respectively associated PLA matrices (c,f).
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Despite the useful trends offered by the analyses of
miscibility parameters, they do not provide a full picture of
the miscibility in PLA/polysaccharide mixtures. Since these
parameters are based on the cohesiveness of pure phases, they
do not consider the mutual entropic interactions between
these two phases during their mixing. Alternatively, the energy
of mixing (eq 2) provides a good picture of the energy penalty
related to the mixing of the two polymeric phases considered
in this work. As shown in Figure 2b, one can see that the
mixing of polysaccharides to PLA is repulsive with energies
reaching 1.4−2.7 cal/cm3 and 1−1.95 kcal/cm3 for cellulose
and chitin. Here, we see again by the lower repulsion energy
upon chitin mixing into PLA that this polysaccharide seems to
be more compatible with the PLA matrix.

Interestingly, one can notice that the ΔEmix values remain
stable at different polysaccharide concentrations. This is an
indication that the PLA and polysaccharide components form
two distinct phases. Such overall phase segregation in PLA/
cellulose and to a lesser degree in PLA/chitin systems is
confirmed by tracking the density maps of atoms belonging to
each polymeric group, as seen in Figures 3 and S2. This
spontaneous nanoscopic scale segregation has been seen
experimentally using atomic force microscopy imaging on
PLA/cellulose systems,8 which reveals the nucleation of
separate cellulose strands within a PLA matrix.

Density, Void, and Structural Analyses. To determine
how well our computational methodology can describe the
bulk organization of the polymers studied herein, we compared
MD-obtained and experimental densities of PLA and the
polysaccharides. As shown in Figure 4, one can see that the

calculated PLA density (1.22 g/cm3) is quite close to the
experimental density value (1.25 g/cm3) reported for
amorphous PLA.4,53 A similar agreement is also observed for
cellulose, with a calculated density value (1.41 g/cm3) close to
values usually seen in bulk amorphous cellulose substrates
(1.39−1.48 g/cm3).54,55 Since chitin is obtained from organic
substrates, it shows different true densities depending on its
origin source (1.2−1.4 g/cm3).56 Figure 4 shows that our MD-
obtained chitin density (1.30 g/cm3) is located within this
density range. This, together with a previous benchmark

study,33 suggests that our model provides a good description of
the self-organization of these polymeric materials.

Interestingly, we observed that amorphous polysaccharide
macromolecules are re-oriented due to the PLA presence. This
can be clearly seen by inspecting the ⟨P2⟩ order parameters (cf.
Figure 5a) of these molecules, which changes from a stage of a
near absence of long-range ordering in their pristine state (in
conformity with previous experimental findings)57,58 toward a
more directionally oriented configuration upon increasing
concentrations of PLA. However, as we can see by the bimodal
distribution profile of ⟨P2⟩ order parameters in Figure S3, this
reorientation has at least two directions, and there are some
portions of polysaccharide molecules not fully aligned in the
composites even at the highest PLA concentrations. We
attribute this PLA-induced polysaccharide reorientation to
both the ineffective PLA/polysaccharide intermolecular bonds
and the efficient self-interactions in the polysaccharide phases
(vide infra).

As one might expect, this chain reconfiguration greatly
affects the extension properties of the carbohydrates. In Figure
5b,c, we can notice that the radius of gyration and end-to-end
distance of the carbohydrates increase with larger concen-
trations of PLA. This is a clear indication that the presence of
an adjacent PLA matrix induces the aggregation and linear
orientation of the polysaccharide strands. This more linear
configuration of polysaccharide molecules when surrounded by
a PLA matrix can be verified at the molecular level upon
analysis of torsional angles φ and ψ associated with the
glycosidic linkage in both polysaccharides. As seen in Figure
S4, the distribution of φ and ψ is considerably narrower
around, respectively, −150° and 110° when the polysaccharide
molecules are embedded in the PLA matrix than in their
pristine amorphous state, indicating more linearly organized
backbones. Such PLA-induced polysaccharide reorganization
positively impacts the rigidity of these molecules, as seen by
inspecting the persistence length profiles of Figure 5d.

Similar behavior of polysaccharide molecules within soft
polymer matrices has also been observed experimentally.59

Interestingly, the PLA molecules did not appear to be greatly
affected in terms of their self-organization or rigidity in the
presence of the polysaccharide molecules. Experimentally,
PLA’s crystallization was seen to be favored with the presence
of cellulose60 and chitin.61 However, the lengthy time scales
and nucleation barriers involved in such crystallization events,
limited their capture in this atomistic molecular dynamics
study.62,63 Given that recently, coarse-grained molecular
dynamics calculations were successfully employed to explore
the characterization of such crystallization events in pure
PLA,64 future studies extending the use of this computational
approach to PLA composites could be of interest.

Prediction of Mechanical Properties. After this
discussion on the structuring of PLA, polysaccharides, and
their composites, we turn our attention to the mechanical
properties of these materials. In practical applications,
assembling PLA composites has as its primary goal the
improvement of tensile-related properties since pristine PLA
suffers from, among other issues, small elongation at break and
poor impact strength. Since the lengths of the polymers in this
study are smaller than the entanglement length,65 only
mechanical properties minimally impacted by the amount of
entanglement, moduli, and yield point, are selected for study.
Properties highly dependent on entanglement, e.g., strain-

Figure 4. Density values of microscopic models of PLA blends with
cellulose (black line) and chitin (blue line) at 300 K and 1.013 bar.
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hardening behavior, are disregarded as outside the scope of our
current models.

Elastic constants are typical properties used to characterize
the mechanical properties of polymeric systems. Among them,
Young’s modulus (E) is easily obtained experimentally from
tensile tests and therefore frequently measured in polymeric
systems. Other related properties such as bulk modulus (κ)
and shear stress (B) are less easily measured and more often
obtained indirectly.66 In order to analyze the elastic behavior of
our PLA/polysaccharide systems, we constructed elastic
tensors as described in the previous section. To validate such
a methodology, we initially compared the elastic moduli of
both PLA and polysaccharide materials in their pristine state.
As seen in Figure 6, the computed E value for PLA (5.5 GPa)
somewhat overestimates the value range typically obtained
experimentally at room temperature (3.5−4.1 GPa),67,68

probably due to the higher strain rates employed in our
simulations in comparison with the ones employed exper-
imentally. On the other hand, our in-silico E values for
cellulose (15.1 GPa) are in conformity with the higher range of
experimental values obtained for amorphous cellulose (13
GPa)24,69 and cellulose fibers (10.9 GPa)70 and somewhat
higher than the previous simulated values for amorphous
cellulose (10.4 GPa,42 14.6 GPa,71 and 5.6 GPa29). The same
correspondence was obtained for chitin, whose computed E
value (9.8 GPa) agrees with experimental measurements in
chitin films (6.7−8.8 GPa).72−75 This fundamental difference
in tensile strength between chitin and cellulose may be
explained by the inherent presence of large void volumes in the

chitin matrix (Figure S5). The presence of larger void zones is
indicative of less compact material and therefore more
amenable to stress−strain. Moreover, as explained elsewhere,29

one can also directly correlate the stress properties of a
polysaccharide with its hydrogen bond cohesiveness.

As seen in Figure 6, we predict a substantial gain in Young’s
modulus of the PLA composites with respect to the pristine
PLA material. Interestingly, the significant difference observed

Figure 5. ⟨P2⟩ order parameter (a), end-to-end distance (b), radius of gyration (c), and persistence length (d) of cellulose and chitin in their
pristine state and in blends with PLA (solid lines), as well as corresponding analysis for PLA in its pristine state and in blends with different
concentrations of polysaccharides (dashed lines).

Figure 6. Elastic constants obtained from the molecular mechanics
workflow: Young’s modulus (solid lines), bulk modulus (dashed
lines), and shear modulus (dotted lines) of cellulose- (in black) and
chitin-containing (in blue) PLA composites and respective pristine
materials.
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between the E values of chitin and cellulose does not translate
in equal magnitude to their respective composites with PLA,
possibly due to the importance of crossed interactions with the
main PLA matrix. We can also note that in our computational
predictions, the polysaccharide-containing PLA composites
showed a considerable gain in their Young’s modulus if
compared with the pristine PLA material. Similar trends have
been observed experimentally for cellulose- and chitin-
containing PLA composites, which showed substantial gains
in elastic moduli in comparison with pure PLA.70,76,77

Besides the elastic properties, a thorough characterization of
the tensile properties of a material requires the evaluation of its
ultimate properties, (i.e., yield and ultimate tensile strengths).
In this work, we evaluated these properties by generating
stress−strain curves considering uniaxial and volume-conserv-
ing deformation behavior (see Figure S6).

PLA shows a tensile strength of ca. 63 MPa and an
elongation at a break of 1.8%.68 From our MD-obtained
stress−strain profiles, we can see that these characteristics are
well captured considering a volume-conserving deformation,
where the strain-induced axial elongation is compensated by
cross-sectional shrinking. In this configuration, PLA’s yield
stress (σyield = 79.7 MPa) and maximum plastic deformation
(2.9%) (cf. Figure S6) are on the same order of magnitude as
experimental measurements. This is a clear demonstration of
the malleable character of PLA.

In comparison with PLA, polysaccharides have, in general,
much higher tensile strengths owing to their stronger hydrogen
bonds and directional orientation, particularly in their
crystalline state. It is difficult to determine single representative
values for these materials since they widely depend on their
source material, crystallinity degree, and water content.78,79 For
instance, experimental tensile strength in cellulosic materials
may vary as much as from 300 MPa to 1 GPa.78 As seen for the
elastic constant values, experimental tensile stresses of
amorphous chitin are consistently lower, with values of 270−
320 MPa.74 The simulated values obtained for cellulose (σyield
= 391.6 MPa, σultimate = 540.9 MPa), and chitin (σyield = 294.2
MPa, σultimate = 451.6 MPa) (cf. Figure S6) with a pure uniaxial
applied strain are in similar ranges as the experimental values.
The same applied strain type has been previously used to
successfully predict the tensile properties of crystalline80 and
amorphous42 cellulose. The agreement between experimental
and simulated strain values considering pure uniaxial stress in
amorphous cellulose and chitin indicates that even in their
amorphous state, the tight binding provided by the hydrogen
bonds of these polysaccharides would prevent a cross-sectional
reordering of the material and favor a purely uniaxial strain
pattern. Interestingly, despite such larger stiffness of these
polysaccharides in comparison with PLA, they undergo a much
experimental larger deformation of ca. 7−8%42,74 with a clear
plastic deformation behavior before their rupture.

This apparent dichotomy of polysaccharides as stiffer yet
more deformable than PLA may be explained as a consequence
of a polymer chain rigidity/interweaving relationship. As seen
in Figure 5d, polysaccharide systems display higher persistence
lengths than PLA and are therefore more rigid. More flexible,
PLA is more prone to curling between one chain and another
and interweaving. Since its cohesiveness is dominated by weak
dispersive forces (cf. Figure 2a) PLA would exhibit facile
elastic deformation and malleable character that is then closely
limited by its further interweaving degree. As discussed
elsewhere,42 the deformation of glucose-based components

until their maximum strain (i.e., 7−8%) is directly associated
with the elongation/breaking of hydrogen bonds and increase
of relative free volumes. This could be understood as the
separation of closely packed (yet not fully interwoven)
segments of the polysaccharide macromolecules. Experimen-
tally, larger strains could potentially result in bond cleavage
that is not predicted by our molecular models.

The glass transition temperature (Tg) is another crucial
property of polymeric systems. Usually measured as the center
of a transition region from differential scanning calorimetry
(DSC) and/or dynamic mechanical analysis (DMA) experi-
ments, the Tg is characterized by long-range coordinated
molecular motions that lead to discontinuities on second-order
thermodynamics derivatives (e.g., isobaric heat capacity,
thermal expansion coefficient, and isothermal compressibil-
ity)81 of amorphous molecular systems. In Figure S7, we can
observe MD-obtained Tg values for cellulose (525.1 K), chitin
(535.9 K), and PLA (401.2 K). Comparing these values with
the experimental Tg values previously obtained for cellulose
(493−523 K),82−84 chitin (335−509 K)85,86 and PLA (323−
343 K),87−90 one can see that our computed Tg values are, in
varying degrees overestimating the experimental Tg values.
This is a common trend in MD-derived Tg values for polymeric
systems.32 On the one hand, this likely reflects an MD
limitation in reproducing long-range relaxations at cooling
rates orders of magnitude faster than the ones experimentally
measured. On the other hand, experimental Tg measurements
are also knowingly prone to imprecision related to the partial
crystallization of polymer domains or the presence of
plasticizing molecules (e.g., water) in the measured samples.81

Experimental Tg measurements in polysaccharides are
particularly imprecise due to their underlying hydrophilicity,
which favors the adsorption of water in their backbone, and
their Tg values being higher than their initial degradation
temperatures.91−93

We can also observe that the composite PLA models have
higher Tg values than pristine PLA (cf. Figure S7), following an
almost linear trend connecting the Tg of both polymer classes.
This linear trend may be associated with the behavior of the
two distinct phases contributing to the aggregate density curve
such that the total curve is a weight-average. Experimentally,
this prediction is not entirely fulfilled. This may be due to the
limitation in our microscopic models to represent the
macroscopic decorrelation between the immiscible PLA and
polysaccharide phases. However, in a recent study,94 it was
shown that while small cellulose contents (up to 5 wt %),
indeed induce a slight increase in the composite Tg, further
increase in the cellulose content induced a heterogeneous and
cold crystallization of the PLA matrix which resulted in a
stagnation and even reduction on the Tg value in comparison
with pristine PLA. This said PLA crystallization is observed
both with crystalline and amorphous polysaccharide samples25

and, together with plasticizing effects exerted by water
molecules inherently present in polysaccharide samples, may
contribute to a certain extent to the deviation between our
predictions and experiments.

Microscopic Analysis. Thus far, we have shown that
cellulose and chitin behave considerably differently in their
pristine state and in the presence of PLA in terms of
organization and mechanical properties. Nevertheless, one may
wonder about the underlying root cause of this difference. In
this section, we scrutinize the microscopic interactions taking
place in and between the PLA and polysaccharidic phases
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using radial distribution functions (RDFs) and hydrogen bond
(HB) analysis. Since we observed in Figure 2a that the van der
Waals interactions were practically unaltered with the
introduction of polysaccharides into the PLA matrix, we
judged the interactions between the polar groups of each
polymeric component to be more relevant. In the next
paragraphs, we detail the microscopic interactions taking place
between the PLA and polysaccharidic phases using radial
distribution functions (RDFs) and hydrogen bond (HB)
analysis.

The main PLA/polysaccharides interactions occur between
PLA’s carbonyl (HB acceptor, OCO* ) and terminal hydroxyl
groups (HB donor, OOH* ) and cellulose’s hydroxyl groups (HB
donor and acceptor, OOH) or chitin’s hydroxyl (HB donor and
acceptor, OOH)/amide groups (both HB donor, NNCO, and
acceptor, ONCO). Due to the predominance of OCO* groups in
PLA, it is the most relevant to the interactions with the
polysaccharide phases. As seen in Figure S8a,b, the hydroxyl
groups of both cellulose and chitin interact with the PLA’s
carbonyl groups by means of unfavorable hydrogen bonds with
RDFs of intensity less than 1 and similar donor−acceptor
equilibrium distances of ca. 2.9 Å.

Upon inspecting further the hydrogen bonds between PLA
and the polysaccharide phases (see Figure 7a,b), we see that

the donor groups of cellulose (hydroxyls, OOH) and chitin
(hydroxyls, OOH, and the NH portion of the amide groups,
NNCO) are not particularly engaged in HB bonds with the
carbonyl groups of the PLA phase. As seen in Figure 8a, only
an average of 0.1 HBs per OH group was observed in cellulose,
while in chitin, this value ranges from 0.1 to 0.2 HBs per OH
group and from 0.2 to 0.3 HBs per amide group. At the same
time, this clearly shows that OCO* groups in the main phase are
not particularly attractive to the donor groups of the
polysaccharides; it also reveals that donor groups in chitin
(particularly in the amide groups) are more prone to interact
with the PLA phase. It is also noteworthy that these hydrogen
bonds become majorly unfavorable upon increasing poly-
saccharide concentration, as supported by the decrease in their
lifetimes (τLT) upon this condition (cf. Figure 8a).

In analysis of another main hydrogen bond type occurring in
PLA/polysaccharide interactions (see Figure 7), we observed
terminal OOH* groups acting majorly as HB donors while ethers
(OCOC), hydroxyls (OOH) and the CO portion of amide groups
in chitin (ONCO) act as HB acceptors. In this case, upon an
increase in the polysaccharide concentration, we see a further

degree of engagement of the OOH* groups in HBs with the
cellulose and chitin, attaining respective HB/(donor group)
values of 0.55 and 0.35 with these components (see Figure 8a).
This suggests that enriching the PLA phase with other HB
donor components could be a sound strategy to enhance the
interaction between PLA and polysaccharide phases. Also
interestingly, the effectiveness of these interactions appears to
be higher in cellulose than in chitin, since HB lifetimes
respectively increase and decrease for the former and latter
upon increase of polysaccharide contents (see Figure 8a).

With respect to the interactions within the polysaccharide
phases themselves, we inspect the RDFs related to important
polar groups, first of all, the mutual interactions between
hydroxyl groups. As seen in Figure S9a,b, these interactions
have an equilibrium distance of 2.9 Å and are considerably
favored upon the decrease in polysaccharide concentration, in
conformity with the further degree of ordering of the
polysaccharide chains upon PLA addition. In chitin, due to
the presence of amide groups, other interactions are also
observed. Interactions between hydroxyls and amide groups
are quite significant (cf. Figure S10a) and are also promoted
upon PLA addition. Intra- and intermolecular self-interactions
between amide groups in chitin matrices are also relevant (see
Figure S10b) and seem to be reinforced upon reducing chitin
content in PLA composites. The efficiency of these interactions
is attested by the high intensity of the RDFs associated with
them.

Due to the abundance of hydrophilic sites in polysacchar-
ides, hydrogen bonds play a large role in their cohesion. In
cellulose, besides the β-glucose’s OH (HB donor and acceptor,
OOH), ether groups (HB acceptor, OCOC) are also able to
participate in HBs (see Figure 7). We observed a number of
0.78 hydrogen bonds per donor group in cellulose (Figure 8b).
These hydrogen bonds occur predominantly (79%) among the
hydroxyl groups and showed a relatively high average lifetime
(ca. 4 ns). Moreover, as seen in Figure 8b, while the presence
of PLA induces a marginal decrease in the number of HBs per
donor in cellulose, it triggers an increase in the HB lifetime
(reaching ca. 5 ns). In chitin, besides hydroxyl and ether
groups, amide (NCO) groups also participate in hydrogen
bonds both as HB donors (NH) and acceptors (CO). We
observed that in chitin, OH groups interact relatively evenly
with themselves (0.32 HB/OOH), NCO (0.29 HB/OOH), and
ether groups (0.24 HB/OOH), resulting in a slightly higher
number of HBs (0.85) per group than in cellulose. On the
other hand, NCO interacts much better with OH groups (0.29
HB/NCO) and themselves (0.25 HB/NCO) than with ether
groups (0.04 HB/NCO), resulting in a much lower HB count
for the group (0.58). Furthermore, as seen in Figure 8b,
differently than in cellulose, τLT values in chitin are
considerably lower with HBs involving at a time hydroxyl
groups or amide groups lasting for, respectively, only 2.7 and
3.5 ns. Both the smaller number of hydrogen bonds per acetyl
group and the ephemerality of its hydrogen bonds could
explain the less effective chitin’s self-reorganization (cf. Figures
3 and 5) in the presence of PLA.

■ CONCLUSIONS
We studied PLA associations with cellulose and chitin in terms
of their mutual morphology, mechanical properties, and
underlying mutual interactions. Our modeling and simulation
strategy demonstrated a full-scale reordering of polysaccharide
macromolecules upon large PLA concentrations and a reversed

Figure 7. Representative snapshots extracted from MD calculations
evidencing hydrogen bonds (blue dashed lines) formed among
molecules in 20 mol % cellulose-containing (a) and chitin-containing
(b) PLA composite structure models. Polysaccharide and PLA
molecules are respectively displayed in ball and stick and stick
representations. C, O, H, and N atoms are respectively shown in gray,
red, white, and blue colors.
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subtle reorienting of PLA molecules upon polysaccharides. Our
structural models were fully validated by their ability to predict
thermal, elastic, and stress straining properties of both pristine
and composite PLA and polysaccharide materials. Finally, we
carried out an extensive nanoscopic analysis of the main
interactions taking place in these components, shedding light
on the single- and dual-phase interactions between PLA and
cellulose or chitin. We expect that these results will offer
meaningful insights into the development of higher performing
PLA-based biopolymer materials.
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