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Abstract: Mesenchymal stem cells (MSCs) are considered a promising regenerative therapy 
due to their ability to migrate toward damaged tissues. The homing ability of MSCs is unique 
compared with that of non-migrating cells and MSCs are considered promising therapeutic 
vectors for targeting major cells in many pathophysiological sites. MSCs have many advan-
tages in the treatment of malignant diseases, particularly rheumatoid arthritis (RA). RA is 
a representative autoimmune disease that primarily affects joints, and secreted chemokines in 
the joints are well recognized by MSCs following their migration to the joints. Furthermore, 
MSCs can regulate the inflammatory process and repair damaged cells in the joints. 
However, the functionality and migration ability of MSCs injected in vivo still show 
insufficient. The targeting ability and migration efficiency of MSCs can be enhanced by 
genetic engineering or modification, eg, overexpressing chemokine receptors or migration- 
related genes, thus maximizing their therapeutic effect. However, there are concerns about 
genetic changes due to the increased probability of oncogenesis resulting from genome 
integration of the viral vector, and thus, clinical application is limited. Furthermore, it is 
suspected that administering MSCs can promote tumor growth and metastasis in xenograft 
and orthotopic models. For this reason, MSC mimicking nanoencapsulations are an alter-
native strategy that does not involve using MSCs or bioengineered MSCs. MSC mimicking 
nanoencapsulations consist of MSC membrane-coated nanoparticles, MSC-derived exosomes 
and artificial ectosomes, and MSC membrane-fused liposomes with natural or genetically 
engineered MSC membranes. MSC mimicking nanoencapsulations not only retain the 
targeting ability of MSCs but also have many advantages in terms of targeted drug delivery. 
Specifically, MSC mimicking nanoencapsulations are capable of encapsulating drugs with 
various components, including chemotherapeutic agents, nucleic acids, and proteins. 
Furthermore, there are fewer concerns over safety issues on MSC mimicking nanoencapsula-
tions associated with mutagenesis even when using genetically engineered MSCs, because 
MSC mimicking nanoencapsulations use only the membrane fraction of MSCs. Genetic 
engineering is a promising route in clinical settings, where nano-encapsulated technology 
strategies are combined. In this review, the mechanism underlying MSC homing and the 
advantages of MSC mimicking nanoencapsulations are discussed. In addition, genetic engi-
neering of MSCs and MSC mimicking nanoencapsulation is described as a promising 
strategy for the treatment of immune-related diseases. 
Keywords: stem cell migration, stem cell mimicking nanoencapsulations, autoimmune 
disease targeting strategy, exosomes, ectosomes, liposomes

Introduction
Given the multi-lineage differentiation abilities of mesenchymal stem cells (MSCs) 
isolated from different tissues and organs, MSCs have been widely used in various 
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medical fields, particularly regenerative medicine.1–3 The 
representative sources of MSCs are bone marrow, adipose, 
periodontal, muscle, and umbilical cord blood.4–10 

Interestingly, slight differences have been reported in the 
characteristics of MSCs depending on the different 
sources, including their population in source tissues, 
immunosuppressive activities, proliferation, and resistance 
to cellular aging.11 Bone marrow-derived MSCs (BM- 
MSCs) are the most intensively studied and show clini-
cally promising results for cartilage and bone 
regeneration.11 However, the isolation procedures for BM- 
MSCs are complicated because bone marrow contains 
a relatively small fraction of MSCs (0.001–0.01% of the 
cells in bone marrow).12 Furthermore, bone marrow 
aspiration to harvest MSCs in human bones is a painful 
procedure and the slower proliferation rate of BM-MSCs 
is a clinical limitation.13 In comparison with BM-MSCs, 
adipose-derived MSCs (AD-MSCs) are relatively easy to 
collect and can produce up to 500 times the cell population 
of BM-MSCs.14 AD-MSCs showed a greater ability to 
regenerate damaged cartilage and bone tissues with 
increased immunosuppressive ability.14,15 Umbilical cord 
blood-derived MSCs (UC-MSCs) proliferate faster than 
BM-MSCs and are resistant to significant cellular aging.11

MSCs have been investigated and gained worldwide 
attention as potential therapeutic candidates for incurable 
diseases such as arthritis, spinal cord injury, and cardiac 
disease.3,16–23 In particular, the inherent tropism of MSCs 
to inflammatory sites has been thoroughly studied.24 This 
inherent tropism, also known as homing ability, originates 
from the recognition of various chemokine sources in 
inflamed tissues, where profiled chemokines are continu-
ously secreted and the MSCs migrate to the chemokines in 
a concentration-dependent manner.24 Rheumatoid arthritis 
(RA) is a representative inflammatory disease that primar-
ily causes inflammation in the joints, and this long-term 
autoimmune disorder causes worsening pain and stiffness 
following rest. RA affects approximately 24.5 million peo-
ple as of 2015, but only symptomatic treatments such as 
pain medications, steroids, and nonsteroidal anti- 
inflammatory drugs (NSAIDs), or slow-acting drugs that 
inhibit the rapid progression of RA, such as disease- 
modifying antirheumatic drugs (DMARDs) are currently 
available. However, RA drugs have adverse side effects, 
including hepatitis, osteoporosis, skeletal fracture, steroid- 
induced arthroplasty, Cushing’s syndrome, gastrointestinal 
(GI) intolerance, and bleeding.25–27 Thus, MSCs are 
rapidly emerging as the next generation of arthritis 

treatment because they not only recognize and migrate 
toward chemokines secreted in the inflamed joints but 
also regulate inflammatory progress and repair damaged 
cells.28

However, MSCs are associated with many challenges 
that need to be overcome before they can be used in 
clinical settings.29–31 One of the main challenges is the 
selective accumulation of systemically administered MSCs 
in the lungs and liver when they are administered intrave-
nously, leading to insufficient concentrations of MSCs in 
the target tissues.32,33 In addition, most of the administered 
MSCs are typically initially captured by macrophages in 
the lungs, liver, and spleen.32–34 Importantly, the viability 
and migration ability of MSCs injected in vivo differed 
from results previously reported as favorable therapeutic 
effects and migration efficiency in vitro.35

To improve the delivery of MSCs, researchers have 
focused on chemokines, which are responsible for MSCs’ 
ability to move.36 The chemokine receptors are the key 
proteins on MSCs that recognize chemokines, and genetic 
engineering of MSCs to overexpress the chemokine receptor 
can improve the homing ability, thus enhancing their thera-
peutic efficacy.37 Genetic engineering is a convenient tool for 
modifying native or non-native genes, and several technolo-
gies for genetic engineering exist, including genome editing, 
gene knockdown, and replacement with various vectors.38,39 

However, safety issues that prevent clinical use persist, for 
example, genome integration, off-target effects, and induc-
tion of immune response.40 In this regard, MSC mimicking 
nanoencapsulations can be an alternative strategy for main-
taining the homing ability of MSCs and overcoming the 
current safety issues.41–43 Nanoencapsulation involves 
entrapping the core nanoparticles of solids or liquids within 
nanometer-sized capsules of secondary materials.44

MSC mimicking nanoencapsulation uses the MSC 
membrane fraction as the capsule and targeting molecules, 
that is chemokine receptors, with several types of nanopar-
ticles, as the core.45,46 MSC mimicking nanoencapsulation 
consists of MSC membrane-coated nanoparticles, MSC- 
derived artificial ectosomes, and MSC membrane-fused 
liposomes. Nano drug delivery is an emerging field that 
has attracted significant interest due to its unique character-
istics and paved the way for several unique applications that 
might solve many problems in medicine. In particular, the 
nanoscale size of nanoparticles (NPs) enhances cellular 
uptake and can optimize intracellular pathways due to 
their intrinsic physicochemical properties, and can therefore 
increase drug delivery to target tissues.47,48 However, the 
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inherent targeting ability resulting from the physicochem-
ical properties of NPs is not enough to target specific tissues 
or damaged tissues, and additional studies on additional 
ligands that can bind to surface receptors on target cells or 
tissues have been performed to improve the targeting ability 
of NPs.49 Likewise, nanoencapsulation with cell mem-
branes with targeting molecules and encapsulation of the 
core NPs with cell membranes confer the targeting ability of 
the source cell to the NPs.50,51 Thus, MSC mimicking 
nanoencapsulation can mimic the superior targeting ability 
of MSCs and confer the advantages of each core NP. In 
addition, MSC mimicking nanoencapsulations have 
improved circulation time and camouflaging from 
phagocytes.52

This review discusses the mechanism of MSC migra-
tion to inflammatory sites, addresses the potential strategy 
for improving the tropism of MSCs using genetic engi-
neering, and discusses the promising therapeutic agent, 
MSC mimicking nanoencapsulations.

MSC Homing, Migratory Ability, 
and Genetic Engineering
The MSC migration mechanism can be exploited for diverse 
clinical applications.53 The MSC migration mechanism can 
be divided into five stages: rolling by selectin, activation of 
MSCs by chemokines, stopping cell rolling by integrin, 

transcellular migration, and migration to the damaged site 
(Figure 1).54,55 Chemokines are secreted naturally by various 
cells such as tumor cells, stromal cells, and inflammatory 
cells, maintaining high chemokine concentrations in target 
cells at the target tissue and inducing signal cascades.56–58 

Likewise, MSCs express a variety of chemokine receptors, 
allowing them to migrate and be used as new targeting 
vectors.59–61 MSC migration accelerates depending on the 
concentration of chemokines, which are the most important 
factors in the stem cell homing mechanism.62,63 Chemokines 
consist of various cytokine subfamilies that are closely asso-
ciated with the migration of immune cells. Chemokines are 
divided into four classes based on the locations of the two 
cysteine (C) residues: CC-chemokines, CXC-chemokine, 
C-chemokine, and CX3 Chemokine.64,65 Each chemokine 
binds to various MSC receptors and the binding induces 
a chemokine signaling cascade (Table 1).56,66

Mechanisms of MSC Homing
The mechanisms underlying MSC and leukocyte migration 
are similar in terms of their migratory dynamics.55 

P-selectin glycoprotein ligand-1 (PSGL-1) and E-selectin 
ligand-1 (ESL-1) are major proteins involved in leukocyte 
migration that interact with P-selectin and E-selectin pre-
sent in vascular endothelial cells. However, these promo-
ters are not present in MSCs (Figure 2).53,67

Figure 1 Representation of stem cell homing mechanism.
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The initial rolling is facilitated by selectins expressed 
on the surface of endothelial cells. Various glycoproteins 
on the surface of MSCs can bind to the selectins and 
continue the rolling process.68 However, the mechanism 
of binding of the glycoprotein on MSCs to the selectins is 
still unclear.69,70 P-selectins and E-selectins, major cell- 
cell adhesion molecules expressed by endothelial cells, 
adhere to migrated cells adjacent to endothelial cells and 
can trigger the rolling process.71 For leukocyte migration, 
P-selectin glycoprotein ligand-1 (PSGL-1) and E-selectin 
ligand-1 (ESL-1) expressed on the membranes of leuko-
cytes interact with P-selectins and E-selectins on the 
endothelial cells, initiating the process.72,73 As already 
mentioned, MSCs express neither PSGL-1 nor ESL-1. 
Instead, they express galectin-1 and CD24 on their sur-
faces, and these bind to E-selectin or P-selectin 
(Figure 2).74–76

In the migratory activation step, MSC receptors are 
activated in response to inflammatory cytokines, 
including CXCL12, CXCL8, CXCL4, CCL2, and 

CCL7.77 The corresponding activation of chemokine 
receptors of MSCs in response to inflammatory cyto-
kines results in an accumulation of MSCs.58,78 For 
example, inflamed tissues release inflammatory 
cytokines,79 and specifically, fibroblasts release 
CXCL12, which further induces the accumulation of 
MSCs through ligand–receptor interaction after expo-
sure to hypoxia and cytokine-rich environments in the 
rat model of inflammation.79–82 Previous studies have 
reported that overexpressing CXCR4, which is 
a receptor to recognize CXCL12, in MSCs improves 
the homing ability of MSCs toward inflamed sites.83,84 

In short, cytokines are significantly involved in the 
homing mechanism of MSCs.53

The rolling arrest stage is facilitated by integrin α4β1 
(VLA-4) on MSC.85 VLA-4 is expressed by MSCs which 
are first activated by CXCL-12 and TNF-α chemokines, 
and activated VLA-4 binds to VCAM-1 expressed on 
endothelial cells to stop the rotational movement 
(Figure 2).86,87

Table 1 Chemokine and Chemokine Receptors for Different Chemokine Families

Chemokine 
Family

Chemokine Receptor Chemokine

CC-family CCR1 (CD191) CCL3, CCL4, CCL5, CCL7, CCL8, CCL13, CCL14, CCL15, CCL16, CCL23
CCR2 (CD192) CCL2, CCL7, CCL8, CCL13, CCL16
CCR3 (CD193) CCL4, CCL5, CCL7, CCL11, CCL24, CCL8, CCL13, CCL15, CCL16, CCL23, CCL26, 

CCL28

CCR4 (CD194, CNOT6) CCL3, CCL5, CCL17, CCL22
CCR5 (CD195) CCL2, CCL3, CCL4, CCL5, CCL8, CCL11, CCL13, CCL14, CCL16

CCR6 (CD196) CCL20

CCR7 (CD197) CCL19, CCL21
CCR8 (CDw198) CCL1, CCL4, CLL16, CCL17, CCL18

CCR9 (CDw199) CCL25

CCR10 (GPR2) CCL27, CCL28

CXC-Family CXCR1 (CD181, IL-8RA) CXCL1, CXCL7, CXCL8, CXCL6
CXCR2 (IL-8RB) CXCL1, CXCL2, CXCL3, CXCL5, CXCL7, CXCL8, CXCL6

CXCR3 (GPR9, CD183) CXCL9, CXCL10, CXCL11, CXCL4, CXCL13

CXCR4 (CD184) CXCL12
CXCR5 (BLR1, CD185) CXCL13

CXCR6 (BONZO, 

CD186)

CXCL16

CXCR7 (GPR159, 

ACKR3)

CXCL12, CXCL11

C-family XCR1 (GPF5) XCL1, XCL2

CX3-C-family CX3CR1 (GPR13) CX3CL1
Unknow CXCL14, CXCL17

Abbreviations: CC-family, cistain cistain chamokine structure; CXC-family, cistain one amino acid cistain chemokine structure; C-family, cistain chemokine structure; CX3- 
C-family, cistain three amino acid cistain structure.
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Karp et al categorized the migration of MSCs as either 
“systemic homing” or “non-systemic homing.” Systemic 
homing refers to the process of migration through blood 
vessels and then across the vascular endothelium near the 
inflamed site.67,88 The process of migration after passing 
through the vessels or local injection is called non- 
systemic homing. In non-systemic migration, stem cells 
migrate through a chemokine concentration gradient 
(Figure 3).89 MSCs secrete matrix metalloproteinases 
(MMPs) during migration. The mechanism underlying 
MSC migration is currently undefined but MSC migration 
can be advanced by remodeling the matrix through the 
secretion of various enzymes.90–93 The migration of 

MSCs to the damaged area is induced by chemokines 
released from the injured site, such as IL-8, TNF-α, insu-
lin-like growth factor (IGF-1), and platelet-derived growth 
factors (PDGF).94–96 MSCs migrate toward the damaged 
area following a chemokine concentration gradient.87

Migratory Ability of MSCs to Arthritis
RA is a chronic inflammatory autoimmune disease char-
acterized by distinct painful stiff joints and movement 
disorders.97 RA affects approximately 1% of the world’s 
population.98 RA is primarily induced by macrophages, 
which are involved in the innate immune response and 
are also involved in adaptive immune responses, together 

Figure 2 Differences in adhesion protein molecules between leukocytes and mesenchymal stem cells during rolling stages and rolling arrest stage of MSC. (A) The rolling 
stage of leukocytes starts with adhesion to endothelium with ESL-1 and PSGL-1 on leukocytes. (B) The rolling stage of MSC starts with the adhesion to endothelium with 
Galectin-1 and CD24 on MSC, and the rolling arrest stage was caused by chemokines that were encountered in the rolling stage and VLA-4 with a high affinity for VACM 
present in endothelial cells. 
Abbreviations: ESL-1, E-selectin ligand-1; PSGL-1, P-selectin glycoprotein ligand-1 VLA-4, very late antigen-4; VCAM, vascular cell adhesion molecule-1.

Figure 3 Differences between systemic and non-systemic homing mechanisms. Both systemic and non-systemic homing to the extracellular matrix and stem cells to their 
destination, MSCs secrete MMPs and remodel the extracellular matrix. 
Abbreviation: MMP, matrix metalloproteinase.
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with B cells and T cells.99 Inflammatory diseases are 
caused by high levels of inflammatory cytokines and 
a hypoxic low-pH environment in the joints.100,101 

Fibroblast-like synoviocytes (FLSs) and accumulated 
macrophages and neutrophils in the synovium of inflamed 
joints also express various chemokines.102,103 Chemokines 
from inflammatory reactions can induce migration of 
white blood cells and stem cells, which are involved in 
angiogenesis around joints.101,104,105 More than 50 chemo-
kines are present in the rheumatoid synovial membrane 
(Table 2). Of the chemokines in the synovium, CXCL12, 
MIP1-a, CXCL8, and PDGF are the main ones that attract 
MSCs.106 In the RA environment, CXCL12, a ligand for 
CXCR4 on MSCs, had 10.71 times higher levels of che-
mokines than in the normal synovial cell environment. 
MIP-1a, a chemokine that gathers inflammatory cells, is 
a ligand for CCR1, which is normally expressed on 
MSC.107,108 CXCL8 is a ligand for CXCR1 and CXCR2 
on MSCs and induces the migration of neutrophils and 
macrophages, leading to ROS in synovial cells.59 PDGF is 
a regulatory peptide that is upregulated in the synovial 
tissue of RA patients.109 PDGF induces greater MSC 
migration than CXCL12.110 Importantly, stem cells not 
only have the homing ability to inflamed joints but also 
have potential as cell therapy with the anti-apoptotic, anti- 
catabolic, and anti-fibrotic effect of MSC.111 In preclinical 
trials, MSC treatment has been extensively investigated in 
collagen-induced arthritis (CIA), a common autoimmune 
animal model used to study RA. In the RA model, MSCs 

downregulated inflammatory cytokines such as IFN-γ, 
TNF-α, IL-4, IL-12, and IL1β, and antibodies against 
collagen, while anti-inflammatory cytokines, such as 
tumor necrosis factor-inducible gene 6 protein (TSG-6), 
prostaglandin E2 (PGE2), transforming growth factor-beta 
(TGF-β), IL-10, and IL-6, were upregulated.112–116

Genetically Engineered MSCs Targeting 
Arthritis
Genetic engineering can improve the therapeutic potential of 
MSCs, including long-term survival, angiogenesis, differen-
tiation into specific lineages, anti- and pro-inflammatory 
activity, and migratory properties (Figure 4).117,118 

Although MSCs already have an intrinsic homing ability, 
the targeting ability of MSCs and their derivatives, such as 
membrane vesicles, which are utilized to produce MSC 
mimicking nanoencapsulation, can be enhanced.118 The ther-
apeutic potential of MSCs can be magnified by reprogram-
ming MSCs via upregulation or downregulation of their 
native genes, resulting in controlled production of the target 
protein, or by introducing foreign genes that enable MSCs to 
express native or non-native products, for example, non- 
native soluble tumor necrosis factor (TNF) receptor 2 can 
inhibit TNF-alpha signaling in RA therapies.28

MSCs can be genetically engineered using different 
techniques, including by introducing particular genes into 
the nucleus of MSCs or editing the genome of MSCs 
(Figure 5).119 Foreign genes can be transferred into 

Table 2 Rheumatoid Arthritis (RA) Chemokines Present in the Pathological Environment and Chemokine Receptors Present in 
Mesenchymal Stem Cells

Chemokine Family Chemokine Receptor on MSCs Chemokine in Inflamed Joint with RA

CC-Chemokine receptor CCR1 CCL3, CCL5, CCL7, CCL14, CCL15, CCL16
CCR2 CCL2, CCL7, CCL16
CCR3 CCL5, CCL7, CCL8, CCL15

CCR4 CCL17
CCR5 CCL3, CCL5, CCL8, CCL14

CCR7 CCL21

CCR9 x

CXC-Chemokine receptor CXCR3 CXCL4, CXCL9, CXCL10
CXCR4 CXCL12
CXCR5 CXCL13

CXCR6 CXCL16

CX3C-chemokine receptor CX3CR1 (GPR13) CX3CL1

Nonbinding Chemokine x XCL1, CXCL8, CCL20, CXCL11, CXCL1, CXCL5, CXCL7, CXCL6

Abbreviations: CC-family, cistain cistain chemokine structure; CXC-family, cistain one amino acid cistain chemokine structure; CX3-C-family, cistain three amino acid 
cistain structure.
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Figure 4 Genetic engineering of mesenchymal stem cells to enhance therapeutic efficacy. 
Abbreviations: Sfrp2, secreted frizzled-related protein 2; IGF1, insulin-like growth factor 1; IL-2, interleukin-2; IL-12, interleukin-12; IFN-β, interferon-beta; CX3CL1, 
C-X3-C motif chemokine ligand 1; VEGF, vascular endothelial growth factor; HGF, human growth factor; FGF, fibroblast growth factor; IL-10, interleukin-10; IL-4, 
interleukin-4; IL18BP, interleukin-18-binding protein; IFN-α, interferon-alpha; SDF1, stromal cell-derived factor 1; CXCR4, C-X-C motif chemokine receptor 4; CCR1, 
C-C motif chemokine receptor 1; BMP2, bone morphogenetic protein 2; mHCN2, mouse hyperpolarization-activated cyclic nucleotide-gated.

Figure 5 Genetic engineering techniques used in the production of bioengineered mesenchymal stem cells.
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MSCs using liposomes (chemical method), electroporation 
(physical method), or viral delivery (biological method). 
Cationic liposomes, also known as lipoplexes, can stably 
compact negatively charged nucleic acids, leading to the 
formation of nanomeric vesicular structure.120 Cationic 
liposomes are commonly produced with a combination of 
a cationic lipid such as DOTAP, DOTMA, DOGS, 
DOSPA, and neutral lipids, such as DOPE and 
cholesterol.121 These liposomes are stable enough to pro-
tect their bound nucleic acids from degradation and are 
competent to enter cells via endocytosis.120 

Electroporation briefly creates holes in the cell membrane 
using an electric field of 10–20 kV/cm, and the holes are 
then rapidly closed by the cell’s membrane repair 
mechanism.122 Even though the electric shock induces 
irreversible cell damage and non-specific transport into 
the cytoplasm leads to cell death, electroporation ensures 
successful gene delivery regardless of the target cell or 
organism. Viral vectors, which are derived from adeno-
virus, adeno-associated virus (AAV), or lentivirus (LV), 
have been used to introduce specific genes into MSCs. 
Recombinant lentiviral vectors are the most widely used 
systems due to their high tropism to dividing and non- 
dividing cells, transduction efficiency, and stable expres-
sion of transgenes in MSCs, but the random genome 
integration of transgenes can be an obstacle in clinical 
applications.123 Adenovirus and AAV systems are appro-
priate alternative strategies because currently available 
strains do not have broad genome integration and 
a strong immune response, unlike LV, thus increasing 
success and safety in clinical trials.124 As 
a representative, the Oxford-AstraZeneca COVID-19 vac-
cine, which has been authorized in 71 countries as 
a vaccine for severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2), which spread globally and led to 
the current pandemic, transfers the spike protein gene 
using an adenovirus-based viral vector.125 Furthermore, 
there are two AAV-based gene therapies: Luxturna for 
rare inherited retinal dystrophy and Zolgensma for spinal 
muscular atrophy.126

Clustered regularly interspaced short palindromic 
repeats (CRISPR)/Cas9 were recently used for genome 
editing and modification because of their simpler design 
and higher efficiency for genome editing, however, there 
are safety issues such as off-target effects that induce 
mutations at sites other than the intended target site.127 

The foreign gene is then commonly transferred into non- 

integrating forms such as plasmid DNA and messenger 
RNA (mRNA).128

The gene expression machinery can also be manipu-
lated at the cytoplasmic level through RNA interference 
(RNAi) technology, inhibition of gene expression, or 
translation using neutralizing targeted mRNA molecules 
with sequence-specific small RNA molecules such as 
small interfering RNA (siRNA) or microRNA 
(miRNA).129 These small RNAs can form enzyme com-
plexes that degrade mRNA molecules and thus decrease 
their activity by inhibiting translation. Moreover, the pre- 
transcriptional silencing mechanism of RNAi can induce 
DNA methylation at genomic positions complementary to 
siRNA or miRNA with enzyme complexes.

CXC chemokine receptor 4 (CXCR4) is one of the 
most potent chemokine receptors that is genetically engi-
neered to enhance the migratory properties of MSCs.130 

CXCR4 is a chemokine receptor specific for stromal- 
derived factor-1 (SDF-1), also known as CXC motif che-
mokine 12 (CXCL12), which is produced by damaged 
tissues, such as the area of inflammatory bone 
destruction.131 Several studies on engineering MSCs to 
increase the expression of the CXCR4 gene have reported 
a higher density of the CXCR4 receptor on their outer cell 
membrane and effectively increased the migration of 
MSCs toward SDF-1.83,132,133 CXC chemokine receptor 
7 (CXCR7) also had a high affinity for SDF-1, thus the 
SDF-1/CXCR7 signaling axis was used to engineer the 
MSCs.134 CXCR7-overexpressing MSCs in a cerebral 
ischemia-reperfusion rat hippocampus model promoted 
migration based on an SDF-1 gradient, cooperating with 
the SDF-1/CXCR4 signaling axis (Figure 6).37

CXC chemokine receptor 1 (CXCR1) enhances MSC 
migratory properties.59 CXCR1 is a receptor for IL-8, 
which is the primary cytokine involved in the recruitment 
of neutrophils to the site of damage or infection.135 In 
particular, the IL-8/CXCR1 axis is a key factor for the 
migration of MSCs toward human glioma cell lines, such 
as U-87 MG, LN18, U138, and U251, and CXCR1- 
overexpressing MSCs showed a superior capacity to 
migrate toward glioma cells and tumors in mice bearing 
intracranial human gliomas.136

The migratory properties of MSCs were also controlled 
via aquaporin-1 (Aqp1), which is a water channel mole-
cule that transports water across the cell membrane and 
regulates endothelial cell migration.137 Aqp1- 
overexpressing MSCs showed enhanced migration to frac-
ture gap of a rat fracture model with upregulated focal 
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adhesion kinase (FAK) and β-catenin, which are important 
regulators of cell migration.138

Nur77, also known as nerve growth factor IB or 
NR4A1, and nuclear receptor-related 1 (Nurr1), can play 
a role in improving the migratory capabilities of 
MSCs.139,140 The migrating MSCs expressed higher levels 
of Nur77 and Nurr1 than the non-migrating MSCs, and 
overexpression of these two nuclear receptors functioning 
as transcription factors enhanced the migration of MSCs 
toward SDF-1. The migration of cells is closely related to 
the cell cycle, and normally, cells in the late S or G2/M 
phase do not migrate.141 The overexpression of Nur77 and 
Nurr1 increased the proportion of MSCs in the G0/G1- 
phase similar to the results of migrating MSCs had more 
cells in the G1-phase.

MSC Mimicking Nanoencapsulation 
Targeting Arthritis
MSC mimicking nanoencapsulations are nanoparticles 
combined with MSC membrane vesicles and these NPs 

have the greatest advantages as drug delivery systems due 
to the sustained homing ability of MSCs as well as the 
advantages of NPs. Particles sized 10–150 nm have great 
advantages in drug delivery systems because they can pass 
more freely through the cell membrane by the interaction 
with biomolecules, such as clathrin and caveolin, to facil-
itate uptake across the cell membrane compared with 
micron-sized materials.142,143 Various materials have been 
used to formulate NPs, including silica, polymers, metals, 
and lipids.144,145 NPs have an inherent ability, called “pas-
sive targeting,” to accumulate at specific sites based on their 
physicochemical properties such as size, surface charge, 
surface hydrophilicity, and geometry.146–148 However, phy-
sicochemical properties are not enough to target specific 
tissues or damaged tissues, and thus “active targeting” is 
a clinically approved strategy involving the addition of 
ligands that can bind to surface receptors on target cells or 
tissues.149,150 MSC mimicking nanoencapsulation uses nat-
ural or genetically engineered MSC membranes to coat 
synthetic NPs, producing artificial ectosomes and fusing 
them with liposomes to increase their targeting ability 

Figure 6 Engineered mesenchymal stem cells with enhanced migratory abilities. 
Abbreviations: CXCR4, C-X-C motif chemokine receptor 4; CXCR7, C-X-C motif chemokine receptor 7; SDF1, stromal cell-derived factor 1; CXCR1, C-X-C motif 
chemokine receptor 1; IL-8, interleukin-8; Aqp1, aquaporin 1; FAK, focal adhesion kinase.
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(Figure 7).151 Especially, MSCs have been studied for tar-
geting inflammation and regenerative drugs, and the 
mechanism and efficacy of migration toward inflamed tis-
sues have been actively investigated.152 MSC mimicking 
nanoencapsulation can mimic the well-known migration 
ability of MSCs and can be equally utilized without safety 
issues from the direct application of using MSCs. 
Furthermore, cell membrane encapsulations have a wide 
range of functions, including prolonged blood circulation 
time and increased active targeting efficacy from the source 
cells.153,154 MSC mimicking encapsulations enter recipient 
cells using multiple pathways.155 MSC mimicking encap-
sulations can fuse directly with the plasma membrane and 
can also be taken up through phagocytosis, micropinocyto-
sis, and endocytosis mediated by caveolin or clathrin.156 

MSC mimicking encapsulations can be internalized in 
a highly cell type-specific manner that depends on the 
recognition of membrane surface molecules by the cell or 
tissue.157 For example, endothelial colony-forming cell 
(ECFC)-derived exosomes were shown CXCR4/SDF-1α 
interaction and enhanced delivery toward the ischemic kid-
ney, and Tspan8-alpha4 complex on lymph node stroma 
derived extracellular vesicles induced selective uptake by 
endothelial cells or pancreatic cells with CD54, serving as 
a major ligand.158,159 Therefore, different source cells may 
contain protein signals that serve as ligands for other cells, 
and these receptor–ligand interactions maximized targeted 
delivery of NPs.160 This natural mechanism inspired the 

application of MSC membranes to confer active targeting 
to NPs.

MSC Membrane-Coated Nanoparticles 
Targeting Arthritis
Cell membrane-coated NPs (CMCNPs) are biomimetic 
strategies developed to mimic the properties of cell mem-
branes derived from natural cells such as erythrocytes, 
white blood cells, cancer cells, stem cells, platelets, or 
bacterial cells with an NP core.161 Core NPs made of 
polymer, silica, and metal have been evaluated in attempts 
to overcome the limitations of conventional drug delivery 
systems but there are also issues of toxicity and reduced 
biocompatibility associated with the surface properties of 
NPs.162,163 Therefore, only a small number of NPs have 
been approved for medical application by the FDA.164 

Coating with cell membrane can enhance the biocompat-
ibility of NPs by improving immune evasion, enhancing 
circulation time, reducing RES clearance, preventing 
serum protein adsorption by mimicking cell glycocalyx, 
which are chemical determinants of “self” at the surfaces 
of cells.151,165 Furthermore, the migratory properties of 
MSCs can also be transferred to NPs by coating them 
with the cell membrane.45 Coating NPs with MSC mem-
branes not only enhances biocompatibility but also max-
imizes the therapeutic effect of NPs by mimicking the 
targeting ability of MSCs.166 Cell membrane-coated NPs 
are prepared in three steps: extraction of cell membrane 

Figure 7 Mesenchymal stem cell mimicking nanoencapsulation.
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vesicles from the source cells, synthesis of the core NPs, 
and fusion of the membrane vesicles and core NPs to 
produce cell membrane-coated NPs (Figure 8).167 Cell 
membrane vesicles, including extracellular vesicles 
(EVs), can be harvested through cell lysis, mechanical 
disruption, and centrifugation to isolate, purify the cell 
membrane vesicles, and remove intracellular 
components.168 All the processes must be conducted 
under cold conditions, with protease inhibitors to minimize 
the denaturation of integral membrane proteins. Cell lysis, 
which is classically performed using mechanical lysis, 
including homogenization, sonication, or extrusion fol-
lowed by differential velocity centrifugation, is necessary 
to remove intracellular components. Cytochalasin B (CB), 
a drug that affects cytoskeleton–membrane interactions, 
induces secretion of membrane vesicles from source cells 
and has been used to extract the cell membrane.169 The 
membrane functions of the source cells are preserved in 
CB-induced vesicles, forming biologically active surface 
receptors and ion pumps.170 Furthermore, CB-induced 
vesicles can encapsulate drugs and NPs successfully, and 
the vesicles can be harvested by centrifugation without 
a purification step to remove nuclei and cytoplasm.171 

Clinically translatable membrane vesicles require scalable 
production of high volumes of homogeneous vesicles 
within a short period. Although mechanical methods (eg, 

shear stress, ultrasonication, or extrusion) are utilized, CB- 
induced vesicles have shown potential for generating 
membrane encapsulation for nano-vectors.168 The advan-
tages of CB-induced vesicles versus other methods are 
compared in Table 3.

After extracting cell membrane vesicles, synthesized 
core NPs are coated with cell membranes, including sur-
face proteins.172 Polymer NPs and inorganic NPs are 
adopted as materials for the core NPs of CMCNPs, and 
generally, polylactic-co-glycolic acid (PLGA), polylactic 
acid (PLA), chitosan, and gelatin are used. PLGA has been 
approved by FDA is the most common polymer of NPs.173 

Biodegradable polymer NPs have gained considerable 
attention in nanomedicine due to their biocompatibility, 
nontoxic properties, and the ability to modify their surface 
as a drug carrier.174 Inorganic NPs are composed of gold, 
iron, copper, and silicon, which have hydrophilic, biocom-
patible, and highly stable properties compared with 
organic materials.175 Furthermore, some photosensitive 
inorganic NPs have the potential for use in photothermal 
therapy (PTT) and photodynamic therapy (PDT).176 The 
fusion of cell membrane vesicles and core NPs is primarily 
achieved via extrusion or sonication.165 Cell membrane 
coating of NPs using mechanical extrusion is based on 
a different-sized porous membrane where core NPs and 
vesicles are forced to generate vesicle-particle fusion.177 

Figure 8 MSC membrane-coated nanoparticles. 
Abbreviations: EVs, extracellular vesicles; NPs, nanoparticles.
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Ultrasonic waves are applied to induce the fusion of vesi-
cles and NPs. However, ultrasonic frequencies need to be 
optimized to improve fusion efficiency and minimize drug 
loss and protein degradation.178

CMCNPs have extensively employed to target and 
treat cancer using the membranes obtained from red 
blood cell (RBC), platelet and cancer cell.165 In addition, 
membrane from MSC also utilized to target tumor and 
ischemia with various types of core NPs, such as MSC 
membrane coated PLGA NPs targeting liver tumors, MSC 
membrane coated gelatin nanogels targeting HeLa cell, 
MSC membrane coated silica NPs targeting HeLa cell, 
MSC membrane coated PLGA NPs targeting hindlimb 
ischemia, and MSC membrane coated iron oxide NPs for 
targeting the ischemic brain.179–183 However, there are few 
studies on CMCNPs using stem cells for the treatment of 
arthritis. Increased targeting ability to arthritis was intro-
duced using MSC-derived EVs and NPs.184,185 MSC 
membrane-coated NPs are proming strategy for clearing 
raised concerns from direct use of MSC (with or without 
NPs) in terms of toxicity, reduced biocompatibility, and 
poor targeting ability of NPs for the treatment of arthritis.

MSC Derived Exosomes and Artificial 
Ectosomes Targeting Arthritis
Exosomes are natural NPs that range in size from 40 nm to 
120 nm and are derived from the multivesicular body 
(MVB), which is an endosome defined by intraluminal 
vesicles (ILVs) that bud inward into the endosomal 
lumen, fuse with the cell surface, and are then released 
as exosomes.186 Because of their ability to express recep-
tors on their surfaces, MSC-derived exosomes are also 
considered potential candidates for targeting.187 

Exosomes are commonly referred to as intracellular com-
munication molecules that transfer various compounds 
through physiological mechanisms such as immune 

response, neural communication, and antigen presentation 
in diseases such as cancer, cardiovascular disease, dia-
betes, and inflammation.188

However, there are several limitations to the applica-
tion of exosomes as targeted therapeutic carriers. First, the 
limited reproducibility of exosomes is a major challenge. 
In this field, the standardized techniques for isolation and 
purification of exosomes are lacking, and conventional 
methods containing multi-step ultracentrifugation often 
lead to contamination of other types of EVs. 
Furthermore, exosomes extracted from cell cultures can 
vary and display inconsistent properties even when the 
same type of donor cells were used.189 Second, precise 
characterization studies of exosomes are needed. 
Unknown properties of exosomes can hinder therapeutic 
efficiencies, for example, when using exosomes as cancer 
therapeutics, the use of cancer cell-derived exosomes 
should be avoided because cancer cell-derived exosomes 
may contain oncogenic factors that may contribute to 
cancer progression.190 Finally, cost-effective methods for 
the large-scale production of exosomes are needed for 
clinical application. The yield of exosomes is much 
lower than EVs. Depending on the exosome secretion 
capacity of donor cells, the yield of exosomes is restricted, 
and large-scale cell culture technology for the production 
of exosomes is high difficulty and costly and isolation of 
exosomes is the time-consuming and low-efficient 
method.156

Ectosome is an EV generated by outward budding 
from the plasma membrane followed by pinching off and 
release to the extracellular parts. Recently, artificially pro-
duced ectosome utilized as an alternative to exosomes in 
targeted therapeutics due to stable productivity regardless 
of cell type compared with conventional exosome. 
Artificial ectosomes, containing modified cargo and tar-
geting molecules have recently been introduced for speci-
fic purposes (Figure 9).191,192 Artificial ectosomes are 

Table 3 Comparison of Membrane Vesicle Production Methods

Production Criteria for Clinical 
Translation

Shear Stressed 
Production

Ultrasonication Cell 
Extrusion

CB-Induced 
Vesicles

Clinically feasible yield √ √ √ √

Large-scale production √ √ √ √

Time-effective process √ √
Structural/functional homogeneity √ √

Consistent contents √

Reference [228] [229] [230] [168]

Abbreviation: CB, cytochalasin B.
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typically prepared by breaking bigger cells or cell mem-
brane fractions into smaller ectosomes, similar size to 
natural exosomes, containing modified cargo such as 
RNA molecules, which control specific genes, and chemi-
cal drugs such as anticancer drugs.193 Naturally secreted 
exosomes in conditioned media from modified source 
cells can be harvested by differential ultracentrifugation, 
density gradients, precipitation, filtration, and size exclu-
sion chromatography for exosome separation.194 Even 
though there are several commercial kits for isolating 
exosomes simply and easily, challenges in compliant scal-
able production on a large scale, including purity, homo-
geneity, and reproducibility, have made it difficult to use 
naturally secreted exosomes in clinical settings.195 

Therefore, artificially produced ectosomes are appropriate 
for use in clinical applications, with novel production 
methods that can meet clinical production criteria. 
Production of artificially produced ectosomes begins by 
breaking the cell membrane fraction of cultured cells and 
then using them to produce cell membrane vesicles to 
form ectosomes. As mentioned above, cell membrane 
vesicles are extracted from source cells in several ways, 
and cell membrane vesicles are extracted through poly-
carbonate membrane filters to reduce the mean size to 
a size similar to that of natural exosomes.196 

Furthermore, specific microfluidic devices mounted on 

microblades (fabricated in silicon nitride) enable direct 
slicing of living cells as they flow through the hydrophilic 
microchannels of the device.197 The sliced cell fraction 
reassembles and forms ectosomes. There are several stra-
tegies for loading exogenous therapeutic cargos such as 
drugs, DNA, RNA, lipids, metabolites, and proteins, into 
exosomes or artificial ectosomes in vitro: electroporation, 
incubation for passive loading of cargo or active loading 
with membrane permeabilizer, freeze and thaw cycles, 
sonication, and extrusion.198 In addition, protein or RNA 
molecules can be loaded by co-expressing them in source 
cells via bio-engineering, and proteins designed to interact 
with the protein inside the cell membrane can be loaded 
actively into exosomes or artificial ectosomes.157 

Targeting molecules at the surface of exosomes or artifi-
cial ectosomes can also be engineered in a manner similar 
to the genetic engineering of MSCs.

Most of the exosomes derived from MSCs for drug 
delivery have employed miRNAs or siRNAs, inhibiting 
translation of specific mRNA, with anticancer activity, for 
example, miR-146b, miR-122, and miR-379, which are 
used for cancer targeting by membrane surface molecules 
on MSC-derived exosomes.199–201 Drugs such as doxor-
ubicin, paclitaxel, and curcumin were also loaded into 
MSC-derived exosomes to target cancer.202–204 

However, artificial ectosomes derived from MSCs as 

Figure 9 Mesenchymal stem cell-derived exosomes and artificial ectosomes. (A) Wound healing effect of MSC-derived exosomes and artificial ectosomes,231 (B) treatment 
of organ injuries by MSC-derived exosomes and artificial ectosomes,42,232–234 (C) anti-cancer activity of MSC-derived exosomes and artificial ectosomes.200,202,235
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arthritis therapeutics remains largely unexplored area, 
while EVs, mixtures of natural ectosomes and exosomes, 
derived from MSCs have studied in the treatment of 
arthritis.184 Artificial ectosomes with intrinsic tropism 
from MSCs plus additional targeting ability with engi-
neering increase the chances of ectosomes reaching target 
tissues with ligand–receptor interactions before being 
taken up by macrophages.205 Eventually, this will 
decrease off-target binding and side effects, leading to 
lower therapeutic dosages while maintaining therapeutic 
efficacy.206,207

MSC Membrane-Fused Liposomes 
Targeting Arthritis
Liposomes are spherical vesicles that are artificially 
synthesized through the hydration of dry 
phospholipids.208 The clinically available liposome is 
a lipid bilayer surrounding a hollow core with a diameter 
of 50–150 nm. Therapeutic molecules, such as anticancer 
drugs (doxorubicin and daunorubicin citrate) or nucleic 
acids, can be loaded into this hollow core for delivery.209 

Due to their amphipathic nature, liposomes can load both 
hydrophilic (polar) molecules in an aqueous interior and 
hydrophobic (nonpolar) molecules in the lipid membrane. 
They are well-established biomedical applications and are 
the most common nanostructures used in advanced drug 
delivery.210 Furthermore, liposomes have several advan-
tages, including versatile structure, biocompatibility, low 
toxicity, non-immunogenicity, biodegradability, and 

synergy with drugs: targeted drug delivery, reduction of 
the toxic effect of drugs, protection against drug degrada-
tion, and enhanced circulation half-life.211 Moreover, sur-
faces can be modified by either coating them with 
a functionalized polymer or PEG chains to improve tar-
geted delivery and increase their circulation time in biolo-
gical systems.212 Liposomes have been investigated for 
use in a wide variety of therapeutic applications, including 
cancer diagnostics and therapy, vaccines, brain-targeted 
drug delivery, and anti-microbial therapy. A new approach 
was recently proposed for providing targeting features to 
liposomes by fusing them with cell membrane vesicles, 
generating molecules called membrane-fused liposomes 
(Figure 10).213 Cell membrane vesicles retain the surface 
membrane molecules from source cells, which are respon-
sible for efficient tissue targeting and cellular uptake by 
target cells.214 However, the immunogenicity of cell mem-
brane vesicles leads to their rapid clearance by macro-
phages in the body and their low drug loading 
efficiencies present challenges for their use as drug deliv-
ery systems.156 However, membrane-fused liposomes have 
advantages of stability, long half-life in circulation, and 
low immunogenicity due to the liposome, and the targeting 
feature of cell membrane vesicles is completely transferred 
to the liposome.215 Furthermore, the encapsulation effi-
ciencies of doxorubicin were similar when liposomes and 
membrane-fused liposomes were used, indicating that the 
relatively high drug encapsulation capacity of liposomes 
was maintained during the fusion process.216 Combining 

Figure 10 Mesenchymal stem cell membrane-fused liposomes.
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membrane-fused liposomes with macrophage-derived 
membrane vesicles showed differential targeting and cyto-
toxicity against normal and cancerous cells.217 Although 
only a few studies have been conducted, these results 
corroborate that membrane-fused liposomes are 
a potentially promising future drug delivery system with 
increased targeting ability. MSCs show intrinsic tropism 
toward arthritis, and further engineering and modification 
to enhance their targeting ability make them attractive 
candidates for the development of drug delivery systems. 
Fusing MSC exosomes with liposomes, taking advantage 
of both membrane vesicles and liposomes, is a promising 
technique for future drug delivery systems.

Discussion and Conclusion
MSCs have great potential as targeted therapies due to their 
greater ability to home to targeted pathophysiological sites. 
The intrinsic ability to home to wounds or to the tumor 
microenvironment secreting inflammatory mediators make 
MSCs and their derivatives targeting strategies for cancer 
and inflammatory disease.218,219 Contrary to the well-known 
homing mechanisms of various blood cells, it is still not clear 
how homing occurs in MSCs. So far, the mechanism of MSC 
tethering, which connects long, thin cell membrane cylinders 
called tethers to the adherent area for migration, has not been 
clarified. Recent studies have shown that galectin-1, VCAM- 
1, and ICAM are associated with MSC tethering,53,220 but 
more research is needed to accurately elucidate the tethering 
mechanism of MSCs. MSC chemotaxis is well defined and 
there is strong evidence relating it to the homing ability of 
MSCs.53 Chemotaxis involves recognizing chemokines 
through chemokine receptors on MSCs and migrating to 
chemokines in a gradient-dependent manner.221 RA, 
a representative inflammatory disease, is associated with 
well-profiled chemokines such as CXCR1, CXCR4, and 
CXCR7, which are recognized by chemokine receptors on 
MSCs. In addition, damaged joints in RA continuously 
secrete cytokines until they are treated, giving MSCs an 
advantage as future therapeutic agents for RA.222 However, 
there are several obstacles to utilizing MSCs as RA thera-
peutics. In clinical settings, the functional capability of 
MSCs is significantly affected by the health status of the 
donor patient.223 MSC yield is significantly reduced in 
patients undergoing steroid-based treatment and the quality 
of MSCs is dependent on the donor’s age and environment.35 

In addition, when MSCs are used clinically, cryopreservation 
and defrosting are necessary, but these procedures shorten the 
life span of MSCs.224 Therefore, NPs mimicking MSCs are 

an alternative strategy for overcoming the limitations of 
MSCs. Additionally, further engineering and modification 
of MSCs can enhance the therapeutic effect by changing 
the targeting molecules and loaded drugs. In particular, upre-
gulation of receptors associated with chemotaxis through 
genetic engineering can confer the additional ability of 
MSCs to home to specific sites, while the increase in engraft-
ment maximizes the therapeutic effect of MSCs.36,225

Furthermore, there are several methods that can be 
used to exploit the targeting ability of MSCs as drug 
delivery systems. MSCs mimicking nanoencapsulation, 
which consists of MSC membrane-coated NPs, MSC- 
derived artificial ectosomes, and MSC membrane-fused 
liposomes, can mimic the targeting ability of MSCs 
while retaining the advantages of NPs. MSC-membrane- 
coated NPs are synthesized using inorganic or polymer 
NPs and membranes from MSCs to coat inner nanosized 
structures. Because they mimic the biological character-
istics of MSC membranes, MSC-membrane-coated NPs 
can not only escape from immune surveillance but also 
effectively improve targeting ability, with combined 
functions of the unique properties of core NPs and 
MSC membranes.226 Exosomes are also an appropriate 
candidate for use in MSC membranes, utilizing these 
targeting abilities. However, natural exosomes lack 
reproducibility and stable productivity, thus artificial 
ectosomes with targeting ability produced via synthetic 
routes can increase the local concentration of ectosomes 
at the targeted site, thereby reducing toxicity and side 
effects and maximizing therapeutic efficacy.156 MSC 
membrane-fused liposomes, a novel system, can also 
transfer the targeting molecules on the surface of 
MSCs to liposomes; thus, the advantages of liposomes 
are retained, but with targeting ability. With advance-
ments in nanotechnology of drug delivery systems, the 
research in cell-mimicking nanoencapsulation will be 
very useful. Efficient drug delivery systems fundamen-
tally improve the quality of life of patients with a low 
dose of medication, low side effects, and subsequent 
treatment of diseases.227 However, research on cell- 
mimicking nanoencapsulation is at an early stage, and 
several problems need to be addressed. To predict the 
nanotoxicity of artificially synthesized MSC mimicking 
nanoencapsulations, interactions between lipids and 
drugs, drug release mechanisms near the targeted site, 
in vivo compatibility, and immunological physiological 
studies must be conducted before clinical application.
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